Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(17): 3619-3631.e13, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37595565

RESUMEN

During viral infection, cells can deploy immune strategies that deprive viruses of molecules essential for their replication. Here, we report a family of immune effectors in bacteria that, upon phage infection, degrade cellular adenosine triphosphate (ATP) and deoxyadenosine triphosphate (dATP) by cleaving the N-glycosidic bond between the adenine and sugar moieties. These ATP nucleosidase effectors are widely distributed within multiple bacterial defense systems, including cyclic oligonucleotide-based antiviral signaling systems (CBASS), prokaryotic argonautes, and nucleotide-binding leucine-rich repeat (NLR)-like proteins, and we show that ATP and dATP degradation during infection halts phage propagation. By analyzing homologs of the immune ATP nucleosidase domain, we discover and characterize Detocs, a family of bacterial defense systems with a two-component phosphotransfer-signaling architecture. The immune ATP nucleosidase domain is also encoded within diverse eukaryotic proteins with immune-like architectures, and we show biochemically that eukaryotic homologs preserve the ATP nucleosidase activity. Our findings suggest that ATP and dATP degradation is a cell-autonomous innate immune strategy conserved across the tree of life.


Asunto(s)
Virosis , Humanos , Células Eucariotas , Células Procariotas , Adenosina Trifosfato , N-Glicosil Hidrolasas
2.
Cell ; 186(5): 987-998.e15, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36764290

RESUMEN

RADAR is a two-protein bacterial defense system that was reported to defend against phage by "editing" messenger RNA. Here, we determine cryo-EM structures of the RADAR defense complex, revealing RdrA as a heptameric, two-layered AAA+ ATPase and RdrB as a dodecameric, hollow complex with twelve surface-exposed deaminase active sites. RdrA and RdrB join to form a giant assembly up to 10 MDa, with RdrA docked as a funnel over the RdrB active site. Surprisingly, our structures reveal an RdrB active site that targets mononucleotides. We show that RdrB catalyzes ATP-to-ITP conversion in vitro and induces the massive accumulation of inosine mononucleotides during phage infection in vivo, limiting phage replication. Our results define ATP mononucleotide deamination as a determinant of RADAR immunity and reveal supramolecular assembly of a nucleotide-modifying machine as a mechanism of anti-phage defense.


Asunto(s)
Bacteriófagos , Bacteriófagos/metabolismo , Microscopía por Crioelectrón/métodos , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfato , Adenosina Desaminasa/metabolismo
3.
Cell ; 184(23): 5728-5739.e16, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34644530

RESUMEN

The cyclic pyrimidines 3',5'-cyclic cytidine monophosphate (cCMP) and 3',5'-cyclic uridine monophosphate (cUMP) have been reported in multiple organisms and cell types. As opposed to the cyclic nucleotides 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP), which are second messenger molecules with well-established regulatory roles across all domains of life, the biological role of cyclic pyrimidines has remained unclear. Here we report that cCMP and cUMP are second messengers functioning in bacterial immunity against viruses. We discovered a family of bacterial pyrimidine cyclase enzymes that specifically synthesize cCMP and cUMP following phage infection and demonstrate that these molecules activate immune effectors that execute an antiviral response. A crystal structure of a uridylate cyclase enzyme from this family explains the molecular mechanism of selectivity for pyrimidines as cyclization substrates. Defense systems encoding pyrimidine cyclases, denoted here Pycsar (pyrimidine cyclase system for antiphage resistance), are widespread in prokaryotes. Our results assign clear biological function to cCMP and cUMP as immunity signaling molecules in bacteria.


Asunto(s)
Bacterias/inmunología , Bacterias/virología , Bacteriófagos/fisiología , CMP Cíclico/metabolismo , Nucleótidos Cíclicos/metabolismo , Uridina Monofosfato/metabolismo , Secuencia de Aminoácidos , Bacterias/genética , Burkholderia/enzimología , CMP Cíclico/química , Ciclización , Escherichia coli/enzimología , Modelos Moleculares , Mutación/genética , Nucleótidos Cíclicos/química , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/metabolismo , Pirimidinas/metabolismo , Uridina Monofosfato/química
4.
Cell ; 178(3): 731-747.e16, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31257032

RESUMEN

N6-methyladenosine (m6A) is the most abundant modification on mRNA and is implicated in critical roles in development, physiology, and disease. A major limitation has been the inability to quantify m6A stoichiometry and the lack of antibody-independent methodologies for interrogating m6A. Here, we develop MAZTER-seq for systematic quantitative profiling of m6A at single-nucleotide resolution at 16%-25% of expressed sites, building on differential cleavage by an RNase. MAZTER-seq permits validation and de novo discovery of m6A sites, calibration of the performance of antibody-based approaches, and quantitative tracking of m6A dynamics in yeast gametogenesis and mammalian differentiation. We discover that m6A stoichiometry is "hard coded" in cis via a simple and predictable code, accounting for 33%-46% of the variability in methylation levels and allowing accurate prediction of m6A loss and acquisition events across evolution. MAZTER-seq allows quantitative investigation of m6A regulation in subcellular fractions, diverse cell types, and disease states.


Asunto(s)
Adenosina/análogos & derivados , ARN Mensajero/química , Análisis de Secuencia de ARN/métodos , Adenosina/análisis , Adenosina/inmunología , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Animales , Anticuerpos/inmunología , Cromatografía Líquida de Alta Presión , Cuerpos Embrioides/metabolismo , Células Madre Embrionarias , Endorribonucleasas/metabolismo , Humanos , Meiosis , Metilación , Ratones , Motivos de Nucleótidos , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Espectrometría de Masas en Tándem
5.
Cell ; 174(6): 1559-1570.e22, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30100185

RESUMEN

The urea cycle (UC) is the main pathway by which mammals dispose of waste nitrogen. We find that specific alterations in the expression of most UC enzymes occur in many tumors, leading to a general metabolic hallmark termed "UC dysregulation" (UCD). UCD elicits nitrogen diversion toward carbamoyl-phosphate synthetase2, aspartate transcarbamylase, and dihydrooratase (CAD) activation and enhances pyrimidine synthesis, resulting in detectable changes in nitrogen metabolites in both patient tumors and their bio-fluids. The accompanying excess of pyrimidine versus purine nucleotides results in a genomic signature consisting of transversion mutations at the DNA, RNA, and protein levels. This mutational bias is associated with increased numbers of hydrophobic tumor antigens and a better response to immune checkpoint inhibitors independent of mutational load. Taken together, our findings demonstrate that UCD is a common feature of tumors that profoundly affects carcinogenesis, mutagenesis, and immunotherapy response.


Asunto(s)
Genómica , Metabolómica , Neoplasias/patología , Urea/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Animales , Aspartato Carbamoiltransferasa/genética , Aspartato Carbamoiltransferasa/metabolismo , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/genética , Carbamoil-Fosfato Sintasa (Glutamina-Hidrolizante)/metabolismo , Línea Celular Tumoral , Dihidroorotasa/genética , Dihidroorotasa/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Proteínas de Transporte de Membrana Mitocondrial , Neoplasias/metabolismo , Ornitina Carbamoiltransferasa/antagonistas & inhibidores , Ornitina Carbamoiltransferasa/genética , Ornitina Carbamoiltransferasa/metabolismo , Fosforilación/efectos de los fármacos , Pirimidinas/biosíntesis , Pirimidinas/química , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
6.
Cell ; 167(6): 1495-1510.e12, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27912059

RESUMEN

The intestinal microbiota undergoes diurnal compositional and functional oscillations that affect metabolic homeostasis, but the mechanisms by which the rhythmic microbiota influences host circadian activity remain elusive. Using integrated multi-omics and imaging approaches, we demonstrate that the gut microbiota features oscillating biogeographical localization and metabolome patterns that determine the rhythmic exposure of the intestinal epithelium to different bacterial species and their metabolites over the course of a day. This diurnal microbial behavior drives, in turn, the global programming of the host circadian transcriptional, epigenetic, and metabolite oscillations. Surprisingly, disruption of homeostatic microbiome rhythmicity not only abrogates normal chromatin and transcriptional oscillations of the host, but also incites genome-wide de novo oscillations in both intestine and liver, thereby impacting diurnal fluctuations of host physiology and disease susceptibility. As such, the rhythmic biogeography and metabolome of the intestinal microbiota regulates the temporal organization and functional outcome of host transcriptional and epigenetic programs.


Asunto(s)
Ritmo Circadiano , Colon/microbiología , Microbioma Gastrointestinal , Transcriptoma , Animales , Cromatina/metabolismo , Colon/metabolismo , Vida Libre de Gérmenes , Hígado/metabolismo , Ratones , Microscopía Electrónica de Rastreo
7.
Mol Cell ; 83(2): 237-251.e7, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36599352

RESUMEN

N6-methyladenosine (m6A), a widespread destabilizing mark on mRNA, is non-uniformly distributed across the transcriptome, yet the basis for its selective deposition is unknown. Here, we propose that m6A deposition is not selective. Instead, it is exclusion based: m6A consensus motifs are methylated by default, unless they are within a window of ∼100 nt from a splice junction. A simple model which we extensively validate, relying exclusively on presence of m6A motifs and exon-intron architecture, allows in silico recapitulation of experimentally measured m6A profiles. We provide evidence that exclusion from splice junctions is mediated by the exon junction complex (EJC), potentially via physical occlusion, and that previously observed associations between exon-intron architecture and mRNA decay are mechanistically mediated via m6A. Our findings establish a mechanism coupling nuclear mRNA splicing and packaging with the covalent installation of m6A, in turn controlling cytoplasmic decay.


Asunto(s)
Empalme del ARN , Transcriptoma , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estabilidad del ARN , Exones/genética
8.
Nat Immunol ; 18(6): 665-674, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28459435

RESUMEN

Tissue macrophages provide immunological defense and contribute to the establishment and maintenance of tissue homeostasis. Here we used constitutive and inducible mutagenesis to delete the nuclear transcription regulator Mecp2 in macrophages. Mice that lacked the gene encoding Mecp2, which is associated with Rett syndrome, in macrophages did not show signs of neurodevelopmental disorder but displayed spontaneous obesity, which was linked to impaired function of brown adipose tissue (BAT). Specifically, mutagenesis of a BAT-resident Cx3Cr1+ macrophage subpopulation compromised homeostatic thermogenesis but not acute, cold-induced thermogenesis. Mechanistically, malfunction of BAT in pre-obese mice with mutant macrophages was associated with diminished sympathetic innervation and local titers of norepinephrine, which resulted in lower expression of thermogenic factors by adipocytes. Mutant macrophages overexpressed the signaling receptor and ligand PlexinA4, which might contribute to the phenotype by repulsion of sympathetic axons expressing the transmembrane semaphorin Sema6A. Collectively, we report a previously unappreciated homeostatic role for macrophages in the control of tissue innervation. Disruption of this circuit in BAT resulted in metabolic imbalance.


Asunto(s)
Tejido Adiposo Pardo/inmunología , Macrófagos/inmunología , Proteína 2 de Unión a Metil-CpG/genética , Sistema Nervioso Simpático/metabolismo , Termogénesis/inmunología , Adipocitos Marrones , Tejido Adiposo Pardo/inervación , Tejido Adiposo Pardo/metabolismo , Animales , Axones/metabolismo , Receptor 1 de Quimiocinas CX3C , Metabolismo Energético/inmunología , Citometría de Flujo , Homeostasis , Immunoblotting , Macrófagos/metabolismo , Ratones , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/metabolismo , Norepinefrina/metabolismo , Obesidad/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Superficie Celular/metabolismo , Receptores de Quimiocina/metabolismo , Semaforinas/metabolismo
9.
Nature ; 624(7992): 645-652, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38093014

RESUMEN

People with diabetes feature a life-risking susceptibility to respiratory viral infection, including influenza and SARS-CoV-2 (ref. 1), whose mechanism remains unknown. In acquired and genetic mouse models of diabetes, induced with an acute pulmonary viral infection, we demonstrate that hyperglycaemia leads to impaired costimulatory molecule expression, antigen transport and T cell priming in distinct lung dendritic cell (DC) subsets, driving a defective antiviral adaptive immune response, delayed viral clearance and enhanced mortality. Mechanistically, hyperglycaemia induces an altered metabolic DC circuitry characterized by increased glucose-to-acetyl-CoA shunting and downstream histone acetylation, leading to global chromatin alterations. These, in turn, drive impaired expression of key DC effectors including central antigen presentation-related genes. Either glucose-lowering treatment or pharmacological modulation of histone acetylation rescues DC function and antiviral immunity. Collectively, we highlight a hyperglycaemia-driven metabolic-immune axis orchestrating DC dysfunction during pulmonary viral infection and identify metabolic checkpoints that may be therapeutically exploited in mitigating exacerbated disease in infected diabetics.


Asunto(s)
Células Dendríticas , Complicaciones de la Diabetes , Diabetes Mellitus , Susceptibilidad a Enfermedades , Hiperglucemia , Pulmón , Virosis , Animales , Ratones , Acetilcoenzima A/metabolismo , Acetilación , Cromatina/genética , Cromatina/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/patología , Complicaciones de la Diabetes/inmunología , Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/inmunología , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Histonas/metabolismo , Hiperglucemia/complicaciones , Hiperglucemia/inmunología , Hiperglucemia/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/virología , Linfocitos T/inmunología , Virosis/complicaciones , Virosis/inmunología , Virosis/mortalidad , Virus/inmunología , Modelos Animales de Enfermedad , Humanos
10.
Nature ; 607(7919): 585-592, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35732737

RESUMEN

The regenerative potential of mammalian peripheral nervous system neurons after injury is critically limited by their slow axonal regenerative rate1. Regenerative ability is influenced by both injury-dependent and injury-independent mechanisms2. Among the latter, environmental factors such as exercise and environmental enrichment have been shown to affect signalling pathways that promote axonal regeneration3. Several of these pathways, including modifications in gene transcription and protein synthesis, mitochondrial metabolism and the release of neurotrophins, can be activated by intermittent fasting (IF)4,5. However, whether IF influences the axonal regenerative ability remains to be investigated. Here we show that IF promotes axonal regeneration after sciatic nerve crush in mice through an unexpected mechanism that relies on the gram-positive gut microbiome and an increase in the gut bacteria-derived metabolite indole-3-propionic acid (IPA) in the serum. IPA production by Clostridium sporogenes is required for efficient axonal regeneration, and delivery of IPA after sciatic injury significantly enhances axonal regeneration, accelerating the recovery of sensory function. Mechanistically, RNA sequencing analysis from sciatic dorsal root ganglia suggested a role for neutrophil chemotaxis in the IPA-dependent regenerative phenotype, which was confirmed by inhibition of neutrophil chemotaxis. Our results demonstrate the ability of a microbiome-derived metabolite, such as IPA, to facilitate regeneration and functional recovery of sensory axons through an immune-mediated mechanism.


Asunto(s)
Indoles , Regeneración Nerviosa , Propionatos , Cicatrización de Heridas , Animales , Ratones , Axones/efectos de los fármacos , Axones/fisiología , Quimiotaxis de Leucocito , Clostridium/metabolismo , Ayuno , Ganglios Espinales/metabolismo , Microbioma Gastrointestinal , Indoles/sangre , Indoles/metabolismo , Indoles/farmacología , Compresión Nerviosa , Factores de Crecimiento Nervioso/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Neutrófilos/citología , Neutrófilos/inmunología , Propionatos/sangre , Propionatos/metabolismo , Propionatos/farmacología , Recuperación de la Función , Nervio Ciático/lesiones , Análisis de Secuencia de ARN , Cicatrización de Heridas/efectos de los fármacos
11.
Nature ; 600(7890): 713-719, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34880502

RESUMEN

Cigarette smoking constitutes a leading global cause of morbidity and preventable death1, and most active smokers report a desire or recent attempt to quit2. Smoking-cessation-induced weight gain (SCWG; 4.5 kg reported to be gained on average per 6-12 months, >10 kg year-1 in 13% of those who stopped smoking3) constitutes a major obstacle to smoking abstinence4, even under stable5,6 or restricted7 caloric intake. Here we use a mouse model to demonstrate that smoking and cessation induce a dysbiotic state that is driven by an intestinal influx of cigarette-smoke-related metabolites. Microbiome depletion induced by treatment with antibiotics prevents SCWG. Conversely, fecal microbiome transplantation from mice previously exposed to cigarette smoke into germ-free mice naive to smoke exposure induces excessive weight gain across diets and mouse strains. Metabolically, microbiome-induced SCWG involves a concerted host and microbiome shunting of dietary choline to dimethylglycine driving increased gut energy harvest, coupled with the depletion of a cross-regulated weight-lowering metabolite, N-acetylglycine, and possibly by the effects of other differentially abundant cigarette-smoke-related metabolites. Dimethylglycine and N-acetylglycine may also modulate weight and associated adipose-tissue immunity under non-smoking conditions. Preliminary observations in a small cross-sectional human cohort support these findings, which calls for larger human trials to establish the relevance of this mechanism in active smokers. Collectively, we uncover a microbiome-dependent orchestration of SCWG that may be exploitable to improve smoking-cessation success and to correct metabolic perturbations even in non-smoking settings.


Asunto(s)
Microbioma Gastrointestinal , Cese del Hábito de Fumar , Aumento de Peso , Animales , Estudios Transversales , Disbiosis/etiología , Disbiosis/metabolismo , Disbiosis/patología , Ratones , Modelos Animales , Fumar/metabolismo , Fumar/patología
12.
Nature ; 590(7845): 332-337, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33328638

RESUMEN

Extensive tumour inflammation, which is reflected by high levels of infiltrating T cells and interferon-γ (IFNγ) signalling, improves the response of patients with melanoma to checkpoint immunotherapy1,2. Many tumours, however, escape by activating cellular pathways that lead to immunosuppression. One such mechanism is the production of tryptophan metabolites along the kynurenine pathway by the enzyme indoleamine 2,3-dioxygenase 1 (IDO1), which is induced by IFNγ3-5. However, clinical trials using inhibition of IDO1 in combination with blockade of the PD1 pathway in patients with melanoma did not improve the efficacy of treatment compared to PD1 pathway blockade alone6,7, pointing to an incomplete understanding of the role of IDO1 and the consequent degradation of tryptophan in mRNA translation and cancer progression. Here we used ribosome profiling in melanoma cells to investigate the effects of prolonged IFNγ treatment on mRNA translation. Notably, we observed accumulations of ribosomes downstream of tryptophan codons, along with their expected stalling at the tryptophan codon. This suggested that ribosomes bypass tryptophan codons in the absence of tryptophan. A detailed examination of these tryptophan-associated accumulations of ribosomes-which we term 'W-bumps'-showed that they were characterized by ribosomal frameshifting events. Consistently, reporter assays combined with proteomic and immunopeptidomic analyses demonstrated the induction of ribosomal frameshifting, and the generation and presentation of aberrant trans-frame peptides at the cell surface after treatment with IFNγ. Priming of naive T cells from healthy donors with aberrant peptides induced peptide-specific T cells. Together, our results suggest that IDO1-mediated depletion of tryptophan, which is induced by IFNγ, has a role in the immune recognition of melanoma cells by contributing to diversification of the peptidome landscape.


Asunto(s)
Presentación de Antígeno , Mutación del Sistema de Lectura , Melanoma/inmunología , Péptidos/genética , Péptidos/inmunología , Biosíntesis de Proteínas/inmunología , Linfocitos T/inmunología , Línea Celular , Codón/genética , Sistema de Lectura Ribosómico/efectos de los fármacos , Sistema de Lectura Ribosómico/genética , Sistema de Lectura Ribosómico/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Interferón gamma/inmunología , Interferón gamma/farmacología , Melanoma/patología , Péptidos/química , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Proteoma , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Triptófano/deficiencia , Triptófano/genética , Triptófano/metabolismo
13.
Nature ; 572(7770): 474-480, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31330533

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disorder, in which the clinical manifestations may be influenced by genetic and unknown environmental factors. Here we show that ALS-prone Sod1 transgenic (Sod1-Tg) mice have a pre-symptomatic, vivarium-dependent dysbiosis and altered metabolite configuration, coupled with an exacerbated disease under germ-free conditions or after treatment with broad-spectrum antibiotics. We correlate eleven distinct commensal bacteria at our vivarium with the severity of ALS in mice, and by their individual supplementation into antibiotic-treated Sod1-Tg mice we demonstrate that Akkermansia muciniphila (AM) ameliorates whereas Ruminococcus torques and Parabacteroides distasonis exacerbate the symptoms of ALS. Furthermore, Sod1-Tg mice that are administered AM are found to accumulate AM-associated nicotinamide in the central nervous system, and systemic supplementation of nicotinamide improves motor symptoms and gene expression patterns in the spinal cord of Sod1-Tg mice. In humans, we identify distinct microbiome and metabolite configurations-including reduced levels of nicotinamide systemically and in the cerebrospinal fluid-in a small preliminary study that compares patients with ALS with household controls. We suggest that environmentally driven microbiome-brain interactions may modulate ALS in mice, and we call for similar investigations in the human form of the disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/microbiología , Esclerosis Amiotrófica Lateral/fisiopatología , Microbioma Gastrointestinal/fisiología , Niacinamida/metabolismo , Akkermansia , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Antibacterianos/farmacología , Modelos Animales de Enfermedad , Disbiosis , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Vida Libre de Gérmenes , Humanos , Longevidad , Masculino , Ratones , Ratones Transgénicos , Niacinamida/biosíntesis , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Tasa de Supervivencia , Simbiosis/efectos de los fármacos , Verrucomicrobia/metabolismo , Verrucomicrobia/fisiología
14.
Nat Methods ; 18(9): 1060-1067, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34480159

RESUMEN

N6-methyladenosine (m6A) is the most prevalent modification of messenger RNA in mammals. To interrogate its functions and dynamics, there is a critical need to quantify m6A at three levels: site, gene and sample. Current approaches address these needs in a limited manner. Here we develop m6A-seq2, relying on multiplexed m6A-immunoprecipitation of barcoded and pooled samples. m6A-seq2 allows a big increase in throughput while reducing technical variability, requirements of input material and cost. m6A-seq2 is furthermore uniquely capable of providing sample-level relative quantitations of m6A, serving as an orthogonal alternative to mass spectrometry-based approaches. Finally, we develop a computational approach for gene-level quantitation of m6A. We demonstrate that using this metric, roughly 30% of the variability in RNA half life in mouse embryonic stem cells can be explained, establishing m6A as a main driver of RNA stability. m6A-seq2 thus provides an experimental and analytic framework for dissecting m6A-mediated regulation at three different levels.


Asunto(s)
Adenosina/análogos & derivados , Estabilidad del ARN/genética , Análisis de Secuencia de ARN/métodos , Adenosina/análisis , Adenosina/genética , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Expresión Génica , Semivida , Meiosis , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Ratones Noqueados , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/fisiología , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Levaduras/genética
15.
J Biol Chem ; 298(5): 101806, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35271851

RESUMEN

Grass pea (Lathyrus sativus L.) is a grain legume commonly grown in Asia and Africa for food and forage. It is a highly nutritious and robust crop, capable of surviving both droughts and floods. However, it produces a neurotoxic compound, ß-N-oxalyl-L-α,ß-diaminopropionic acid (ß-ODAP), which can cause a severe neurological disorder when consumed as a primary diet component. While the catalytic activity associated with ß-ODAP formation was demonstrated more than 50 years ago, the enzyme responsible for this activity has not been identified. Here, we report on the identity, activity, 3D structure, and phylogenesis of this enzyme-ß-ODAP synthase (BOS). We show that BOS belongs to the benzylalcohol O-acetyltransferase, anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase, deacetylvindoline 4-O-acetyltransferase superfamily of acyltransferases and is structurally similar to hydroxycinnamoyl transferase. Using molecular docking, we propose a mechanism for its catalytic activity, and using heterologous expression in tobacco leaves (Nicotiana benthamiana), we demonstrate that expression of BOS in the presence of its substrates is sufficient for ß-ODAP production in vivo. The identification of BOS may pave the way toward engineering ß-ODAP-free grass pea cultivars, which are safe for human and animal consumption.


Asunto(s)
Aminoácidos Diaminos , Lathyrus/enzimología , Neurotoxinas , Acetiltransferasas , Aminoácidos Diaminos/metabolismo , Simulación del Acoplamiento Molecular
16.
Plant Cell Environ ; 46(8): 2542-2557, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37212197

RESUMEN

The Cercospora species of fungi are responsible for leaf spot disease affecting many key economic crops. Most of these fungi secrete a toxic photodynamic molecule, cercosporin, that reacts with light and oxygen to produce reactive singlet oxygen (1 O2 ) contributing to fungal virulence. We show similar cellular localization and aetiology of cercosporin in the non-host Arabidopsis and the host Nicotiana benthamiana. Cercosporin accumulates in cell membranes in an oxidized state and in plastids in a mixture of redox states in a manner that is dependent on ongoing photosynthetic processes. We observed that cercosporin rapidly compromised photosynthesis as measured by Fv /Fm , NPQ, and photosystem I (PSI) parameters. Stomatal guard cells in particular demonstrated rapid light-dependent membrane permeabilization that led to changes in leaf conductance. We showed that cercosporin-mediated 1 O2 generation oxidized RNA to form 8-oxoguanosine (8-oxoG), leading to translational attenuation and induction of 1 O2 signature gene transcripts. We also identified a subset of cercosporin-induced transcripts that were independent of the photodynamic effect. Our results point to the multimodal action of cercosporin that includes the inhibition of photosynthesis, the direct oxidation of nucleic acid residues and the elicitation of complex transcriptome responses.


Asunto(s)
Ascomicetos , Micotoxinas , Micotoxinas/metabolismo , Oxígeno Singlete/metabolismo , Oxígeno/metabolismo
17.
Nature ; 542(7641): 352-356, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28166538

RESUMEN

The mammalian liver consists of hexagon-shaped lobules that are radially polarized by blood flow and morphogens. Key liver genes have been shown to be differentially expressed along the lobule axis, a phenomenon termed zonation, but a detailed genome-wide reconstruction of this spatial division of labour has not been achieved. Here we measure the entire transcriptome of thousands of mouse liver cells and infer their lobule coordinates on the basis of a panel of zonated landmark genes, characterized with single-molecule fluorescence in situ hybridization. Using this approach, we obtain the zonation profiles of all liver genes with high spatial resolution. We find that around 50% of liver genes are significantly zonated and uncover abundant non-monotonic profiles that peak at the mid-lobule layers. These include a spatial order of bile acid biosynthesis enzymes that matches their position in the enzymatic cascade. Our approach can facilitate the reconstruction of similar spatial genomic blueprints for other mammalian organs.


Asunto(s)
Perfilación de la Expresión Génica , Hepatocitos/metabolismo , Hígado/citología , Hígado/fisiología , Análisis de la Célula Individual , Animales , Ácidos y Sales Biliares/biosíntesis , Genoma/genética , Hibridación Fluorescente in Situ , Hígado/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN , Imagen Individual de Molécula , Transcriptoma/genética
19.
Angew Chem Int Ed Engl ; 61(49): e202213955, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36200991

RESUMEN

Design of pyroelectric crystals decoupled from piezoelectricity is not only a topic of scientific curiosity but also demonstrates effects in principle that have the potential to be technologically advantageous. Here we report a new method for the design of such materials. Thus, the co-doping of centrosymmetric crystals with tailor-made guest molecules, as illustrated by the doping of α-glycine with different amino acids (Threonine, Alanine and Serine). The polarization of those crystals displays two distinct contributions, one arising from the difference in dipole moments between guest and host and the other from the displacement of host molecules from their symmetry-related positions. These contributions exhibit different temperature dependences and response to mechanical deformation. Thus, providing a proof of concept for the ability to design pyroelectric materials with reduced piezoelectric coefficient (d22 ) to a minimal value, below the resolution limit of the method (<0.005 pm/V).


Asunto(s)
Aminoácidos , Glicina , Glicina/química , Cristalización , Aminoácidos/química , Alanina/química
20.
Hum Genet ; 140(10): 1471-1485, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34417872

RESUMEN

Argininosuccinate lyase (ASL) is essential for the NO-dependent regulation of tyrosine hydroxylase (TH) and thus for catecholamine production. Using a conditional mouse model with loss of ASL in catecholamine neurons, we demonstrate that ASL is expressed in dopaminergic neurons in the substantia nigra pars compacta, including the ALDH1A1 + subpopulation that is pivotal for the pathogenesis of Parkinson disease (PD). Neuronal loss of ASL results in catecholamine deficiency, in accumulation and formation of tyrosine aggregates, in elevation of α-synuclein, and phenotypically in motor and cognitive deficits. NO supplementation rescues the formation of aggregates as well as the motor deficiencies. Our data point to a potential metabolic link between accumulations of tyrosine and seeding of pathological aggregates in neurons as initiators for the pathological processes involved in neurodegeneration. Hence, interventions in tyrosine metabolism via regulation of NO levels may be therapeutic beneficial for the treatment of catecholamine-related neurodegenerative disorders.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1/genética , Familia de Aldehído Deshidrogenasa 1/metabolismo , Argininosuccinatoliasa/genética , Argininosuccinatoliasa/metabolismo , Neuronas Dopaminérgicas/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Fenotipo , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA