Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 565(7738): 180-185, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30568302

RESUMEN

Environmental cues profoundly affect cellular plasticity in multicellular organisms. For instance, exercise promotes a glycolytic-to-oxidative fibre-type switch in skeletal muscle, and cold acclimation induces beige adipocyte biogenesis in adipose tissue. However, the molecular mechanisms by which physiological or pathological cues evoke developmental plasticity remain incompletely understood. Here we report a type of beige adipocyte that has a critical role in chronic cold adaptation in the absence of ß-adrenergic receptor signalling. This beige fat is distinct from conventional beige fat with respect to developmental origin and regulation, and displays enhanced glucose oxidation. We therefore refer to it as glycolytic beige fat. Mechanistically, we identify GA-binding protein α as a regulator of glycolytic beige adipocyte differentiation through a myogenic intermediate. Our study reveals a non-canonical adaptive mechanism by which thermal stress induces progenitor cell plasticity and recruits a distinct form of thermogenic cell that is required for energy homeostasis and survival.


Asunto(s)
Tejido Adiposo Beige/citología , Tejido Adiposo Beige/metabolismo , Frío , Respuesta al Choque por Frío , Glucólisis , Desarrollo de Músculos , Aclimatación , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/metabolismo , Animales , Diferenciación Celular , Supervivencia Celular , Metabolismo Energético , Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Homeostasis , Masculino , Ratones , Proteína MioD/metabolismo , Mioblastos/citología , Receptores Adrenérgicos beta/metabolismo
2.
Development ; 147(9)2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32198156

RESUMEN

Murine muscle stem cells (MuSCs) experience a transition from quiescence to activation that is required for regeneration, but it remains unknown if the trajectory and dynamics of activation change with age. Here, we use time-lapse imaging and single cell RNA-seq to measure activation trajectories and rates in young and aged MuSCs. We find that the activation trajectory is conserved in aged cells, and we develop effective machine-learning classifiers for cell age. Using cell-behavior analysis and RNA velocity, we find that activation kinetics are delayed in aged MuSCs, suggesting that changes in stem cell dynamics may contribute to impaired stem cell function with age. Intriguingly, we also find that stem cell activation appears to be a random walk-like process, with frequent reversals, rather than a continuous linear progression. These results support a view of the aged stem cell phenotype as a combination of differences in the location of stable cell states and differences in transition rates between them.


Asunto(s)
Senescencia Celular/fisiología , Músculo Esquelético/metabolismo , Células Madre/metabolismo , Animales , Células Cultivadas , Inmunohistoquímica , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/citología , RNA-Seq , Células Madre/citología , Imagen de Lapso de Tiempo
3.
Genes Dev ; 28(14): 1578-91, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25030697

RESUMEN

Lineage or cell of origin of cancers is often unknown and thus is not a consideration in therapeutic approaches. Alveolar rhabdomyosarcoma (aRMS) is an aggressive childhood cancer for which the cell of origin remains debated. We used conditional genetic mouse models of aRMS to activate the pathognomonic Pax3:Foxo1 fusion oncogene and inactivate p53 in several stages of prenatal and postnatal muscle development. We reveal that lineage of origin significantly influences tumor histomorphology and sensitivity to targeted therapeutics. Furthermore, we uncovered differential transcriptional regulation of the Pax3:Foxo1 locus by tumor lineage of origin, which led us to identify the histone deacetylase inhibitor entinostat as a pharmacological agent for the potential conversion of Pax3:Foxo1-positive aRMS to a state akin to fusion-negative RMS through direct transcriptional suppression of Pax3:Foxo1.


Asunto(s)
Antineoplásicos/farmacología , Benzamidas/farmacología , Piridinas/farmacología , Rabdomiosarcoma Alveolar/patología , Animales , Línea Celular Tumoral , Linaje de la Célula , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
4.
PLoS Comput Biol ; 14(1): e1005927, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29338005

RESUMEN

Cell populations display heterogeneous and dynamic phenotypic states at multiple scales. Similar to molecular features commonly used to explore cell heterogeneity, cell behavior is a rich phenotypic space that may allow for identification of relevant cell states. Inference of cell state from cell behavior across a time course may enable the investigation of dynamics of transitions between heterogeneous cell states, a task difficult to perform with destructive molecular observations. Cell motility is one such easily observed cell behavior with known biomedical relevance. To investigate heterogenous cell states and their dynamics through the lens of cell behavior, we developed Heteromotility, a software tool to extract quantitative motility features from timelapse cell images. In mouse embryonic fibroblasts (MEFs), myoblasts, and muscle stem cells (MuSCs), Heteromotility analysis identifies multiple motility phenotypes within the population. In all three systems, the motility state identity of individual cells is dynamic. Quantification of state transitions reveals that MuSCs undergoing activation transition through progressive motility states toward the myoblast phenotype. Transition rates during MuSC activation suggest non-linear kinetics. By probability flux analysis, we find that this MuSC motility state system breaks detailed balance, while the MEF and myoblast systems do not. Balanced behavior state transitions can be captured by equilibrium formalisms, while unbalanced switching between states violates equilibrium conditions and would require an external driving force. Our data indicate that the system regulating cell behavior can be decomposed into a set of attractor states which depend on the identity of the cell, together with a set of transitions between states. These results support a conceptual view of cell populations as dynamical systems, responding to inputs from signaling pathways and generating outputs in the form of state transitions and observable motile behaviors.


Asunto(s)
Movimiento Celular , Fibroblastos/citología , Dinámicas no Lineales , Algoritmos , Animales , Análisis por Conglomerados , Biología Computacional , Femenino , Fibroblastos/metabolismo , Cinética , Leucocitos Mononucleares , Masculino , Ratones , Ratones Endogámicos C57BL , Músculos/citología , Fenotipo , Probabilidad , Transducción de Señal , Células Madre/citología
5.
Circ Res ; 118(7): 1143-50; discussion 1150, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27034276

RESUMEN

This "Controversies in Cardiovascular Research" article evaluates the evidence for and against the hypothesis that the circulating blood level of growth differentiation factor 11 (GDF11) decreases in old age and that restoring normal GDF11 levels in old animals rejuvenates their skeletal muscle and reverses pathological cardiac hypertrophy and cardiac dysfunction. Studies supporting the original GDF11 hypothesis in skeletal and cardiac muscle have not been validated by several independent groups. These new studies have either found no effects of restoring normal GDF11 levels on cardiac structure and function or have shown that increasing GDF11 or its closely related family member growth differentiation factor 8 actually impairs skeletal muscle repair in old animals. One possible explanation for what seems to be mutually exclusive findings is that the original reagent used to measure GDF11 levels also detected many other molecules so that age-dependent changes in GDF11 are still not well known. The more important issue is whether increasing blood [GDF11] repairs old skeletal muscle and reverses age-related cardiac pathologies. There are substantial new and existing data showing that GDF8/11 can exacerbate rather than rejuvenate skeletal muscle injury in old animals. There is also new evidence disputing the idea that there is pathological hypertrophy in old C57bl6 mice and that GDF11 therapy can reverse cardiac pathologies. Finally, high [GDF11] causes reductions in body and heart weight in both young and old animals, suggestive of a cachexia effect. Our conclusion is that elevating blood levels of GDF11 in the aged might cause more harm than good.


Asunto(s)
Envejecimiento/patología , Proteínas Morfogenéticas Óseas/uso terapéutico , Factores de Diferenciación de Crecimiento/uso terapéutico , Enfermedades Musculares/tratamiento farmacológico , Envejecimiento/sangre , Animales , Proteínas Morfogenéticas Óseas/sangre , Proteínas Morfogenéticas Óseas/deficiencia , Proteínas Morfogenéticas Óseas/farmacología , Proteínas Morfogenéticas Óseas/toxicidad , Caquexia/inducido químicamente , Células Cultivadas , Evaluación Preclínica de Medicamentos , Factores de Diferenciación de Crecimiento/sangre , Factores de Diferenciación de Crecimiento/deficiencia , Factores de Diferenciación de Crecimiento/farmacología , Factores de Diferenciación de Crecimiento/toxicidad , Corazón/efectos de los fármacos , Humanos , Hipertrofia , Ratones Endogámicos C57BL , Modelos Animales , Músculo Esquelético/lesiones , Músculo Esquelético/fisiología , Músculos/patología , Enfermedades Musculares/fisiopatología , Miocardio/patología , Miostatina/fisiología , Miostatina/uso terapéutico , Miostatina/toxicidad , Parabiosis , Proteínas Recombinantes/uso terapéutico , Proteínas Recombinantes/toxicidad , Regeneración/efectos de los fármacos , Reproducibilidad de los Resultados , Transducción de Señal , Método Simple Ciego , Proteína Smad2/fisiología , Proteína smad3/fisiología
6.
Nature ; 490(7420): 355-60, 2012 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-23023126

RESUMEN

The niche is a conserved regulator of stem cell quiescence and function. During ageing, stem cell function declines. To what extent and by what means age-related changes within the niche contribute to this phenomenon are unknown. Here we demonstrate that the aged muscle stem cell niche, the muscle fibre, expresses Fgf2 under homeostatic conditions, driving a subset of satellite cells to break quiescence and lose their self-renewing capacity. We show in mice that relatively dormant aged satellite cells robustly express sprouty 1 (Spry1), an inhibitor of fibroblast growth factor (FGF) signalling. Increasing FGF signalling in aged satellite cells under homeostatic conditions by removing Spry1 results in the loss of quiescence, satellite cell depletion and diminished regenerative capacity. Conversely, reducing niche-derived FGF activity through inhibition of Fgfr1 signalling or overexpression of Spry1 in satellite cells prevents their depletion. These experiments identify an age-dependent change in the stem cell niche that directly influences stem cell quiescence and function.


Asunto(s)
Envejecimiento/fisiología , Ciclo Celular , Células Musculares/citología , Células Satélite del Músculo Esquelético/citología , Nicho de Células Madre/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Recuento de Células , Diferenciación Celular , Senescencia Celular , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Citometría de Flujo , Homeostasis , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/citología , Factor de Transcripción PAX7/metabolismo , Fosfoproteínas/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/trasplante , Transducción de Señal , Factores de Tiempo
7.
EMBO J ; 32(16): 2189-90, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23860129

RESUMEN

Age-associated changes in tissue maintenance and repair have severe consequences to human physiology. The signals and mechanisms that cause age-related tissue demise are unclear. A recently published study in Cell (Loffredo et al, 2013) proposes that blood-borne factors in the adult systemic environment are lost during ageing, which leads to cardiac hypertrophy. One such factor is GDF11. Exposure of aged mice to youthful systemic factors or GDF11 decreases cardiac hypertrophy of the heart.


Asunto(s)
Envejecimiento , Proteínas Morfogenéticas Óseas/metabolismo , Cardiomegalia/metabolismo , Factores de Diferenciación de Crecimiento/metabolismo , Miocitos Cardíacos/metabolismo , Parabiosis , Animales , Femenino , Humanos , Masculino
8.
Development ; 141(8): 1649-59, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24715455

RESUMEN

Across different niches, subsets of highly functional stem cells are maintained in a relatively dormant rather than proliferative state. Our understanding of proliferative dynamics in tissue-specific stem cells during conditions of increased tissue turnover remains limited. Using a TetO-H2B-GFP reporter of proliferative history, we identify skeletal muscle stem cell, or satellite cells, that retain (LRC) or lose (nonLRC) the H2B-GFP label. We show in mice that LRCs and nonLRCs are formed at birth and persist during postnatal growth and adult muscle repair. Functionally, LRCs and nonLRCs are born equivalent and transition during postnatal maturation into distinct and hierarchically organized subsets. Adult LRCs give rise to LRCs and nonLRCs; the former are able to self-renew, whereas the latter are restricted to differentiation. Expression analysis revealed the CIP/KIP family members p21(cip1) (Cdkn1a) and p27(kip1) (Cdkn1b) to be expressed at higher levels in LRCs. In accordance with a crucial role in LRC fate, loss of p27(kip1) promoted proliferation and differentiation of LRCs in vitro and impaired satellite cell self-renewal after muscle injury. By contrast, loss of p21(cip1) only affected nonLRCs, in which myogenic commitment was inhibited. Our results provide evidence that restriction of self-renewal potential to LRCs is established early in life and is maintained during increased tissue turnover through the cell cycle inhibitor p27(kip1). They also reveal the differential role of CIP/KIP family members at discrete steps within the stem cell hierarchy.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Músculo Esquelético/citología , Coloración y Etiquetado , Células Madre/citología , Células Madre/metabolismo , Animales , Animales Recién Nacidos , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Progresión de la Enfermedad , Proteínas Fluorescentes Verdes/metabolismo , Histonas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Distrofia Muscular Animal/patología , Fenotipo
9.
Nature ; 540(7633): 349-350, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27919069
10.
IDCases ; 36: e01977, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711946

RESUMEN

Brodie's abscess is a manifestation of subacute to chronic osteomyelitis, characterized as intraosseous abscess formation, usually on the metaphysis of the long tubular bones in the lower extremities of male pediatric patients. Clinically, Brodie's abscess presents with atraumatic bone pain of an insidious onset, with absence of systemic findings. Delay in diagnosis is common, as diagnostic imaging, followed by biopsy for culture and histologic examination are generally required to secure a diagnosis of Brodie's abscess. Treatment of Brodie's abscess is non-standardized, and usually consists of surgical debridement and antibacterial therapy. Despite the variability in therapeutic approaches, outcomes of Brodie's abscess treated with surgery and antibiotics are favourable. Herein we report a case of a delayed diagnosis of Brodie's abscess in the upper extremity of an adult female. While she improved with treatment of Brodie's abscess, the case serves to remind clinicians to consider this entity in adult individuals who present with atraumatic bone pain.

11.
Elife ; 112022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36583937

RESUMEN

The quiescent muscle stem cell (QSC) pool is heterogeneous and generally characterized by the presence and levels of intrinsic myogenic transcription factors. Whether extrinsic factors maintain the diversity of states across the QSC pool remains unknown. The muscle fiber is a multinucleated syncytium that serves as a niche to QSCs, raising the possibility that the muscle fiber regulates the diversity of states across the QSC pool. Here, we show that the muscle fiber maintains a continuum of quiescent states, through a gradient of Notch ligand, Dll4, produced by the fiber and captured by QSCs. The abundance of Dll4 captured by the QSC correlates with the protein levels of the stem cell (SC) identity marker, Pax7. Niche-specific loss of Dll4 decreases QSC diversity and shifts the continuum to cell states that are biased toward more proliferative and committed fates. We reveal that fiber-derived Mindbomb1 (Mib1), an E3 ubiquitin ligase activates Dll4 and controls the heterogeneous levels of Dll4. In response to injury, with a Dll4-replenished niche, the normal continuum and diversity of the SC pool is restored, demonstrating bidirectionality within the SC continuum. Our data show that a post-translational mechanism controls heterogeneity of Notch ligands in a multinucleated niche cell to maintain a continuum of metastable states within the SC pool during tissue homeostasis.


Asunto(s)
Células Satélite del Músculo Esquelético , Transducción de Señal , Fibras Musculares Esqueléticas/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , División Celular , Células Madre/metabolismo , Proteínas de Unión al Calcio/metabolismo , Nicho de Células Madre
12.
Artículo en Inglés | MEDLINE | ID: mdl-31251191

RESUMEN

Cells in culture display diverse motility behaviors that may reflect differences in cell state and function, providing motivation to discriminate between different motility behaviors. Current methods to do so rely upon manual feature engineering. However, the types of features necessary to distinguish between motility behaviors can vary greatly depending on the biological context, and it is not always clear which features may be most predictive in each setting for distinguishing particular cell types or disease states. Convolutional neural networks (CNNs) are machine learning models allowing for relevant features to be learned directly from spatial data. Similarly, recurrent neural networks (RNNs) are a class of models capable of learning long term temporal dependencies. Given that cell motility is inherently spacio-temporal data, we present an approach utilizing both convolutional and long- short-term memory (LSTM) recurrent neural network units to analyze cell motility data. These RNN models provide accurate classification of simulated motility and experimentally measured motility from multiple cell types, comparable to results achieved with hand-engineered features. The variety of cell motility differences we can detect suggests that the algorithm is generally applicable to additional cell types not analyzed here. RNN autoencoders based on the same architecture are capable of learning motility features in an unsupervised manner and capturing variation between myogenic cells in the latent space. Adapting these RNN models to motility prediction, RNNs are capable of predicting muscle stem cell motility from past tracking data with performance superior to standard motion prediction models. This advance in cell motility prediction may be of practical utility in cell tracking applications.


Asunto(s)
Movimiento Celular/fisiología , Biología Computacional/métodos , Aprendizaje Profundo , Animales , Células Cultivadas , Ratones , Redes Neurales de la Computación , Imagen de Lapso de Tiempo
13.
Dev Biol ; 335(1): 93-105, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19699733

RESUMEN

Muscle stem cells and their progeny play a fundamental role in the regeneration of adult skeletal muscle. We have previously shown that activation of the canonical Wnt/beta-catenin signaling pathway in adult myogenic progenitors is required for their transition from rapidly dividing transient amplifying cells to more differentiated progenitors. Whereas Wnt signaling in Drosophila is dependent on the presence of the co-regulator Legless, previous studies of the mammalian ortholog of Legless, BCL9 (and its homolog, BCL9-2), have not revealed an essential role of these proteins in Wnt signaling in specific tissues during development. Using Cre-lox technology to delete BCL9 and BCL9-2 in the myogenic lineage in vivo and RNAi technology to knockdown the protein levels in vitro, we show that BCL9 is required for activation of the Wnt/beta-catenin cascade in adult mammalian myogenic progenitors. We observed that the nuclear localization of beta-catenin and downstream TCF/LEF-mediated transcription, which are normally observed in myogenic progenitors upon addition of exogenous Wnt and during muscle regeneration, were abrogated when BCL9/9-2 levels were reduced. Furthermore, reductions of BCL9/9-2 inhibited the promotion of myogenic differentiation by Wnt and the normal regenerative response of skeletal muscle. These results suggest a critical role of BCL9/9-2 in the Wnt-mediated regulation of adult, as opposed to embryonic, myogenic progenitors.


Asunto(s)
Diferenciación Celular/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Desarrollo de Músculos/fisiología , Músculo Esquelético/fisiología , Regeneración/fisiología , Transducción de Señal/fisiología , Células Madre/fisiología , Proteínas Wnt/metabolismo , Animales , Linaje de la Célula , Células Cultivadas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Noqueados , Músculo Esquelético/citología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Interferencia de ARN , Células Madre/citología , Factores de Transcripción , Proteínas Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
14.
Elife ; 92020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32234209

RESUMEN

Although heterogeneity is recognized within the murine satellite cell pool, a comprehensive understanding of distinct subpopulations and their functional relevance in human satellite cells is lacking. We used a combination of single cell RNA sequencing and flow cytometry to identify, distinguish, and physically separate novel subpopulations of human PAX7+ satellite cells (Hu-MuSCs) from normal muscles. We found that, although relatively homogeneous compared to activated satellite cells and committed progenitors, the Hu-MuSC pool contains clusters of transcriptionally distinct cells with consistency across human individuals. New surface marker combinations were enriched in transcriptional subclusters, including a subpopulation of Hu-MuSCs marked by CXCR4/CD29/CD56/CAV1 (CAV1+). In vitro, CAV1+ Hu-MuSCs are morphologically distinct, and characterized by resistance to activation compared to CAV1- Hu-MuSCs. In vivo, CAV1+ Hu-MuSCs demonstrated increased engraftment after transplantation. Our findings provide a comprehensive transcriptional view of normal Hu-MuSCs and describe new heterogeneity, enabling separation of functionally distinct human satellite cell subpopulations.


Asunto(s)
Células Satélite del Músculo Esquelético/fisiología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Caveolina 1/análisis , Linaje de la Célula , Femenino , Citometría de Flujo , Humanos , Masculino , Persona de Mediana Edad , Factor de Transcripción PAX7/análisis , Células Satélite del Músculo Esquelético/química , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/trasplante , Adulto Joven
15.
Cell Stem Cell ; 25(5): 654-665.e4, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31495781

RESUMEN

Satellite cells (SCs) reside in a dormant state during tissue homeostasis. The specific paracrine agents and niche cells that maintain SC quiescence remain unknown. We find that Wnt4 produced by the muscle fiber maintains SC quiescence through RhoA. Using cell-specific inducible genetics, we find that a Wnt4-Rho signaling axis constrains SC numbers and activation during tissue homeostasis in adult mice. Wnt4 activates Rho in quiescent SCs to maintain mechanical strain, restrict movement in the niche, and repress YAP. The induction of YAP upon disruption of RhoA is essential for SC activation under homeostasis. In the context of injury, the loss of Wnt4 from the niche accelerates SC activation and muscle repair, whereas overexpression of Wnt4 transitions SCs into a deeper state of quiescence and delays muscle repair. In conclusion, the SC pool undergoes dynamic transitions during early activation with changes in mechano-properties and cytoskeleton signaling preceding cell-cycle entry.


Asunto(s)
Proliferación Celular/genética , Fibras Musculares Esqueléticas/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Proteína Wnt4/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/fisiología , Citoesqueleto/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía de Fuerza Atómica , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Regeneración/genética , Células Satélite del Músculo Esquelético/citología , Transducción de Señal/genética , Nicho de Células Madre/genética , Proteína Wnt4/genética , Proteínas Señalizadoras YAP
16.
Cell Stem Cell ; 24(6): 944-957.e5, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31006621

RESUMEN

Stem cell heterogeneity is recognized as functionally relevant for tissue homeostasis and repair. The identity, context dependence, and regulation of skeletal muscle satellite cell (SC) subsets remains poorly understood. We identify a minor subset of Pax7+ SCs that is indelibly marked by an inducible Mx1-Cre transgene in vivo, is enriched for Pax3 expression, and has reduced ROS (reactive oxygen species) levels. Mx1+ SCs possess potent stem cell activity upon transplantation but minimally contribute to endogenous muscle repair, due to their relative low abundance. In contrast, a dramatic clonal expansion of Mx1+ SCs allows extensive contribution to muscle repair and niche repopulation upon selective pressure of radiation stress, consistent with reserve stem cell (RSC) properties. Loss of Pax3 in RSCs increased ROS content and diminished survival and stress tolerance. These observations demonstrate that the Pax7+ SC pool contains a discrete population of radiotolerant RSCs that undergo clonal expansion under severe stress.


Asunto(s)
Células Madre Adultas/fisiología , Daño del ADN/fisiología , Células Satélite del Músculo Esquelético/fisiología , Animales , Diferenciación Celular , Linaje de la Célula , Supervivencia Celular , Células Clonales , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas de Resistencia a Mixovirus/metabolismo , Factor de Transcripción PAX3/metabolismo , Factor de Transcripción PAX7/metabolismo , Radiación Ionizante , Especies Reactivas de Oxígeno/metabolismo , Regeneración , Regulación hacia Arriba
17.
BMC Dev Biol ; 8: 5, 2008 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-18215268

RESUMEN

BACKGROUND: MyoD is a transcription factor implicated in the regulation of adult muscle gene expression. Distinguishing the expression of MyoD in satellite myoblasts and muscle fibres has proved difficult in vivo leading to controversy over the significance of MyoD expression within adult innervated muscle fibres. Here we employ the MD6.0-lacZ transgenic mouse, in which the 6 kb proximal enhancer/promoter (DRR/PRR) of MyoD drives lacZ, to show that MyoD is present and transcriptionally active in many adult muscle fibres. RESULTS: In culture, MD6.0-lacZ expresses in myotubes but not myogenic cells, unlike endogenous MyoD. Reporter expression in vivo is in muscle fibre nuclei and is reduced in MyoD null mice. The MD6.0-lacZ reporter is down-regulated both in adult muscle fibres by denervation or muscle disuse and in cultured myotubes by inhibition of activity. Activity induces and represses MyoD through the DRR and PRR, respectively. During the postnatal period, accumulation of beta-galactosidase correlates with maturation of innervation. Strikingly, endogenous MyoD expression is up-regulated in fibres by complete denervation, arguing for a separate activity-dependent suppression of MyoD requiring regulatory elements outside the DRR/PRR. CONCLUSION: The data show that MyoD regulation is more complex than previously supposed. Two factors, MyoD protein itself and fibre activity are required for essentially all expression of the 6 kb proximal enhancer/promoter (DRR/PRR) of MyoD in adult fibres. We propose that modulation of MyoD positive feedback by electrical activity determines the set point of MyoD expression in innervated fibres through the DRR/PRR element.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Fibras Musculares Esqueléticas/metabolismo , Proteína MioD/genética , Regiones Promotoras Genéticas/genética , Animales , Células Cultivadas , Regulación hacia Abajo , Estimulación Eléctrica , Operón Lac , Ratones , Ratones Transgénicos , Desnervación Muscular
18.
Curr Top Dev Biol ; 126: 299-322, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29305003

RESUMEN

Satellite cells (SCs) are a population of muscle-resident stem cells that are essential for efficient tissue repair. SCs reside in a relatively quiescent state during normal tissue turnover, but are activated in response to injury through the microenvironment and cell-intrinsic signals. During aging, SC dysfunction is a major contributor to the decline in regenerative potential of muscle tissue. Recent studies have demonstrated that both cell-intrinsic and cell-extrinsic factors are deregulated during aging. Interventions that reverse age-associated changes in SCs or the niche have shown to partially rejuvenate the regenerative capacity of aged muscle SCs. In this review, we discuss recent advances in SC biology as it pertains to the deleterious effects of aging. A better understanding of how age-dependent changes in the SC and its environment niche impact muscle regeneration could lead to interventions to ameliorate the effects of aging in humans.


Asunto(s)
Envejecimiento/fisiología , Músculo Esquelético/fisiología , Células Satélite del Músculo Esquelético/fisiología , Nicho de Células Madre/fisiología , Animales , Autofagia/fisiología , Proliferación Celular/fisiología , Humanos , Modelos Biológicos , Músculo Esquelético/citología , Regeneración/fisiología
19.
Stem Cell Rev ; 3(3): 226-37, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17917136

RESUMEN

The myogenic stem cell (satellite cell) is almost solely responsible for the remarkable regeneration of adult skeletal muscle fibers after injury. The availability and the functionality of satellite cells are the determinants of efficient muscle regeneration. During aging, the efficiency of muscle regeneration declines, suggesting that the functionality of satellite cells and their progeny may be altered. Satellite cells do not sit in isolation but rather are surrounded by, and influenced by, many extrinsic factors within the muscle tissue that can alter their functionality. These factors likely change during aging and impart both reversible and irreversible changes to the satellite cells and on their proliferating progeny. In this review, we discuss the possible mechanisms of impaired muscle regeneration with respect to the biology of satellite cells. Future studies that enhance our understanding of the interactions between stem cells and the environment in which they reside will offer promise for therapeutic applications in age-related diseases.


Asunto(s)
Senescencia Celular , Músculo Esquelético/citología , Células Madre/citología , Células Madre/metabolismo , Animales , Humanos , Modelos Biológicos
20.
Am J Clin Pathol ; 148(5): 436-440, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29016723

RESUMEN

OBJECTIVES: The mean abnormal result rate (MARR) has recently been advanced as a metric of laboratory test appropriateness. We used the MARR metric to examine patterns of change in family physician test requisitions over time. METHODS: We accessed the Laboratory Information System of Calgary Laboratory Services for family physician-ordered testing on outpatients to gather aggregate test and abnormal result counts from 2010 to 2015. RESULTS: Over the 6 years, there was an annual average of 3,401,553 tests for 411,295 distinct patients on their first test requisition for the year. The MARR increased from 8.1% to 9.0% through this period. CONCLUSIONS: The MARR for Calgary and surrounding area gives tentative evidence of a gradual increase in physician test selectivity in recent years. Further data from other catchment areas are needed before making assertions about broader trends in physician awareness of laboratory resource use.


Asunto(s)
Pruebas Diagnósticas de Rutina/estadística & datos numéricos , Pautas de la Práctica en Medicina , Canadá , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA