Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Biol Chem ; 299(8): 104920, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37321450

RESUMEN

Recent advancements in the treatment of melanoma are encouraging, but there remains a need to identify additional therapeutic targets. We identify a role for microsomal glutathione transferase 1 (MGST1) in biosynthetic pathways for melanin and as a determinant of tumor progression. Knockdown (KD) of MGST1 depleted midline-localized, pigmented melanocytes in zebrafish embryos, while in both mouse and human melanoma cells, loss of MGST1 resulted in a catalytically dependent, quantitative, and linear depigmentation, associated with diminished conversion of L-dopa to dopachrome (eumelanin precursor). Melanin, especially eumelanin, has antioxidant properties, and MGST1 KD melanoma cells are under higher oxidative stress, with increased reactive oxygen species, decreased antioxidant capacities, reduced energy metabolism and ATP production, and lower proliferation rates in 3D culture. In mice, when compared to nontarget control, Mgst1 KD B16 cells had less melanin, more active CD8+ T cell infiltration, slower growing tumors, and enhanced animal survival. Thus, MGST1 is an integral enzyme in melanin synthesis and its inhibition adversely influences tumor growth.


Asunto(s)
Glutatión Transferasa , Melaninas , Melanoma , Animales , Humanos , Ratones , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Melaninas/biosíntesis , Melanoma/genética , Melanoma/inmunología , Melanoma/fisiopatología , Pez Cebra/metabolismo , Oxidación-Reducción , Ratones Endogámicos C57BL , Línea Celular Tumoral , Proliferación Celular/genética
2.
Proc Natl Acad Sci U S A ; 117(37): 22910-22919, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32859758

RESUMEN

Lymphocyte-based immunotherapy has emerged as a breakthrough in cancer therapy for both hematologic and solid malignancies. In a subpopulation of cancer patients, this powerful therapeutic modality converts malignancy to clinically manageable disease. However, the T cell- and chimeric antigen receptor T (CAR-T) cell-mediated antimetastatic activity, especially their impacts on microscopic metastatic lesions, has not yet been investigated. Here we report a living zebrafish model that allows us to visualize the metastatic cancer cell killing effect by tumor- infiltrating lymphocytes (TILs) and CAR-T cells in vivo at the single-cell level. In a freshly isolated primary human melanoma, specific TILs effectively eliminated metastatic cancer cells in the living body. This potent metastasis-eradicating effect was validated using a human lymphoma model with CAR-T cells. Furthermore, cancer-associated fibroblasts protected metastatic cancer cells from T cell-mediated killing. Our data provide an in vivo platform to validate antimetastatic effects by human T cell-mediated immunotherapy. This unique technology may serve as a precision medicine platform for assessing anticancer effects of cellular immunotherapy in vivo before administration to human cancer patients.


Asunto(s)
Inmunoterapia/métodos , Linfocitos Infiltrantes de Tumor/metabolismo , Análisis de la Célula Individual/métodos , Animales , Línea Celular Tumoral , Citotoxicidad Inmunológica/inmunología , Inmunoterapia Adoptiva/métodos , Activación de Linfocitos/fisiología , Modelos Animales , Metástasis de la Neoplasia/patología , Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Pez Cebra
3.
Gut ; 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022268

RESUMEN

OBJECTIVE: To better comprehend transcriptional phenotypes of cancer cells, we globally characterised RNA-binding proteins (RBPs) to identify altered RNAs, including long non-coding RNAs (lncRNAs). DESIGN: To unravel RBP-lncRNA interactions in cancer, we curated a list of ~2300 highly expressed RBPs in human cells, tested effects of RBPs and lncRNAs on patient survival in multiple cohorts, altered expression levels, integrated various sequencing, molecular and cell-based data. RESULTS: High expression of RBPs negatively affected patient survival in 21 cancer types, especially hepatocellular carcinoma (HCC). After knockdown of the top 10 upregulated RBPs and subsequent transcriptome analysis, we identified 88 differentially expressed lncRNAs, including 34 novel transcripts. CRISPRa-mediated overexpression of four lncRNAs had major effects on the HCC cell phenotype and transcriptome. Further investigation of four RBP-lncRNA pairs revealed involvement in distinct regulatory processes. The most noticeable RBP-lncRNA connection affected lipid metabolism, whereby the non-canonical RBP CCT3 regulated LINC00326 in a chaperonin-independent manner. Perturbation of the CCT3-LINC00326 regulatory network led to decreased lipid accumulation and increased lipid degradation in cellulo as well as diminished tumour growth in vivo. CONCLUSIONS: We revealed that RBP gene expression is perturbed in HCC and identified that RBPs exerted additional functions beyond their tasks under normal physiological conditions, which can be stimulated or intensified via lncRNAs and affected tumour growth.

4.
Genet Med ; 24(1): 157-169, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34906508

RESUMEN

PURPOSE: More than half of the familial cutaneous melanomas have unknown genetic predisposition. This study aims at characterizing a novel melanoma susceptibility gene. METHODS: We performed exome and targeted sequencing in melanoma-prone families without any known melanoma susceptibility genes. We analyzed the expression of candidate gene DENND5A in melanoma samples in relation to pigmentation and UV signature. Functional studies were carried out using microscopic approaches and zebrafish model. RESULTS: We identified a novel DENND5A truncating variant that segregated with melanoma in a Swedish family and 2 additional rare DENND5A variants, 1 of which segregated with the disease in an American family. We found that DENND5A is significantly enriched in pigmented melanoma tissue. Our functional studies show that loss of DENND5A function leads to decrease in melanin content in vitro and pigmentation defects in vivo. Mechanistically, harboring the truncating variant or being suppressed leads to DENND5A losing its interaction with SNX1 and its ability to transport the SNX1-associated vesicles from melanosomes. Consequently, untethered SNX1-premelanosome protein and redundant tyrosinase are redirected to lysosomal degradation by default, causing decrease in melanin content. CONCLUSION: Our findings provide evidence of a physiological role of DENND5A in the skin context and link its variants to melanoma susceptibility.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/genética , Melanoma , Neoplasias Cutáneas , Animales , Predisposición Genética a la Enfermedad , Humanos , Melanoma/genética , Melanosomas , Monofenol Monooxigenasa/metabolismo , Neoplasias Cutáneas/genética , Nexinas de Clasificación , Secuenciación del Exoma , Pez Cebra/genética
5.
Nat Chem Biol ; 16(10): 1120-1128, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32690945

RESUMEN

The NUDIX hydrolase NUDT15 was originally implicated in sanitizing oxidized nucleotides, but was later shown to hydrolyze the active thiopurine metabolites, 6-thio-(d)GTP, thereby dictating the clinical response of this standard-of-care treatment for leukemia and inflammatory diseases. Nonetheless, its physiological roles remain elusive. Here, we sought to develop small-molecule NUDT15 inhibitors to elucidate its biological functions and potentially to improve NUDT15-dependent chemotherapeutics. Lead compound TH1760 demonstrated low-nanomolar biochemical potency through direct and specific binding into the NUDT15 catalytic pocket and engaged cellular NUDT15 in the low-micromolar range. We also employed thiopurine potentiation as a proxy functional readout and demonstrated that TH1760 sensitized cells to 6-thioguanine through enhanced accumulation of 6-thio-(d)GTP in nucleic acids. A biochemically validated, inactive structural analog, TH7285, confirmed that increased thiopurine toxicity takes place via direct NUDT15 inhibition. In conclusion, TH1760 represents the first chemical probe for interrogating NUDT15 biology and potential therapeutic avenues.


Asunto(s)
Pirofosfatasas/antagonistas & inhibidores , Pirofosfatasas/metabolismo , Sitios de Unión , Línea Celular , Diseño de Fármacos , Desarrollo de Medicamentos , Escherichia coli , Humanos , Pirofosfatasa Inorgánica/antagonistas & inhibidores , Pirofosfatasa Inorgánica/genética , Pirofosfatasa Inorgánica/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Pirofosfatasas/química , Pirofosfatasas/genética , Relación Estructura-Actividad
6.
J Biol Chem ; 295(15): 4761-4772, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32144205

RESUMEN

MutT homologue 1 (MTH1) removes oxidized nucleotides from the nucleotide pool and thereby prevents their incorporation into the genome and thereby reduces genotoxicity. We previously reported that MTH1 is an efficient catalyst of O6-methyl-dGTP hydrolysis suggesting that MTH1 may also sanitize the nucleotide pool from other methylated nucleotides. We here show that MTH1 efficiently catalyzes the hydrolysis of N6-methyl-dATP to N6-methyl-dAMP and further report that N6-methylation of dATP drastically increases the MTH1 activity. We also observed MTH1 activity with N6-methyl-ATP, albeit at a lower level. We show that N6-methyl-dATP is incorporated into DNA in vivo, as indicated by increased N6-methyl-dA DNA levels in embryos developed from MTH1 knock-out zebrafish eggs microinjected with N6-methyl-dATP compared with noninjected embryos. N6-methyl-dATP activity is present in MTH1 homologues from distantly related vertebrates, suggesting evolutionary conservation and indicating that this activity is important. Of note, N6-methyl-dATP activity is unique to MTH1 among related NUDIX hydrolases. Moreover, we present the structure of N6-methyl-dAMP-bound human MTH1, revealing that the N6-methyl group is accommodated within a hydrophobic active-site subpocket explaining why N6-methyl-dATP is a good MTH1 substrate. N6-methylation of DNA and RNA has been reported to have epigenetic roles and to affect mRNA metabolism. We propose that MTH1 acts in concert with adenosine deaminase-like protein isoform 1 (ADAL1) to prevent incorporation of N6-methyl-(d)ATP into DNA and RNA. This would hinder potential dysregulation of epigenetic control and RNA metabolism via conversion of N6-methyl-(d)ATP to N6-methyl-(d)AMP, followed by ADAL1-catalyzed deamination producing (d)IMP that can enter the nucleotide salvage pathway.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Nucleótidos de Desoxiadenina/química , Nucleótidos de Desoxiadenina/metabolismo , Desoxirribonucleótidos/metabolismo , Evolución Molecular , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Dominio Catalítico , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Embrión no Mamífero/metabolismo , Humanos , Hidrólisis , Cinética , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Especificidad por Sustrato , Pez Cebra , Hidrolasas Nudix
7.
Nature ; 508(7495): 215-21, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24695224

RESUMEN

Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bind in the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.


Asunto(s)
Enzimas Reparadoras del ADN/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Nucleótidos/metabolismo , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Animales , Dominio Catalítico , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cristalización , Daño del ADN , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Masculino , Ratones , Modelos Moleculares , Conformación Molecular , Terapia Molecular Dirigida , Neoplasias/patología , Oxidación-Reducción/efectos de los fármacos , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Pirofosfatasas/antagonistas & inhibidores , Reproducibilidad de los Resultados , Ensayos Antitumor por Modelo de Xenoinjerto , Hidrolasas Nudix
8.
Nucleic Acids Res ; 46(20): 10888-10904, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30304478

RESUMEN

Nucleotides in the free pool are more susceptible to nonenzymatic methylation than those protected in the DNA double helix. Methylated nucleotides like O6-methyl-dGTP can be mutagenic and toxic if incorporated into DNA. Removal of methylated nucleotides from the nucleotide pool may therefore be important to maintain genome integrity. We show that MutT homologue 1 (MTH1) efficiently catalyzes the hydrolysis of O6-methyl-dGTP with a catalytic efficiency similar to that for 8-oxo-dGTP. O6-methyl-dGTP activity is exclusive to MTH1 among human NUDIX proteins and conserved through evolution but not found in bacterial MutT. We present a high resolution crystal structure of human and zebrafish MTH1 in complex with O6-methyl-dGMP. By microinjecting fertilized zebrafish eggs with O6-methyl-dGTP and inhibiting MTH1 we demonstrate that survival is dependent on active MTH1 in vivo. O6-methyl-dG levels are higher in DNA extracted from zebrafish embryos microinjected with O6-methyl-dGTP and inhibition of O6-methylguanine-DNA methyl transferase (MGMT) increases the toxicity of O6-methyl-dGTP demonstrating that O6-methyl-dGTP is incorporated into DNA. MTH1 deficiency sensitizes human cells to the alkylating agent Temozolomide, a sensitization that is more pronounced upon MGMT inhibition. These results expand the cellular MTH1 function and suggests MTH1 also is important for removal of methylated nucleotides from the nucleotide pool.


Asunto(s)
Enzimas Reparadoras del ADN/fisiología , Nucleótidos de Desoxiguanina/química , Monoéster Fosfórico Hidrolasas/fisiología , Animales , Dominio Catalítico , Cristalografía por Rayos X , Metilasas de Modificación del ADN/química , Enzimas Reparadoras del ADN/química , Perros , Escherichia coli/genética , Células HL-60 , Humanos , Hidrólisis , Cinética , Ratones , Nucleótidos , Monoéster Fosfórico Hidrolasas/química , Pirofosfatasas/química , Especificidad de la Especie , Porcinos , Temozolomida/farmacología , Proteínas Supresoras de Tumor/química , Pez Cebra
10.
Proc Natl Acad Sci U S A ; 112(44): E5944-53, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26483474

RESUMEN

Physiological functions of vascular endothelial growth factor (VEGF)-B remain an enigma, and deletion of the Vegfb gene in mice lacks an overt phenotype. Here we show that knockdown of Vegfba, but not Vegfbb, in zebrafish embryos by specific morpholinos produced a lethal phenotype owing to vascular and neuronal defects in the brain. Vegfba morpholinos also markedly prevented development of hyaloid vasculatures in the retina, but had little effects on peripheral vascular development. Consistent with phenotypic defects, Vegfba, but not Vegfaa, mRNA was primarily expressed in the brain of developing zebrafish embryos. Interestingly, in situ detection of Neuropilin1 (Nrp1) mRNA showed an overlapping expression pattern with Vegfba, and knockdown of Nrp1 produced a nearly identically lethal phenotype as Vegfba knockdown. Furthermore, zebrafish VEGF-Ba protein directly bound to NRP1. Importantly, gain-of-function by exogenous delivery of mRNAs coding for NRP1-binding ligands VEGF-B or VEGF-A to the zebrafish embryos rescued the lethal phenotype by normalizing vascular development. Similarly, exposure of zebrafish embryos to hypoxia also rescued the Vegfba morpholino-induced vascular defects in the brain by increasing VEGF-A expression. Independent evidence of VEGF-A gain-of-function was provided by using a functionally defective Vhl-mutant zebrafish strain, which again rescued the Vegfba morpholino-induced vascular defects. These findings show that VEGF-B is spatiotemporally required for vascular development in zebrafish embryos and that NRP1, but not VEGFR1, mediates the essential signaling.


Asunto(s)
Vasos Sanguíneos/embriología , Neuronas/citología , Neuropilina-1/metabolismo , Transducción de Señal , Factor B de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/embriología , Animales , Técnicas de Silenciamiento del Gen , Factor B de Crecimiento Endotelial Vascular/genética
11.
Proc Natl Acad Sci U S A ; 110(50): 20057-62, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24277839

RESUMEN

Embryonic development depends on complex and precisely orchestrated signaling pathways including specific reduction/oxidation cascades. Oxidoreductases of the thioredoxin family are key players conveying redox signals through reversible posttranslational modifications of protein thiols. The importance of this protein family during embryogenesis has recently been exemplified for glutaredoxin 2, a vertebrate-specific glutathione-disulfide oxidoreductase with a critical role for embryonic brain development. Here, we discovered an essential function of glutaredoxin 2 during vascular development. Confocal microscopy and time-lapse studies based on two-photon microscopy revealed that morpholino-based knockdown of glutaredoxin 2 in zebrafish, a model organism to study vertebrate embryogenesis, resulted in a delayed and disordered blood vessel network. We were able to show that formation of a functional vascular system requires glutaredoxin 2-dependent reversible S-glutathionylation of the NAD(+)-dependent protein deacetylase sirtuin 1. Using mass spectrometry, we identified a cysteine residue in the conserved catalytic region of sirtuin 1 as target for glutaredoxin 2-specific deglutathionylation. Thereby, glutaredoxin 2-mediated redox regulation controls enzymatic activity of sirtuin 1, a mechanism we found to be conserved between zebrafish and humans. These results link S-glutathionylation to vertebrate development and successful embryonic angiogenesis.


Asunto(s)
Sistema Cardiovascular/embriología , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Neovascularización Fisiológica/fisiología , Transducción de Señal/fisiología , Sirtuina 1/metabolismo , Animales , Western Blotting , Cartilla de ADN/genética , Técnicas de Silenciamiento del Gen , Glutarredoxinas/genética , Células HeLa , Humanos , Espectrometría de Masas , Microscopía Confocal , Oxidación-Reducción , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética , Imagen de Lapso de Tiempo , Pez Cebra
12.
Proc Natl Acad Sci U S A ; 108(51): 20532-7, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22139372

RESUMEN

Cellular functions and survival are dependent on a tightly controlled redox potential. Currently, an increasing amount of data supports the concept of local changes in the redox environment and specific redox signaling events controlling cell function. Specific protein thiol groups are the major targets of redox signaling and regulation. Thioredoxins and glutaredoxins catalyze reversible thiol-disulfide exchange reactions and are primary regulators of the protein thiol redox state. Here, we demonstrate that embryonic brain development depends on the enzymatic activity of glutaredoxin 2. Zebrafish with silenced expression of glutaredoxin 2 lost virtually all types of neurons by apoptotic cell death and the ability to develop an axonal scaffold. As demonstrated in zebrafish and in a human cellular model for neuronal differentiation, glutaredoxin 2 controls axonal outgrowth via thiol redox regulation of collapsin response mediator protein 2, a central component of the semaphorin pathway. This study provides an example of a specific thiol redox regulation essential for vertebrate embryonic development.


Asunto(s)
Encéfalo/embriología , Regulación del Desarrollo de la Expresión Génica , Glutarredoxinas/química , Pez Cebra/embriología , Animales , Apoptosis , Axones/fisiología , Línea Celular Tumoral , Biología Evolutiva , Glutarredoxinas/genética , Humanos , Neuritas/metabolismo , Oxidación-Reducción , Proteínas Recombinantes/química , Transducción de Señal , Vertebrados
13.
EBioMedicine ; 103: 105124, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38701619

RESUMEN

BACKGROUND: PolyQ diseases are autosomal dominant neurodegenerative disorders caused by the expansion of CAG repeats. While of slow progression, these diseases are ultimately fatal and lack effective therapies. METHODS: A high-throughput chemical screen was conducted to identify drugs that lower the toxicity of a protein containing the first exon of Huntington's disease (HD) protein huntingtin (HTT) harbouring 94 glutamines (Htt-Q94). Candidate drugs were tested in a wide range of in vitro and in vivo models of polyQ toxicity. FINDINGS: The chemical screen identified the anti-leprosy drug clofazimine as a hit, which was subsequently validated in several in vitro models. Computational analyses of transcriptional signatures revealed that the effect of clofazimine was due to the stimulation of mitochondrial biogenesis by peroxisome proliferator-activated receptor gamma (PPARγ). In agreement with this, clofazimine rescued mitochondrial dysfunction triggered by Htt-Q94 expression. Importantly, clofazimine also limited polyQ toxicity in developing zebrafish and neuron-specific worm models of polyQ disease. INTERPRETATION: Our results support the potential of repurposing the antimicrobial drug clofazimine for the treatment of polyQ diseases. FUNDING: A full list of funding sources can be found in the acknowledgments section.


Asunto(s)
Clofazimina , Modelos Animales de Enfermedad , Proteína Huntingtina , Leprostáticos , PPAR gamma , Péptidos , Pez Cebra , Clofazimina/farmacología , PPAR gamma/metabolismo , PPAR gamma/genética , Animales , Humanos , Péptidos/farmacología , Leprostáticos/farmacología , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo
14.
Biochem Biophys Res Commun ; 436(3): 491-6, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23756812

RESUMEN

Glutaredoxins that contain a Cys-X-X-Cys active site motif are glutathione-dependent thiol-disulfide oxidoreductases. Vertebrate glutaredoxin 2 is characterized by two extra cysteines that form an intra-molecular disulfide bridge. Zebrafish glutaredoxin 2 contains four additional cysteines that are conserved within the infraclass of bony fish (teleosts). Here, we present a biochemical and biophysical characterization of zebrafish glutaredoxin 2, focusing on iron-sulfur-cluster coordination. The coordination of [2Fe2S](2+)-clusters in monomers of this protein was revealed by both absorption and Mössbauer spectroscopy as well as size exclusion chromatography. All other holo-glutaredoxins represent [FeS]-cluster bridged dimers using two molecules of non-covalently bound glutathione and the N-terminal active site cysteines as ligands. These cysteine residues were not required for [FeS]-cluster coordination in zebrafish glutaredoxin 2. A crystal structure of the teleost protein revealed high structural similarity to its human homologue. The two vertebrate-specific cysteines as well as two of the teleost-specific cysteines are positioned within a radius of 7Å near the C-terminus suggesting a potential role in [FeS]-cluster coordination. Indeed, mutated proteins lacking these teleost-specific cysteines lost the ability to bind the cofactor. Hence, the apparent mode of [FeS]-cluster coordination in zebrafish glutaredoxin 2 could be different from all yet described [FeS]-glutaredoxins.


Asunto(s)
Glutarredoxinas/química , Proteínas Hierro-Azufre/química , Proteínas de Pez Cebra/química , Pez Cebra/metabolismo , Secuencias de Aminoácidos , Animales , Dominio Catalítico , Cisteína/química , Activación Enzimática , Humanos , Ligandos , Datos de Secuencia Molecular , Unión Proteica , Multimerización de Proteína , Homología de Secuencia de Aminoácido
15.
Nat Nanotechnol ; 18(1): 42-48, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36509925

RESUMEN

The gut microbiome produces metabolites that interact with the aryl hydrocarbon receptor (AhR), a key regulator of immune homoeostasis in the gut1,2. Here we show that oral exposure to graphene oxide (GO) modulates the composition of the gut microbiome in adult zebrafish, with significant differences in wild-type versus ahr2-deficient animals. Furthermore, GO was found to elicit AhR-dependent induction of cyp1a and homing of lck+ cells to the gut in germ-free zebrafish larvae when combined with the short-chain fatty acid butyrate. To obtain further insights into the immune responses to GO, we used single-cell RNA sequencing to profile cells from whole germ-free embryos as well as cells enriched for lck. These studies provided evidence for the existence of innate lymphoid cell (ILC)-like cells3 in germ-free zebrafish. Moreover, GO endowed with a 'corona' of microbial butyrate triggered the induction of ILC2-like cells with attributes of regulatory cells. Taken together, this study shows that a nanomaterial can influence the crosstalk between the microbiome and immune system in an AhR-dependent manner.


Asunto(s)
Microbiota , Receptores de Hidrocarburo de Aril , Animales , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Inmunidad Innata , Linfocitos/metabolismo
16.
Neuro Oncol ; 25(6): 1058-1072, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-36583853

RESUMEN

BACKGROUND: High-grade gliomas are malignant brain tumors characterized by aggressiveness and resistance to chemotherapy. Prognosis remains dismal, highlighting the need to identify novel molecular dependencies and targets. Ribosome biogenesis (RiBi), taking place in the nucleolus, represents a promising target as several cancer types rely on high RiBi rates to sustain proliferation. Publicly available transcriptomics data of glioma patients revealed a positive correlation between RiBi rates and histological grades. We, therefore, hypothesized that glioma cells could be susceptible to RiBi inhibition. METHODS: Transcriptomics data from glioma patients were analyzed for RiBi-related processes. BMH-21, a small molecule inhibitor of RNA pol I transcription, was tested in adult and pediatric high-grade glioma cell lines and a zebrafish transplant model. Cellular phenotypes were evaluated by transcriptomics, cell cycle analysis, and viability assays. A chemical synergy screen was performed to identify drugs potentiating BMH-21-mediated effects. RESULTS: BMH-21 reduced glioma cell viability, induced apoptosis, and impaired the growth of transplanted glioma cells in zebrafish. Combining BMH-21 with TMZ potentiated cytotoxic effects. Moreover, BMH-21 synergized with Fibroblast Growth Factor Receptor (FGFR) inhibitor (FGFRi) Erdafitinib, a top hit in the chemical synergy screen. RiBi inhibition using BMH-21, POLR1A siRNA, or Actinomycin D revealed engagement of the FGFR-FGF2 pathway. BMH-21 downregulated FGFR1 and SOX2 levels, whereas FGF2 was induced and released from the nucleolus. CONCLUSIONS: This study conceptualizes the implementation of RiBi inhibition as a viable future therapeutic strategy for glioma and reveals an FGFR connection to the cellular response upon RiBi inhibition with potential translational value.


Asunto(s)
Glioma , Pez Cebra , Animales , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor 2 de Crecimiento de Fibroblastos/uso terapéutico , Línea Celular Tumoral , Glioma/genética , Proliferación Celular , Ciclo Celular , Inhibidores de Proteínas Quinasas/farmacología , Ribosomas/metabolismo , Ribosomas/patología
17.
Cell Death Differ ; 29(1): 246-261, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34453118

RESUMEN

T cell-driven diseases account for considerable morbidity and disability globally and there is an urgent need for new targeted therapies. Both cancer cells and activated T cells have an altered redox balance, and up-regulate the DNA repair protein MTH1 that sanitizes the oxidized nucleotide pool to avoid DNA damage and cell death. Herein we suggest that the up-regulation of MTH1 in activated T cells correlates with their redox status, but occurs before the ROS levels increase, challenging the established conception of MTH1 increasing as a direct response to an increased ROS status. We also propose a heterogeneity in MTH1 levels among activated T cells, where a smaller subset of activated T cells does not up-regulate MTH1 despite activation and proliferation. The study suggests that the vast majority of activated T cells have high MTH1 levels and are sensitive to the MTH1 inhibitor TH1579 (Karonudib) via induction of DNA damage and cell cycle arrest. TH1579 further drives the surviving cells to the MTH1low phenotype with altered redox status. TH1579 does not affect resting T cells, as opposed to the established immunosuppressor Azathioprine, and no sensitivity among other major immune cell types regarding their function can be observed. Finally, we demonstrate a therapeutic effect in a murine model of experimental autoimmune encephalomyelitis. In conclusion, we show proof of concept of the existence of MTH1high and MTH1low activated T cells, and that MTH1 inhibition by TH1579 selectively suppresses pro-inflammatory activated T cells. Thus, MTH1 inhibition by TH1579 may serve as a novel treatment option against autoreactive T cells in autoimmune diseases, such as multiple sclerosis.


Asunto(s)
Enzimas Reparadoras del ADN , Monoéster Fosfórico Hidrolasas , Animales , Daño del ADN , Enzimas Reparadoras del ADN/metabolismo , Recuento de Linfocitos , Ratones , Monoéster Fosfórico Hidrolasas/genética , Linfocitos T/metabolismo
18.
Redox Biol ; 49: 102221, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34952462

RESUMEN

Redox regulation of specific cysteines via oxidoreductases of the thioredoxin family is increasingly being recognized as an important signaling pathway. Here, we demonstrate that the cytosolic isoform of the vertebrate-specific oxidoreductase Glutaredoxin 2 (Grx2c) regulates the redox state of the transcription factor SP-1 and thereby its binding affinity to both the promoter and an enhancer region of the CSPG4 gene encoding chondroitin sulfate proteoglycan nerve/glial antigen 2 (NG2). This leads to an increased number of NG2 glia during in vitro oligodendroglial differentiation and promotes migration of these wound healing cells. On the other hand, we found that the same mechanism also leads to increased invasion of glioma tumor cells. Using in vitro (human cell lines), ex vivo (mouse primary cells), and in vivo models (zebrafish), as well as glioblastoma patient tissue samples we provide experimental data highlighting the Yin and Yang of redox signaling in the central nervous system and the enzymatic Taoism of Grx2c.


Asunto(s)
Glioma , Glutarredoxinas , Animales , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Glioma/genética , Glioma/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Neuroglía/metabolismo , Filosofías Religiosas , Cicatrización de Heridas/genética , Pez Cebra/metabolismo
19.
Zebrafish ; 18(4): 252-264, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34227897

RESUMEN

Metals and metalloids are integral to biological processes and play key roles in physiology and metabolism. Nonetheless, overexposure to some metals or lack of others can lead to serious health consequences. In this study, eight zebrafish facilities collaborated to generate a multielement analysis of their centralized recirculating water systems. We report a first set of average concentrations for 46 elements detected in zebrafish facilities. Our results help to establish an initial baseline for trouble-shooting purposes, and in general for safe ranges of metal concentrations in recirculating water systems, supporting reproducible scientific research outcomes with zebrafish.


Asunto(s)
Metaloides , Contaminantes Químicos del Agua , Animales , Metaloides/análisis , Metaloides/metabolismo , Agua , Contaminantes Químicos del Agua/análisis , Pez Cebra/metabolismo
20.
Nanoscale ; 12(32): 16730-16737, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32785315

RESUMEN

Understanding the biological fate of graphene-based materials such as graphene oxide (GO) is crucial to assess adverse effects following intentional or inadvertent exposure. Here we provide first evidence of biodegradation of GO in the gastrointestinal tract using zebrafish as a model. Raman mapping was deployed to assess biodegradation. The degradation was blocked upon knockdown of nos2a encoding the inducible nitric oxide synthase (iNOS) or by pharmacological inhibition of NOS using l-NAME, demonstrating that the process was nitric oxide (NO)-dependent. NO-dependent degradation of GO was further confirmed in vitro by combining a superoxide-generating system, xanthine/xanthine oxidase (X/XO), with an NO donor (PAPA NONOate), or by simultaneously producing superoxide and NO by decomposition of SIN-1. Finally, by using the transgenic strain Tg(mpx:eGFP) to visualize the movement of neutrophils, we could show that inhibition of the degradation of GO resulted in increased neutrophil infiltration into the gastrointestinal tract, indicative of inflammation.


Asunto(s)
Grafito , Óxido Nítrico , Animales , Tracto Gastrointestinal/metabolismo , Inflamación , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA