Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 242(4): 1448-1475, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581203

RESUMEN

Research on mycorrhizal symbiosis has been slowed by a lack of established study systems. To address this challenge, we have been developing Suillus, a widespread ecologically and economically relevant fungal genus primarily associated with the plant family Pinaceae, into a model system for studying ectomycorrhizal (ECM) associations. Over the last decade, we have compiled extensive genomic resources, culture libraries, a phenotype database, and protocols for manipulating Suillus fungi with and without their tree partners. Our efforts have already resulted in a large number of publicly available genomes, transcriptomes, and respective annotations, as well as advances in our understanding of mycorrhizal partner specificity and host communication, fungal and plant nutrition, environmental adaptation, soil nutrient cycling, interspecific competition, and biological invasions. Here, we highlight the most significant recent findings enabled by Suillus, present a suite of protocols for working with the genus, and discuss how Suillus is emerging as an important model to elucidate the ecology and evolution of ECM interactions.


Asunto(s)
Evolución Biológica , Modelos Biológicos , Micorrizas , Micorrizas/fisiología , Micorrizas/genética , Ecología , Simbiosis/genética , Basidiomycota/fisiología , Basidiomycota/genética
2.
Genome Res ; 29(6): 944-953, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31043437

RESUMEN

The degree of selfing has major impacts on adaptability and is often controlled by molecular mechanisms determining mating compatibility. Changes in compatibility systems are therefore important evolutionary events, but their underlying genomic mechanisms are often poorly understood. Fungi display frequent shifts in compatibility systems, and their small genomes facilitate elucidation of the mechanisms involved. In particular, linkage between the pre- and postmating compatibility loci has evolved repeatedly, increasing the odds of gamete compatibility under selfing. Here, we studied the mating-type chromosomes of two anther-smut fungi with unlinked mating-type loci despite a self-fertilization mating system. Segregation analyses and comparisons of high-quality genome assemblies revealed that these two species displayed linkage between mating-type loci and their respective centromeres. This arrangement renders the same improved odds of gamete compatibility as direct linkage of the two mating-type loci under the automictic mating (intratetrad selfing) of anther-smut fungi. Recombination cessation was found associated with a large inversion in only one of the four linkage events. The lack of trans-specific polymorphism at genes located in nonrecombining regions and linkage date estimates indicated that the events of recombination cessation occurred independently in the two sister species. Our study shows that natural selection can repeatedly lead to similar genomic patterns and phenotypes, and that different evolutionary paths can lead to distinct yet equally beneficial responses to selection. Our study further highlights that automixis and gene linkage to centromeres have important genetic and evolutionary consequences, while being poorly recognized despite being present in a broad range of taxa.


Asunto(s)
Centrómero/genética , Hongos/genética , Genes del Tipo Sexual de los Hongos , Recombinación Genética , Adaptación Biológica/genética , Alelos , Evolución Molecular , Hongos/clasificación , Ligamiento Genético , Filogenia , Polimorfismo Genético
3.
New Phytol ; 235(6): 2158-2175, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35713988

RESUMEN

Stress is ubiquitous and disrupts homeostasis, leading to damage, decreased fitness, and even death. Like other organisms, mycorrhizal fungi evolved mechanisms for stress tolerance that allow them to persist or even thrive under environmental stress. Such mechanisms can also protect their obligate plant partners, contributing to their health and survival under hostile conditions. Here we review the effects of stress and mechanisms of stress response in mycorrhizal fungi. We cover molecular and cellular aspects of stress and how stress impacts individual fitness, physiology, growth, reproduction, and interactions with plant partners, along with how some fungi evolved to tolerate hostile environmental conditions. We also address how stress and stress tolerance can lead to adaptation and have cascading effects on population- and community-level diversity. We argue that mycorrhizal fungal stress tolerance can strongly shape not only fungal and plant physiology, but also their ecology and evolution. We conclude by pointing out knowledge gaps and important future research directions required for both fully understanding stress tolerance in the mycorrhizal context and addressing ongoing environmental change.


Asunto(s)
Micorrizas , Adaptación Fisiológica , Ecología , Hongos , Micorrizas/fisiología , Fenómenos Fisiológicos de las Plantas , Plantas/microbiología
4.
Microb Ecol ; 84(1): 33-43, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34468785

RESUMEN

Geothermal soils offer unique insight into the way extreme environmental factors shape communities of organisms. However, little is known about the fungi growing in these environments and in particular how localized steep abiotic gradients affect fungal diversity. We used metabarcoding to characterize soil fungi surrounding a hot spring-fed thermal creek with water up to 84 °C and pH 10 in Yellowstone National Park. We found a significant association between fungal communities and soil variable principal components, and we identify the key trends in co-varying soil variables that explain the variation in fungal community. Saprotrophic and ectomycorrhizal fungi community profiles followed, and were significantly associated with, different soil variable principal components, highlighting potential differences in the factors that structure these different fungal trophic guilds. In addition, in vitro growth experiments in four target fungal species revealed a wide range of tolerances to pH levels but not to heat. Overall, our results documenting turnover in fungal species within a few hundred meters suggest many co-varying environmental factors structure the diverse fungal communities found in the soils of Yellowstone National Park.


Asunto(s)
Micobioma , Micorrizas , Hongos/genética , Parques Recreativos , Suelo/química , Microbiología del Suelo
5.
New Phytol ; 230(2): 774-792, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33355923

RESUMEN

While there has been significant progress characterizing the 'symbiotic toolkit' of ectomycorrhizal (ECM) fungi, how host specificity may be encoded into ECM fungal genomes remains poorly understood. We conducted a comparative genomic analysis of ECM fungal host specialists and generalists, focusing on the specialist genus Suillus. Global analyses of genome dynamics across 46 species were assessed, along with targeted analyses of three classes of molecules previously identified as important determinants of host specificity: small secreted proteins (SSPs), secondary metabolites (SMs) and G-protein coupled receptors (GPCRs). Relative to other ECM fungi, including other host specialists, Suillus had highly dynamic genomes including numerous rapidly evolving gene families and many domain expansions and contractions. Targeted analyses supported a role for SMs but not SSPs or GPCRs in Suillus host specificity. Phylogenomic-based ancestral state reconstruction identified Larix as the ancestral host of Suillus, with multiple independent switches between white and red pine hosts. These results suggest that like other defining characteristics of the ECM lifestyle, host specificity is a dynamic process at the genome level. In the case of Suillus, both SMs and pathways involved in the deactivation of reactive oxygen species appear to be strongly associated with enhanced host specificity.


Asunto(s)
Micorrizas , Pinus , Evolución Molecular , Hongos/genética , Genoma Fúngico , Genómica , Micorrizas/genética , Especialización
6.
Mol Ecol ; 29(21): 4157-4169, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32866320

RESUMEN

Human-altered environments can shape the evolution of organisms. Fungi are no exception, although little is known about how they withstand anthropogenic pollution. Here, we document adaptation in the mycorrhizal fungus Suillus luteus driven by soil heavy metal contamination. Genome scans across individuals from recently polluted and nearby unpolluted soils in Belgium revealed low divergence across isolates and no evidence of population structure based on soil type. However, we detected single nucleotide polymorphism divergence and gene copy-number variation, with different genetic combinations potentially conferring the ability to persist in contaminated soils. Variants were shared across the population but found to be under selection in isolates exposed to pollution and located across the genome, including in genes involved in metal exclusion, storage, immobilization and reactive oxygen species detoxification. Together, our results point to S. luteus undergoing the initial steps of adaptive divergence and contribute to understanding the processes underlying local adaptation under strong environmental selection.


Asunto(s)
Metales Pesados , Micorrizas , Contaminantes del Suelo , Basidiomycota , Bélgica , Humanos , Polimorfismo de Nucleótido Simple/genética
7.
Proc Natl Acad Sci U S A ; 114(27): 7067-7072, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28630332

RESUMEN

Sex chromosomes can display successive steps of recombination suppression known as "evolutionary strata," which are thought to result from the successive linkage of sexually antagonistic genes to sex-determining genes. However, there is little evidence to support this explanation. Here we investigate whether evolutionary strata can evolve without sexual antagonism using fungi that display suppressed recombination extending beyond loci determining mating compatibility despite lack of male/female roles associated with their mating types. By comparing full-length chromosome assemblies from five anther-smut fungi with or without recombination suppression in their mating-type chromosomes, we inferred the ancestral gene order and derived chromosomal arrangements in this group. This approach shed light on the chromosomal fusion underlying the linkage of mating-type loci in fungi and provided evidence for multiple clearly resolved evolutionary strata over a range of ages (0.9-2.1 million years) in mating-type chromosomes. Several evolutionary strata did not include genes involved in mating-type determination. The existence of strata devoid of mating-type genes, despite the lack of sexual antagonism, calls for a unified theory of sex-related chromosome evolution, incorporating, for example, the influence of partially linked deleterious mutations and the maintenance of neutral rearrangement polymorphism due to balancing selection on sexes and mating types.


Asunto(s)
Cromosomas Fúngicos , Hongos/genética , Genes del Tipo Sexual de los Hongos , Ligamiento Genético , Genoma Fúngico , Recombinación Genética , Evolución Biológica , Evolución Molecular , Reordenamiento Génico , Haploidia , Heterocigoto , Filogenia
8.
Mol Ecol ; 28(4): 721-730, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30582650

RESUMEN

Ribosomal DNA (rDNA) copy number variation (CNV) has major physiological implications for all organisms, but how it varies for fungi, an ecologically ubiquitous and important group of microorganisms, has yet to be systemically investigated. Here, we examine rDNA CNV using an in silico read depth approach for 91 fungal taxa with sequenced genomes and assess copy number conservation across phylogenetic scales and ecological lifestyles. rDNA copy number varied considerably across fungi, ranging from an estimated 14 to 1,442 copies (mean = 113, median = 82), and copy number similarity was inversely correlated with phylogenetic distance. No correlations were found between rDNA CNV and fungal trophic mode, ecological guild or genome size. Taken together, these results show that like other microorganisms, fungi exhibit substantial variation in rDNA copy number, which is linked to their phylogeny in a scale-dependent manner.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Filogenia , ADN Ribosómico/genética , Ecología , Hongos/clasificación , Hongos/genética , Genoma Fúngico/genética , Estilo de Vida
10.
Proc Natl Acad Sci U S A ; 112(29): 8901-8, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26195774

RESUMEN

Research over the past two decades shows that both recombination and clonality are likely to contribute to the reproduction of all fungi. This view of fungi is different from the historical and still commonly held view that a large fraction of fungi are exclusively clonal and that some fungi have been exclusively clonal for hundreds of millions of years. Here, we first will consider how these two historical views have changed. Then we will examine the impact on fungal research of the concept of restrained recombination [Tibayrenc M, Ayala FJ (2012) Proc Natl Acad Sci USA 109 (48):E3305-E3313]. Using animal and human pathogenic fungi, we examine extrinsic restraints on recombination associated with bottlenecks in genetic variation caused by geographic dispersal and extrinsic restraints caused by shifts in reproductive mode associated with either disease transmission or hybridization. Using species of the model yeast Saccharomyces and the model filamentous fungus Neurospora, we examine intrinsic restraints on recombination associated with mating systems that range from strictly clonal at one extreme to fully outbreeding at the other and those that lie between, including selfing and inbreeding. We also consider the effect of nomenclature on perception of reproductive mode and a means of comparing the relative impact of clonality and recombination on fungal populations. Last, we consider a recent hypothesis suggesting that fungi thought to have the most severe intrinsic constraints on recombination actually may have the fewest.


Asunto(s)
Hongos/fisiología , Animales , Células Clonales , Hongos/genética , Genética de Población , Genotipo , Humanos , Micorrizas/fisiología , Recombinación Genética/genética , Reproducción
11.
Mol Ecol ; 26(7): 2063-2076, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27761941

RESUMEN

Recent advancements in sequencing technology allowed researchers to better address the patterns and mechanisms involved in microbial environmental adaptation at large spatial scales. Here we investigated the genomic basis of adaptation to climate at the continental scale in Suillus brevipes, an ectomycorrhizal fungus symbiotically associated with the roots of pine trees. We used genomic data from 55 individuals in seven locations across North America to perform genome scans to detect signatures of positive selection and assess whether temperature and precipitation were associated with genetic differentiation. We found that S. brevipes exhibited overall strong population differentiation, with potential admixture in Canadian populations. This species also displayed genomic signatures of positive selection as well as genomic sites significantly associated with distinct climatic regimes and abiotic environmental parameters. These genomic regions included genes involved in transmembrane transport of substances and helicase activity potentially involved in cold stress response. Our study sheds light on large-scale environmental adaptation in fungi by identifying putative adaptive genes and providing a framework to further investigate the genetic basis of fungal adaptation.


Asunto(s)
Adaptación Fisiológica/genética , Agaricales/genética , Genética de Población , Selección Genética , Basidiomycota/genética , Canadá , Clima , Respuesta al Choque por Frío/genética , ADN de Hongos/genética , Genoma Fúngico , Genotipo , Desequilibrio de Ligamiento , Micorrizas/genética , América del Norte , Pinus/microbiología , Lluvia , Nieve , Temperatura
12.
Proc Natl Acad Sci U S A ; 111(17): 6341-6, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24733885

RESUMEN

Identifying the ecological processes that structure communities and the consequences for ecosystem function is a central goal of ecology. The recognition that fungi, bacteria, and viruses control key ecosystem functions has made microbial communities a major focus of this field. Because many ecological processes are apparent only at particular spatial or temporal scales, a complete understanding of the linkages between microbial community, environment, and function requires analysis across a wide range of scales. Here, we map the biological and functional geography of soil fungi from local to continental scales and show that the principal ecological processes controlling community structure and function operate at different scales. Similar to plants or animals, most soil fungi are endemic to particular bioregions, suggesting that factors operating at large spatial scales, like dispersal limitation or climate, are the first-order determinants of fungal community structure in nature. By contrast, soil extracellular enzyme activity is highly convergent across bioregions and widely differing fungal communities. Instead, soil enzyme activity is correlated with local soil environment and distribution of fungal traits within the community. The lack of structure-function relationships for soil fungal communities at continental scales indicates a high degree of functional redundancy among fungal communities in global biogeochemical cycles.


Asunto(s)
Biodiversidad , Hongos/crecimiento & desarrollo , Microbiología del Suelo , América del Norte , Filogeografía
13.
Mycologia ; 109(1): 115-127, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28402791

RESUMEN

The corticioid fungi are commonly encountered, highly diverse, ecologically important, and understudied. We collected specimens in 60 pine and spruce forests across North America to survey corticioid fungal frequency and distribution and to compile an internal transcribed spacer (ITS) database for the group. Sanger sequences from the ITS region of vouchered specimens were compared with sequences on GenBank and UNITE, and with high-throughput sequence data from soil and roots taken at the same sites. Out of 425 high-quality Sanger sequences from vouchered specimens, we recovered 223 distinct operational taxonomic units (OTUs), the majority of which could not be assigned to species by matching to the BLAST database. Corticioid fungi were found to be hyperdiverse, as supported by the observations that nearly two-thirds of our OTUs were represented by single collections and species estimator curves showed steep slopes with no plateaus. We estimate that 14.8-24.7% of our voucher-based OTUs are likely to be ectomycorrhizal (EM). Corticioid fungi recovered from the soil formed a different community assemblage, with EM taxa accounting for 40.5-58.6% of OTUs. We compared basidioma sequences with EM root tips from our data, GenBank, or UNITE, and with this approach, we reiterate existing speculations that Trechispora stellulata is EM. We found that corticioid fungi have a significant distance-decay pattern, adding to the literature supporting fungi as having geographically structured communities. This study provides a first view of the diversity of this important group across North American pine forests, but much of the biology and taxonomy of these diverse, important, and widespread fungi remains unknown.


Asunto(s)
Biodiversidad , Bosques , Hongos/clasificación , Hongos/aislamiento & purificación , Análisis por Conglomerados , ADN de Hongos/química , ADN de Hongos/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Hongos/genética , América del Norte , Filogenia , Picea/microbiología , Pinus/microbiología , Raíces de Plantas/microbiología , Análisis de Secuencia de ADN , Microbiología del Suelo
15.
New Phytol ; 209(2): 845-54, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26390155

RESUMEN

Rates of ecosystem nitrogen (N) cycling may be mediated by the presence of ectomycorrhizal fungi, which compete directly with free-living microbes for N. In the regenerating tropical dry forests of Central America, the distribution of ectomycorrhizal trees is affected by succession and soil parent material, both of which may exert independent influence over soil N fluxes. In order to quantify these interacting controls, we used a scale-explicit sampling strategy to examine soil N cycling at scales ranging from the microsite to ecosystem level. We measured fungal community composition, total and inorganic N pools, gross proteolytic rate, net N mineralization and microbial extracellular enzyme activity at multiple locations within 18 permanent plots that span dramatic gradients of soil N concentration, stand age and forest composition. The ratio of inorganic to organic N cycling was correlated with variation in fungal community structure, consistent with a strong influence of ectomycorrhiza on ecosystem-scale N cycling. However, on average, > 61% of the variation in soil biogeochemistry occurred within plots, and the effects of forest composition were mediated by this local-scale heterogeneity in total soil N concentrations. These cross-scale interactions demonstrate the importance of a spatially explicit approach towards an understanding of controls on element cycling.


Asunto(s)
Bosques , Micorrizas , Ciclo del Nitrógeno , Microbiología del Suelo , Costa Rica , Consorcios Microbianos/genética , Consorcios Microbianos/fisiología , Micorrizas/genética , Clima Tropical
16.
Mol Ecol ; 24(11): 2747-58, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25728665

RESUMEN

Fungi are an omnipresent and highly diverse group of organisms, making up a significant part of eukaryotic diversity. Little is currently known about the drivers of fungal population differentiation and subsequent divergence of species, particularly in symbiotic, mycorrhizal fungi. Here, we investigate the population structure and environmental adaptation in Suillus brevipes (Peck) Kuntze, a wind-dispersed soil fungus that is symbiotic with pine trees. We assembled and annotated the reference genome for Su. brevipes and resequenced the whole genomes of 28 individuals from coastal and montane sites in California. We detected two clearly delineated coast and mountain populations with very low divergence. Genomic divergence was restricted to few regions, including a region of extreme divergence containing a gene encoding for a membrane Na(+) /H(+) exchanger known for enhancing salt tolerance in plants and yeast. Our results are consistent with a very recent split between the montane and coastal Su. brevipes populations, with few small genomic regions under positive selection and a pattern of dispersal and/or establishment limitation. Furthermore, we identify a putatively adaptive gene that motivates further functional analyses to link genotypes and phenotypes and shed light on the genetic basis of adaptive traits.


Asunto(s)
Basidiomycota/genética , Especiación Genética , Genética de Población , Aislamiento Reproductivo , California , ADN de Hongos/genética , Ecosistema , Genoma Fúngico , Funciones de Verosimilitud , Micorrizas/genética , Pinus/microbiología , Selección Genética , Análisis de Secuencia de ADN , Microbiología del Suelo , Simbiosis
17.
Mol Ecol ; 23(4): 753-73, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24341913

RESUMEN

Fungi are ideal model organisms for dissecting the genomic bases of adaptive divergence in eukaryotes. They have simple morphologies and small genomes, occupy contrasting, well-identified ecological niches and tend to have short generation times, and many are amenable to experimental approaches. Fungi also display diverse lifestyles, from saprotrophs to pathogens or mutualists, and they play extremely important roles in both ecosystems and human activities, as wood decayers, mycorrhizal fungi, lichens, endophytes, plant and animal pathogens, and in fermentation or drug production. We review here recent insights into the patterns and mechanisms of adaptive divergence in fungi, including sources of divergence, genomic variation and, ultimately, speciation. We outline the various ecological sources of divergent selection and genomic changes, showing that gene loss and changes in gene expression and in genomic architecture are important adaptation processes, in addition to the more widely recognized processes of amino acid substitution and gene duplication. We also review recent findings regarding the interspecific acquisition of genomic variation and suggesting an important role for introgression, hybridization and horizontal gene transfers (HGTs). We show that transposable elements can mediate several of these genomic changes, thus constituting important factors for adaptation. Finally, we review the consequences of divergent selection in terms of speciation, arguing that genetic incompatibilities may not be as widespread as generally thought and that pleiotropy between adaptation and reproductive isolation is an important route of speciation in fungal pathogens.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Hongos/genética , Especiación Genética , Elementos Transponibles de ADN , Eucariontes/genética , Transferencia de Gen Horizontal , Genómica , Hibridación Genética , Aislamiento Reproductivo
18.
BMJ Case Rep ; 17(6)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857915

RESUMEN

We present a case of a case of a man in his 70s on multiple medications (including treatment of ischemic heart disease and diabetes who developed significant rhabdomyolysis, complicated by acute kidney injury (AKI) and encephalopathy, while using a compounded medication for weight loss. The patient was admitted to the intensive care unit and progressed favourably after haemodialysis and supportive care. Information regarding the ingestion of weight-loss drugs was unknown at the time of admission and was only discovered after resolution of encephalopathy, raising the possibility of toxin-associated rhabdomyolysis. This case emphasises the need for a thorough clinical history and scrutiny of the safety of weight-loss prescriptions, including preparations that comprise a combination of drugs and supplements that may adversely interact with chronic medications, especially in polymedicated patients.


Asunto(s)
Fármacos Antiobesidad , Rabdomiólisis , Humanos , Rabdomiólisis/inducido químicamente , Rabdomiólisis/terapia , Masculino , Fármacos Antiobesidad/efectos adversos , Anciano , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/terapia , Diálisis Renal , Pérdida de Peso , Polifarmacia
20.
Genetics ; 224(2)2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37070772

RESUMEN

Studying the signatures of evolution can help to understand genetic processes. Here, we demonstrate how the existence of balancing selection can be used to identify the breeding systems of fungi from genomic data. The breeding systems of fungi are controlled by self-incompatibility loci that determine mating types between potential mating partners, resulting in strong balancing selection at the loci. Within the fungal phylum Basidiomycota, two such self-incompatibility loci, namely HD MAT locus and P/R MAT locus, control mating types of gametes. Loss of function at one or both MAT loci results in different breeding systems and relaxes the MAT locus from balancing selection. By investigating the signatures of balancing selection at MAT loci, one can infer a species' breeding system without culture-based studies. Nevertheless, the extreme sequence divergence among MAT alleles imposes challenges for retrieving full variants from both alleles when using the conventional read-mapping method. Therefore, we employed a combination of read-mapping and local de novo assembly to construct haplotypes of HD MAT alleles from genomes in suilloid fungi (genera Suillus and Rhizopogon). Genealogy and pairwise divergence of HD MAT alleles showed that the origins of mating types predate the split between these two closely related genera. High sequence divergence, trans-specific polymorphism, and the deeply diverging genealogy confirm the long-term functionality and multiallelic status of HD MAT locus in suilloid fungi. This work highlights a genomics approach to studying breeding systems regardless of the culturability of organisms based on the interplay between evolution and genetics.


Asunto(s)
Basidiomycota , Evolución Molecular , Fitomejoramiento , Basidiomycota/genética , Genómica , Polimorfismo Genético , Genes del Tipo Sexual de los Hongos/genética , Filogenia , Hongos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA