Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 161(5): 1012-1025, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25959774

RESUMEN

Mammalian genomes are organized into megabase-scale topologically associated domains (TADs). We demonstrate that disruption of TADs can rewire long-range regulatory architecture and result in pathogenic phenotypes. We show that distinct human limb malformations are caused by deletions, inversions, or duplications altering the structure of the TAD-spanning WNT6/IHH/EPHA4/PAX3 locus. Using CRISPR/Cas genome editing, we generated mice with corresponding rearrangements. Both in mouse limb tissue and patient-derived fibroblasts, disease-relevant structural changes cause ectopic interactions between promoters and non-coding DNA, and a cluster of limb enhancers normally associated with Epha4 is misplaced relative to TAD boundaries and drives ectopic limb expression of another gene in the locus. This rewiring occurred only if the variant disrupted a CTCF-associated boundary domain. Our results demonstrate the functional importance of TADs for orchestrating gene expression via genome architecture and indicate criteria for predicting the pathogenicity of human structural variants, particularly in non-coding regions of the human genome.


Asunto(s)
Modelos Animales de Enfermedad , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Animales , Extremidades/anatomía & histología , Extremidades/crecimiento & desarrollo , Humanos , Deformidades Congénitas de las Extremidades/genética , Ratones , Regiones Promotoras Genéticas , ARN no Traducido/genética , ARN no Traducido/metabolismo , Receptor EphA4/genética
2.
Genome Res ; 32(7): 1242-1253, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35710300

RESUMEN

Structural variants (SVs) can affect protein-coding sequences as well as gene regulatory elements. However, SVs disrupting protein-coding sequences that also function as cis-regulatory elements remain largely uncharacterized. Here, we show that craniosynostosis patients with SVs containing the histone deacetylase 9 (HDAC9) protein-coding sequence are associated with disruption of TWIST1 regulatory elements that reside within the HDAC9 sequence. Based on SVs within the HDAC9-TWIST1 locus, we defined the 3'-HDAC9 sequence as a critical TWIST1 regulatory region, encompassing craniofacial TWIST1 enhancers and CTCF sites. Deletions of either Twist1 enhancers (eTw5-7Δ/Δ) or CTCF site (CTCF-5Δ/Δ) within the Hdac9 protein-coding sequence led to decreased Twist1 expression and altered anterior/posterior limb expression patterns of SHH pathway genes. This decreased Twist1 expression results in a smaller sized and asymmetric skull and polydactyly that resembles Twist1+/- mouse phenotype. Chromatin conformation analysis revealed that the Twist1 promoter interacts with Hdac9 sequences that encompass Twist1 enhancers and a CTCF site, and that interactions depended on the presence of both regulatory regions. Finally, a large inversion of the entire Hdac9 sequence (Hdac9 INV/+) in mice that does not disrupt Hdac9 expression but repositions Twist1 regulatory elements showed decreased Twist1 expression and led to a craniosynostosis-like phenotype and polydactyly. Thus, our study elucidates essential components of TWIST1 transcriptional machinery that reside within the HDAC9 sequence. It suggests that SVs encompassing protein-coding sequences could lead to a phenotype that is not attributed to its protein function but rather to a disruption of the transcriptional regulation of a nearby gene.


Asunto(s)
Craneosinostosis , Histona Desacetilasas , Proteínas Nucleares , Polidactilia , Proteínas Represoras , Proteína 1 Relacionada con Twist , Animales , Craneosinostosis/genética , Regulación de la Expresión Génica , Histona Desacetilasas/genética , Humanos , Ratones , Proteínas Nucleares/genética , Fenotipo , Polidactilia/genética , Proteínas Represoras/genética , Proteína 1 Relacionada con Twist/genética
3.
J Cell Physiol ; : e31440, 2024 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320041

RESUMEN

Ulnar mammary syndrome (UMS) results from heterozygous variants in the TBX3 gene and impacts limb, tooth, hair, apocrine gland, and genitalia development. The expressivity of UMS is highly variable with no established genotype-phenotype correlations. TBX3 belongs to the Tbx gene family, which encodes transcription factors characterized by the presence of a T-box DNA-binding domain. We describe a fetus exhibiting severe upper limb defects and harboring the novel TBX3:c.400 C > T (p.P134S) variant inherited from the mother who remained clinically misdiagnosed until prenatal diagnosis. Literature revision was conducted to uncover the TBX3 clinical and mutational spectrum. Moreover, we generated a Drosophila humanized model for TBX3 to study the developmental consequences of the p.P134S as well as of other variants targeting different regions of the protein. Phenotypic analysis in flies, coupled with in silico modeling on the TBX3 variants, suggested that the c.400 C > T is UMS-causing and impacts TBX3 localization. Comparative analyses of the fly phenotypes caused by the expression of all variants, demonstrated that missense changes in the T-box domain affect more significantly TBX3 activity than variants outside this domain. To improve the clinicians' recognition of UMS, we estimated the frequency of the main clinical features of the disease. Core features often present pre-pubertally include defects of the ulna and/or of ulnar ray, hypoplastic nipples and/or areolas and, less frequently, genitalia anomalies in young males. These results enhance our understanding of the molecular basis and the clinical spectrum of UMS, shedding light on the functional consequences of TBX3 variants in a developmental context.

4.
Hum Mol Genet ; 31(15): 2535-2547, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35220430

RESUMEN

Epidermal development and maintenance are finely regulated events requiring a strict balance between proliferation and differentiation. Alterations in these processes give rise to human disorders such as cancer or syndromes with skin and annexes defects, known as ectodermal dysplasias (EDs). Here, we studied the functional effects of two novel receptor-interacting protein kinase 4 (RIPK4) missense mutations identified in siblings with an autosomal recessive ED with cutaneous syndactyly, palmoplantar hyperkeratosis and orofacial synechiae. Clinical overlap with distinct EDs caused by mutations in transcription factors (i.e. p63 and interferon regulatory factor 6, IRF6) or nectin adhesion molecules was noticed. Impaired activity of the RIPK4 kinase resulted both in altered epithelial differentiation and defective cell adhesion. We showed that mutant RIPK4 resulted in loss of PVRL4/nectin-4 expression in patient epidermis and primary keratinocytes, and demonstrated that PVRL4 is transcriptionally regulated by IRF6, a RIPK4 phosphorylation target. In addition, defective RIPK4 altered desmosome morphology through modulation of plakophilin-1 and desmoplakin. In conclusion, this work implicates RIPK4 kinase function in the p63-IRF6 regulatory loop that controls the proliferation/differentiation switch and cell adhesion, with implications in ectodermal development and cancer.


Asunto(s)
Displasia Ectodérmica , Factores Reguladores del Interferón , Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Displasia Ectodérmica/metabolismo , Homeostasis , Humanos , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Queratinocitos/metabolismo , Nectinas , Proteínas Serina-Treonina Quinasas
5.
Clin Genet ; 105(4): 355-363, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38339844

RESUMEN

The genetic risk of chronic diseases represents a complex medical setting in which individuals need to adapt to health conditions that manage daily living towards to healthy behaviours. This exploratory review focused on psychological counselling for genetic risk diagnosis. This study aimed to address the psychological management of the impact of genetic risk on chronic diseases. We performed a systematic search of MEDLINE via PubMed, Embase, Web of Science, PsycINFO and Scopus for articles from May 2012 to August 2023. A descriptive analysis of the characteristics of the included studies was conducted. Based on the exclusion/inclusion criteria, the literature search yielded 250 studies. Seventeen full texts were assessed for eligibility and 207 articles were excluded. Observational (n = 15) and randomised clinical trials (n = 2) were examined. Most studies have been conducted on oncological diagnoses; the emotional dimensions examined have been worry, depression, anxiety and stress in most diseases. Psychological measures are based on self-reports and questionnaires; few studies have investigated the connections between quality of life, psychological traits and emotional dimensions. The complexity of clinics and from daily diagnostic and treatment practices to the everyday experience of those living with the risk of disease might be addressed in counselling settings to improve quality of life in genetic risk, increasing mental adaptation to tailored chronic conditions. Thus, the empowerment of communication of genetic risk information should be part of the general trend towards personalised medicine.


Asunto(s)
Psicoterapia , Calidad de Vida , Humanos , Psicoterapia/métodos , Ansiedad/terapia , Enfermedad Crónica , Consejo
6.
Clin Genet ; 106(5): 574-584, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38988293

RESUMEN

ANK3 encodes ankyrin-G, a protein involved in neuronal development and signaling. Alternative splicing gives rise to three ankyrin-G isoforms comprising different domains with distinct expression patterns. Mono- or biallelic ANK3 variants are associated with non-specific syndromic intellectual disability in 14 individuals (seven with monoallelic and seven with biallelic variants). In this study, we describe the clinical features of 13 additional individuals and review the data on a total of 27 individuals (16 individuals with monoallelic and 11 with biallelic ANK3 variants) and demonstrate that the phenotype for biallelic variants is more severe. The phenotypic features include language delay (92%), autism spectrum disorder (76%), intellectual disability (78%), hypotonia (65%), motor delay (68%), attention deficit disorder (ADD) or attention deficit hyperactivity disorder (ADHD) (57%), sleep disturbances (50%), aggressivity/self-injury (37.5%), and epilepsy (35%). A notable phenotypic difference was presence of ataxia in three individuals with biallelic variants, but in none of the individuals with monoallelic variants. While the majority of the monoallelic variants are predicted to result in a truncated protein, biallelic variants are almost exclusively missense. Moreover, mono- and biallelic variants appear to be localized differently across the three different ankyrin-G isoforms, suggesting isoform-specific pathological mechanisms.


Asunto(s)
Ancirinas , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Alelos , Ancirinas/genética , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno del Espectro Autista/genética , Epilepsia/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Trastornos del Desarrollo del Lenguaje/genética , Mutación/genética , Fenotipo , Trastornos del Neurodesarrollo/genética
7.
Epilepsia ; 64 Suppl 1: S14-S21, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37021642

RESUMEN

Familial adult myoclonus epilepsy (FAME) is a genetic epilepsy syndrome that for many years has resisted understanding of its underlying molecular cause. This review covers the history of FAME genetic studies worldwide, starting with linkage and culminating in the discovery of noncoding TTTTA and inserted TTTCA pentanucleotide repeat expansions within six different genes to date (SAMD12, STARD7, MARCHF6, YEATS2, TNRC6A, and RAPGEF2). FAME occurs worldwide; however, repeat expansions in particular genes have regional geographical distributions. FAME repeat expansions are dynamic in nature, changing in length and structure within germline and somatic tissues. This variation poses challenges for molecular diagnosis such that molecular methods used to identify FAME repeat expansions typically require a trade-off between cost and efficiency. A rigorous evaluation of the sensitivity and specificity of each molecular approach remains to be performed. The origin of FAME repeat expansions and the genetic and environmental factors that modulate repeat variability are not well defined. Longer repeats and particular arrangements of the TTTTA and TTTCA motifs within an expansion are correlated with earlier onset and increased severity of disease. Other factors such as maternal or paternal inheritance, parental age, and repeat length alone have been suggested to influence repeat variation; however, further research is required to confirm this. The history of FAME genetics to the present is a chronicle of perseverance and predominantly collaborative efforts that yielded a successful outcome. The discovery of FAME repeats will spark progress toward a deeper understanding of the molecular pathogenesis of FAME, discovery of new loci, and development of cell and animal models.


Asunto(s)
Epilepsias Mioclónicas , Humanos , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/patología , Linaje , Investigación
8.
PLoS Pathog ; 16(10): e1008253, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33031460

RESUMEN

Measles is characterized by fever and a maculopapular skin rash, which is accompanied by immune clearance of measles virus (MV)-infected cells. Histopathological analyses of skin biopsies from humans and non-human primates (NHPs) with measles rash have identified MV-infected keratinocytes and mononuclear cells in the epidermis, around hair follicles and near sebaceous glands. Here, we address the pathogenesis of measles skin rash by combining data from experimentally infected NHPs, ex vivo infection of human skin sheets and in vitro infection of primary human keratinocytes. Analysis of NHP skin samples collected at different time points following MV inoculation demonstrated that infection in the skin precedes onset of rash by several days. MV infection was detected in lymphoid and myeloid cells in the dermis before dissemination to the epidermal leukocytes and keratinocytes. These data were in good concordance with ex vivo MV infections of human skin sheets, in which dermal cells were more targeted than the epidermal cells. To address viral dissemination to the epidermis and to determine whether the dissemination is receptor-dependent, we performed experimental infections of primary keratinocytes collected from healthy donors. These experiments demonstrated that MV infection of keratinocytes is mainly nectin-4-dependent, and differentiated keratinocytes, which express higher levels of nectin-4, are more susceptible to MV infection than proliferating keratinocytes. Based on these data, we propose a model to explain measles skin rash: migrating MV-infected lymphocytes initiate the infection of dermal skin-resident CD150+ immune cells. The infection is subsequently disseminated from the dermal papillae to nectin-4+ keratinocytes in the basal epidermis. Lateral spread of MV infection is observed in the superficial epidermis, most likely due to the higher level of nectin-4 expression on differentiated keratinocytes. Finally, MV-infected cells are cleared by infiltrating immune cells, causing hyperemia and edema, which give the appearance of morbilliform skin rash.


Asunto(s)
Dermis/virología , Epidermis/virología , Queratinocitos/virología , Linfocitos/virología , Sarampión/virología , Células Mieloides/virología , Piel/virología , Animales , Células Cultivadas , Dermis/patología , Epidermis/patología , Humanos , Queratinocitos/patología , Linfocitos/patología , Macaca fascicularis , Sarampión/patología , Virus del Sarampión/aislamiento & purificación , Células Mieloides/patología , Piel/patología
9.
Nature ; 538(7624): 265-269, 2016 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-27706140

RESUMEN

Chromosome conformation capture methods have identified subchromosomal structures of higher-order chromatin interactions called topologically associated domains (TADs) that are separated from each other by boundary regions. By subdividing the genome into discrete regulatory units, TADs restrict the contacts that enhancers establish with their target genes. However, the mechanisms that underlie partitioning of the genome into TADs remain poorly understood. Here we show by chromosome conformation capture (capture Hi-C and 4C-seq methods) that genomic duplications in patient cells and genetically modified mice can result in the formation of new chromatin domains (neo-TADs) and that this process determines their molecular pathology. Duplications of non-coding DNA within the mouse Sox9 TAD (intra-TAD) that cause female to male sex reversal in humans, showed increased contact of the duplicated regions within the TAD, but no change in the overall TAD structure. In contrast, overlapping duplications that extended over the next boundary into the neighbouring TAD (inter-TAD), resulted in the formation of a new chromatin domain (neo-TAD) that was isolated from the rest of the genome. As a consequence of this insulation, inter-TAD duplications had no phenotypic effect. However, incorporation of the next flanking gene, Kcnj2, in the neo-TAD resulted in ectopic contacts of Kcnj2 with the duplicated part of the Sox9 regulatory region, consecutive misexpression of Kcnj2, and a limb malformation phenotype. Our findings provide evidence that TADs are genomic regulatory units with a high degree of internal stability that can be sculptured by structural genomic variations. This process is important for the interpretation of copy number variations, as these variations are routinely detected in diagnostic tests for genetic disease and cancer. This finding also has relevance in an evolutionary setting because copy-number differences are thought to have a crucial role in the evolution of genome complexity.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Variaciones en el Número de Copia de ADN/genética , Enfermedad/genética , Duplicación de Gen/genética , Animales , ADN/genética , Facies , Femenino , Fibroblastos , Dedos/anomalías , Deformidades Congénitas del Pie/genética , Expresión Génica , Genómica , Deformidades Congénitas de la Mano/genética , Masculino , Ratones , Fenotipo , Factor de Transcripción SOX9/genética
11.
Hum Mol Genet ; 28(13): 2133-2142, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30806661

RESUMEN

Hereditary multiple osteochondromas (HMO) is a rare autosomal dominant skeletal disorder, caused by heterozygous variants in either EXT1 or EXT2, which encode proteins involved in the biogenesis of heparan sulphate. Pathogenesis and genotype-phenotype correlations remain poorly understood. We studied 114 HMO families (158 affected individuals) with causative EXT1 or EXT2 variants identified by Sanger sequencing, or multiplex ligation-dependent probe amplification and qPCR. Eighty-seven disease-causative variants (55 novel and 32 known) were identified including frameshift (42%), nonsense (32%), missense (11%), splicing (10%) variants and genomic rearrangements (5%). Informative clinical features were available for 42 EXT1 and 27 EXT2 subjects. Osteochondromas were more frequent in EXT1 as compared to EXT2 patients. Anatomical distribution of lesions showed significant differences based on causative gene. Microscopy analysis for selected EXT1 and EXT2 variants verified that EXT1 and EXT2 mutants failed to co-localize each other and loss Golgi localization by surrounding the nucleus and/or assuming a diffuse intracellular distribution. In a cell viability study, cells expressing EXT1 and EXT2 mutants proliferated more slowly than cells expressing wild-type proteins. This confirms the physiological relevance of EXT1 and EXT2 Golgi co-localization and the key role of these proteins in the cell cycle. Taken together, our data expand genotype-phenotype correlations, offer further insights in the pathogenesis of HMO and open the path to future therapies.


Asunto(s)
Exostosis Múltiple Hereditaria/genética , N-Acetilglucosaminiltransferasas/genética , Proliferación Celular , Supervivencia Celular , Femenino , Estudios de Asociación Genética , Aparato de Golgi/enzimología , Células HEK293 , Humanos , Masculino , Mutación , N-Acetilglucosaminiltransferasas/análisis
12.
Hum Genet ; 140(7): 1061-1076, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33811546

RESUMEN

Teebi hypertelorism syndrome (THS; OMIM 145420) is a rare craniofacial disorder characterized by hypertelorism, prominent forehead, short nose with broad or depressed nasal root. Some cases of THS have been attributed to SPECC1L variants. Homozygous variants in CDH11 truncating the transmembrane and intracellular domains have been implicated in Elsahy-Waters syndrome (EWS; OMIM 211380) with hypertelorism. We report THS due to CDH11 heterozygous missense variants on 19 subjects from 9 families. All affected residues in the extracellular region of Cadherin-11 (CHD11) are highly conserved across vertebrate species and classical cadherins. Six of the variants that cluster around the EC2-EC3 and EC3-EC4 linker regions are predicted to affect Ca2+ binding that is required for cadherin stability. Two of the additional variants [c.164G > C, p.(Trp55Ser) and c.418G > A, p.(Glu140Lys)] are also notable as they are predicted to directly affect trans-homodimer formation. Immunohistochemical study demonstrates that CDH11 is strongly expressed in human facial mesenchyme. Using multiple functional assays, we show that five variants from the EC1, EC2-EC3 linker, and EC3 regions significantly reduced the cell-substrate trans adhesion activity and one variant from EC3-EC4 linker results in changes in cell morphology, focal adhesion, and migration, suggesting dominant negative effect. Characteristic features in this cohort included depressed nasal root, cardiac and umbilical defects. These features distinguished this phenotype from that seen in SPECC1L-related hypertelorism syndrome and CDH11-related EWS. Our results demonstrate heterozygous variants in CDH11, which decrease cell-cell adhesion and increase cell migratory behavior, cause a form of THS, as termed CDH11-related THS.


Asunto(s)
Anomalías Múltiples/genética , Cadherinas/genética , Adhesión Celular/genética , Anomalías Craneofaciales/genética , Deformidades Congénitas del Pie/genética , Variación Genética/genética , Deformidades Congénitas de la Mano/genética , Hipertelorismo/genética , Secuencia de Aminoácidos , Movimiento Celular/genética , Femenino , Heterocigoto , Homocigoto , Humanos , Masculino , Linaje , Fenotipo
13.
Clin Genet ; 100(3): 268-279, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33988253

RESUMEN

Oculo-auriculo-vertebral spectrum (OAVS) is a developmental disorder of craniofacial morphogenesis. Its etiology is unclear, but assumed to be complex and heterogeneous, with contribution of both genetic and environmental factors. We assessed the occurrence of copy number variants (CNVs) in a cohort of 19 unrelated OAVS individuals with congenital heart defect. Chromosomal microarray analysis identified pathogenic CNVs in 2/19 (10.5%) individuals, and CNVs classified as variants of uncertain significance in 7/19 (36.9%) individuals. Remarkably, two subjects had small intragenic CNVs involving DACH1 and DACH2, two paralogs coding for key components of the PAX-SIX-EYA-DACH network, a transcriptional regulatory pathway controlling developmental processes relevant to OAVS and causally associated with syndromes characterized by craniofacial involvement. Moreover, a third patient showed a large duplication encompassing DMBX1/OTX3, encoding a transcriptional repressor of OTX2, another transcription factor functionally connected to the DACH-EYA-PAX network. Among the other relevant CNVs, a deletion encompassing HSD17B6, a gene connected with the retinoic acid signaling pathway, whose dysregulation has been implicated in craniofacial malformations, was also identified. Our findings suggest that CNVs affecting gene dosage likely contribute to the genetic heterogeneity of OAVS, and implicate the PAX-SIX-EYA-DACH network as novel pathway involved in the etiology of this developmental trait.


Asunto(s)
Variaciones en el Número de Copia de ADN , Síndrome de Goldenhar/genética , Cardiopatías Congénitas/genética , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Síndrome de Goldenhar/fisiopatología , Humanos , Lactante , Recién Nacido , Masculino , Análisis por Micromatrices , Polimorfismo de Nucleótido Simple , Adulto Joven
14.
Am J Med Genet A ; 185(7): 2160-2163, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33844462

RESUMEN

CHARGE syndrome is a rare genetic multiple-malformation disorder characterized by wide phenotypic variability. It is often caused by heterozygous variants in CHD7 and, more rarely, SEMA3E. Although craniofacial alterations are frequent in this condition, to date craniosynostosis is not considered part of the clinical spectrum. Here, we report bi-coronal craniosynostosis in a newborn affected by CHARGE syndrome caused by the de novo heterozygous c.6157C>T, p.(Arg2053*) CHD7 variant. We found two additional subjects in the literature with different craniosynostoses and distinct CHD7 alterations. The inclusion of CHD7-related CHARGE syndrome in the group of rare causes of syndromic craniosynostoses is proposed.


Asunto(s)
Síndrome CHARGE/genética , Craneosinostosis/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Predisposición Genética a la Enfermedad , Síndrome CHARGE/patología , Craneosinostosis/patología , Femenino , Heterocigoto , Humanos , Recién Nacido , Mutación , Fenotipo , Semaforinas/genética
15.
Int J Mol Sci ; 22(3)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530447

RESUMEN

Oculo-auriculo-vertebral-spectrum (OAVS; OMIM 164210) is a rare disorder originating from abnormal development of the first and second branchial arch. The clinical phenotype is extremely heterogeneous with ear anomalies, hemifacial microsomia, ocular defects, and vertebral malformations being the main features. MYT1, AMIGO2, and ZYG11B gene variants were reported in a few OAVS patients, but the etiology remains largely unknown. A multifactorial origin has been proposed, including the involvement of environmental and epigenetic mechanisms. To identify the epigenetic mechanisms contributing to OAVS, we evaluated the DNA-methylation profiles of 41 OAVS unrelated affected individuals by using a genome-wide microarray-based methylation approach. The analysis was first carried out comparing OAVS patients with controls at the group level. It revealed a moderate epigenetic variation in a large number of genes implicated in basic chromatin dynamics such as DNA packaging and protein-DNA organization. The alternative analysis in individual profiles based on the searching for Stochastic Epigenetic Variants (SEV) identified an increased number of SEVs in OAVS patients compared to controls. Although no recurrent deregulated enriched regions were found, isolated patients harboring suggestive epigenetic deregulations were identified. The recognition of a different DNA methylation pattern in the OAVS cohort and the identification of isolated patients with suggestive epigenetic variations provide consistent evidence for the contribution of epigenetic mechanisms to the etiology of this complex and heterogeneous disorder.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Síndrome de Goldenhar/diagnóstico , Síndrome de Goldenhar/genética , Biología Computacional/métodos , Islas de CpG , Femenino , Perfilación de la Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Anotación de Secuencia Molecular , Fenotipo
16.
Hum Mutat ; 41(5): 983-997, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31957178

RESUMEN

Bone morphogenetic protein 15 (BMP15) encodes an oocyte factor with a relevant role for folliculogenesis as homodimer or cumulin heterodimer (BMP15-GDF9). Heterozygous BMP15 variants in the precursor or mature peptide had been associated with primary ovarian insufficiency (POI), but the underlying mechanism remains elusive and a double dose of BMP15 was suggested to be required for adequate ovarian reserve. We uncovered two homozygous BMP15 null variants found in two girls with POI and primary amenorrhea. Both heterozygous mothers reported physiological menopause. We then performed western blot, immunofluorescence, and reporter assays to investigate how previously reported missense variants, p.Y235C and p.R329C, located in the precursor or mature domains of BMP15, may affect protein function. The p.R329C variant demonstrates an impaired colocalization with growth/differentiation factor 9 (GDF9) at confocal images and diminished activation of the SMAD pathways at western blot and reporter assays in COV434 follicular cell line. In conclusion, BMP15 null mutations cause POI only in the homozygous state, thus discarding the possibility that isolated BMP15 haploinsufficiency can cause evident ovarian defects. Alternatively, heterozygous BMP15 missense variants may affect ovarian function by interfering with cumulin activity. Our data definitely support the fundamental role of BMP15 in human ovarian folliculogenesis.


Asunto(s)
Proteína Morfogenética Ósea 15/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación Missense , Folículo Ovárico/metabolismo , Insuficiencia Ovárica Primaria/diagnóstico , Insuficiencia Ovárica Primaria/genética , Adolescente , Alelos , Línea Celular , Hibridación Genómica Comparativa , Consanguinidad , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética/métodos , Genotipo , Homocigoto , Humanos , Folículo Ovárico/crecimiento & desarrollo , Linaje , Fenotipo , Insuficiencia Ovárica Primaria/metabolismo , Eliminación de Secuencia
18.
Am J Med Genet A ; 182(11): 2694-2698, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32896075

RESUMEN

Proximal interstitial deletions of chromosome 9p13 have been described only in a few patients with developmental delay, moderate intellectual disability, craniofacial dysmorphism, short stature, genital anomalies, and precocious puberty. To corroborate and expand these findings, we report on two novel syndromic male patients with 9p13 deletions suffering from a similar form of tremor and compare them with literature data. Despite genomic variability in deletion sizes, all patients displayed homogeneous dysmorphism and clinical manifestations, including very invalidating tremor. Furthermore, we outlined a region of around 2 Mb shared in common by all patients with nearly 70 genes, among which NPR2 might have a role in the phenotype. These data delineate interstitial 9p13 deletion syndrome with tremor as a major feature.


Asunto(s)
Anomalías Múltiples/patología , Deleción Cromosómica , Cromosomas Humanos Par 9/genética , Fenotipo , Temblor/patología , Anomalías Múltiples/genética , Adolescente , Humanos , Recién Nacido , Masculino , Síndrome , Temblor/genética
19.
J Med Genet ; 56(4): 246-251, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30711920

RESUMEN

BACKGROUND: Structural variants (SVs) affecting non-coding cis-regulatory elements are a common cause of congenital limb malformation. Yet, the functional interpretation of these non-coding variants remains challenging. The human Liebenberg syndrome is characterised by a partial transformation of the arms into legs and has been shown to be caused by SVs at the PITX1 locus leading to its misregulation in the forelimb by its native enhancer element Pen. This study aims to elucidate the genetic cause of an unsolved family with a mild form of Liebenberg syndrome and investigate the role of promoters in long-range gene regulation. METHODS: Here, we identify SVs by whole genome sequencing (WGS) and use CRISPR-Cas9 genome editing in transgenic mice to assign pathogenicity to the SVs. RESULTS: In this study, we used WGS in a family with three mildly affected individuals with Liebenberg syndrome and identified the smallest deletion described so far including the first non-coding exon of H2AFY. To functionally characterise the variant, we re-engineered the 8.5 kb deletion using CRISPR-Cas9 technology in the mouse and showed that the promoter of the housekeeping gene H2afy insulates the Pen enhancer from Pitx1 in forelimbs; its loss leads to misexpression of Pitx1 by the pan-limb activity of the Pen enhancer causing Liebenberg syndrome. CONCLUSION: Our data indicate that housekeeping promoters may titrate promiscuous enhancer activity to ensure normal morphogenesis. The deletion of the H2AFY promoter as a cause of Liebenberg syndrome highlights this new mutational mechanism and its role in congenital disease.


Asunto(s)
Braquidactilia/diagnóstico , Braquidactilia/genética , Huesos del Carpo/anomalías , Articulación del Codo/anomalías , Epistasis Genética , Dedos/anomalías , Regulación de la Expresión Génica , Deformidades Congénitas de la Mano/diagnóstico , Deformidades Congénitas de la Mano/genética , Histonas/genética , Factores de Transcripción Paired Box/genética , Regiones Promotoras Genéticas , Eliminación de Secuencia , Sinostosis/diagnóstico , Sinostosis/genética , Activación Transcripcional , Articulación de la Muñeca/anomalías , Alelos , Animales , Modelos Animales de Enfermedad , Marcación de Gen , Humanos , Ratones , Ratones Noqueados , Factores de Transcripción Paired Box/metabolismo , Linaje , Secuenciación Completa del Genoma
20.
Hum Mutat ; 40(1): 106-114, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30371979

RESUMEN

Hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders, characterized by a progressive sensory neuropathy often complicated by ulcers and amputations, with variable motor and autonomic involvement. Several pathways have been implicated in the pathogenesis of neuronal degeneration in HSAN, while recent observations point to an emerging role of cytoskeleton organization and function. Here, we report novel biallelic mutations in the DST gene encoding dystonin, a large cytolinker protein of the plakin family, in an adult form of HSAN type VI. Affected individuals harbored the premature termination codon variant p.(Lys4330*) in trans with the p.(Ala203Glu) change affecting a highly conserved residue in an isoform-specific N-terminal region of dystonin. Functional studies showed defects in actin cytoskeleton organization and consequent delayed cell adhesion, spreading and migration, while recombinant p.Ala203Glu dystonin loses the ability to bind actin. Our data aid in the clinical and molecular delineation of HSAN-VI and suggest a central role for cell-motility and cytoskeletal defects in its pathogenesis possibly interfering with the neuronal outgrowth and guidance processes.


Asunto(s)
Citoesqueleto de Actina/patología , Distonina/genética , Genes Recesivos , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Mutación/genética , Neuronas/metabolismo , Actinas/metabolismo , Adulto , Anciano , Secuencia de Aminoácidos , Animales , Células COS , Adhesión Celular , Movimiento Celular , Chlorocebus aethiops , Dermis/patología , Distonina/química , Familia , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad , Unión Proteica , Isoformas de Proteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA