Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biodegradation ; 32(5): 563-576, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34086180

RESUMEN

Unconventional oils such as diluted bitumen from oil sands differs from most of conventional oils in terms of physiochemical properties and PAHs composition. This raises concerns regarding the effectiveness of current remediation strategies and protocols originally developed for conventional oil. Here we evaluated the efficiency of different biotreatment approaches, such as fungi inoculation (bioaugmentation), sludge addition (bioaugmentation/biostimulation), perennial grasses plantation (phytoremediation) and their combinations as well as natural attenuation (as control condition), for the remediation of soil contaminated by synthetic crude oil (a product of diluted bitumen) in laboratory microcosms. We specifically monitored the PAHs loss percentage (alkylated PAHs and unsubstituted 16 EPA Priority PAHs), the residue of PAHs and evaluated the ecotoxicity of soil after treatment. All treatments were highly efficient with more than ~ 80% of ∑PAHs loss after 60 days. Distinctive loss efficiencies between light PAHs (≤ 3 rings, ~ 96% average loss) and heavy PAHs (4-6 rings, ~ 29% average loss) were observed. The lowest average PAHs residue (0.10 ± 0.02 mg·kg-1, for an initial concentration of 0.29 ± 0.12 mg·kg-1) was achieved with the "sludge-plants (grasses)" combination. Sludge addition was the only treatment that achieved significantly lower ecotoxicity (3% ± 4% of growth inhibition of L. sativa) than the control (natural attenuation, 13% ± 4% of inhibition). Sludge addition, grasses plantation and "sludge-fungi combination" treatments could result in lower PAH exposure (than other treatments) in post-treated soil when using the Canadian Soil Quality Guidelines for the protection of environmental and human health for potentially carcinogenic and other PAHs.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Biodegradación Ambiental , Canadá , Humanos , Hidrocarburos , Yacimiento de Petróleo y Gas , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo , Contaminantes del Suelo/análisis
2.
J Environ Sci Health B ; 49(11): 889-96, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25190564

RESUMEN

Biopesticides are usually sprayed on forests by using planes made up of aluminum alloy. Bioval derived from starch industry wastewater (SIW) in suspension form was developed as stable anticorrosive biopesticide formulation. In this context, various anticorrosion agents such as activated charcoal, glycerin, ethylene glycol, phytic acid, castor oil and potassium silicate were tested as anticorrosive agents. There was no corrosion found in Bioval formulation where potassium silicate (0.5% w/v) was added and compared with Foray 76 B, as an industrial standard, when stored over 6 months. In relation to other parameters, the anticorrosion formulation of Bioval+buffer+KSi reported excellent zeta potential (-33.19 ± 4 mV) and the viscosity (319.13 ± 32 mPa.s) proving it's stability over 6 months, compared to the standard biopesticide Foray 76 B (-36.62 ± 4 mV potential zeta, pH 4.14 ± 0.1 and 206 ± 21 mPa.s viscosity). Metal analysis of the different biopesticides showed that Bioval+buffer+KSi has no corrosion (5.11 ± 0.5 mg kg(-1) of Al and 13.53 ± 1.5 mg kg(-1) of Fe) on the aluminum alloy due to the contribution of sodium acetate buffer at pH 5. The bioassays reported excellent results for Bioval+Buffer+KSi (2.95 ± 0.3 × 10(9) CFU mL(-1) spores and 26.6 ± 2.7 × 10(9) IU L(-1) Tx) compared with initial Bioval (2.46 ± 0.3 × 10(9) CFU mL(-1) spores and 23.09 ± 3 × 10(9) IU L(-1) Tx) and Foray 76 B (2.3 ± 0.2 × 10(9) CFU mL(-1) spores and 19.950 ± 2.1 UI L(-1) Tx) which was due to the break-up of the external chitinous membrane due to abrasive action of potassium silicate after ingestion by insects. The contribution of sodium acetate buffer and potassium silicate (0.5% and at pH = 5) as anticorrosion agent in the Bioval allowed production of an efficient biopesticide with a reduced viscosity and favorable pH as compared to Foray 76 B which enhanced the entomotoxic potential against spruce budworm (SB) larvae (Lepidoptera: Choristoneura fumiferana).


Asunto(s)
Bacillus thuringiensis/química , Insecticidas/química , Insecticidas/farmacología , Mariposas Nocturnas/efectos de los fármacos , Aguas Residuales/química , Animales , Agentes de Control Biológico , Corrosión , Larva/efectos de los fármacos , Mariposas Nocturnas/crecimiento & desarrollo , Almidón/química
3.
J Environ Manage ; 131: 25-32, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24140484

RESUMEN

The objective of this work was to evaluate the potential of a sonochemical oxidation process for the degradation of carbamazepine (CBZ). Several factors, such as electrical power, treatment time, pH and initial concentration of CBZ were investigated. Using a 2(4) factorial matrix, the best performance for CBZ degradation (90.1% of removal) was obtained with an electrical power of 40 W, a treatment time of 120 min and an initial pH of 10.0 imposed in the presence of 6.0 mg L(-1) of CBZ. The treatment time and the calorimetric power were the most influential parameters on the degradation rate of CBZ. Subsequently, the optimal experimental parameters for CBZ degradation were investigated using central composite design. The sonochemical oxidation process, applied under optimal operating conditions (at an electrical power of 43 W for 116 min), oxidized 86 and 90% of the initial CBZ concentration of 5.62 mg L(-1) and 8.05 µg L(-1), respectively. During the sonochemical process, CBZ was primarily transformed into anthranilic acid and acridine.


Asunto(s)
Carbamazepina/química , Contaminantes Químicos del Agua/química , Radical Hidroxilo/química
4.
J Sci Food Agric ; 93(7): 1560-7, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23108761

RESUMEN

BACKGROUND: The citric acid (CA) industry is currently struggling to develop a sustainable and economical process owing to high substrate and energy costs. Increasing interest in the replacement of costly synthetic substrates by renewable waste biomass has fostered research on agro-industrial wastes and screening of raw materials for economical CA production. The food-processing industry generates substantial quantities of waste biomass that could be used as a valuable low-cost fermentation substrate. The present study evaluated the potential of different agro-industrial wastes, namely apple pomace (AP), brewer's spent grain, citrus waste and sphagnum peat moss, as substrates for solid state CA production using Aspergillus niger NRRL 2001. RESULTS: Among the four substrates, AP resulted in highest CA production of 61.06 ± 1.9 g kg(-1) dry substrate (DS) after a 72 h incubation period. Based on the screening studies, AP was selected for optimisation studies through response surface methodology (RSM). Maximum CA production of 312.32 g kg(-1) DS was achieved at 75% (v/w) moisture and 3% (v/w) methanol after a 144 h incubation period. The validation of RSM-optimised parameters in plastic trays resulted in maximum CA production of 364.4 ± 4.50 g kg(-1) DS after a 120 h incubation period. CONCLUSION: The study demonstrated the potential of AP as a cheap substrate for higher CA production. This study contributes to knowledge about the future application of carbon rich agro-industrial wastes for their value addition to CA. It also offers economic and environmental benefits over traditional ways used to dispose off agro-industrial wastes.


Asunto(s)
Aspergillus niger/metabolismo , Ácido Cítrico/metabolismo , Conservación de los Recursos Naturales , Productos Agrícolas/metabolismo , Industria de Procesamiento de Alimentos , Residuos Industriales , Agricultura , Citrus , Grano Comestible , Fermentación , Frutas , Malus , Sphagnopsida
5.
Biotechnol Lett ; 34(10): 1811-5, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22791227

RESUMEN

Lignin quantification in apple pomace residues was carried out using a microwave oven to replace traditional refluxing during the mild acidolysis step to augment the selectivity of this step towards cleavage of lignin-carbohydrate bonds and to reduce the time needed to quantify lignin. The pressure, temperature and time were optimized by response surface methodology and the results were compared to the Klason lignin methodology. Temperature and pressure had a significant positive effect (p < 0.05) on the determination of lignin. However, the time was also significant (p < 0.05) on lignin quantification. The optimal conditions of digestion were: 30 bar, 170 °C for 15 min. The digestion using microwave (lignin content = 33 % w/w) was more accurate (p < 0.05) than the the traditional refluxing (lignin content = 27 % w/w).


Asunto(s)
Lignina/química , Microondas , Análisis de Varianza , Calor , Lignina/análisis , Malus/química , Presión , Factores de Tiempo
6.
Bioengineered ; 13(7-12): 14987-15002, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37105768

RESUMEN

Acidogenic fermentation of food waste using mixed microbial cultures can produce carboxylates [or volatile fatty acids (VFA)] as high-valued bioproducts via a complex interplay of microorganisms during different stages of this process. However, the present fermentation systems are incapable of reaching the industrially relevant VFA production yields of ≥50 g/L primarly due to the complex process operation, competitive metabolic pathways, and limited understanding of microbial interplays. Recent reports have demonstrated the significant roles played by microbial communities from different phyla, which work together to control the process kinetics of various stages underlying acidogenic fermentation. In order to fully delineate the abundance, structure, and functionality of these microbial communities, next-generation high-throughput meta-omics technologies are required. In this article, we review the potential of metagenomics and metatranscriptomics approaches to enable microbial community engineering. Specifically, a deeper analysis of taxonomic relationships, shifts in microbial communities, and differences in the genetic expression of key pathway enzymes under varying operational and environmental parameters of acidogenic fermentation could lead to the identification of species-level functionalities for both cultivable and non-cultivable microbial fractions. Furthermore, it could also be used for successful gene sequence-guided microbial isolation and consortium development for bioaugmentation to allow VFA production with high concentrations and purity. Such highly controlled and engineered microbial systems could pave the way for tailored and high-yielding VFA synthesis, thereby creating a petrochemically competitive waste-to-value chain and promoting the circular bioeconomy.Research HighlightsMixed microbial mediated acidogenic fermentation of food waste.Metagenomics and metatranscriptomics based microbial community analysis.Omics derived function-associated microbial isolation and consortium engineering.High-valued sustainable carboxylate bio-products, i.e. volatile fatty acids.


Asunto(s)
Alimentos , Eliminación de Residuos , Fermentación , Metabolismo de los Hidratos de Carbono , Ácidos , Ácidos Grasos Volátiles/metabolismo , Ácidos Carboxílicos , Reactores Biológicos , Concentración de Iones de Hidrógeno , Aguas del Alcantarillado
7.
Bioresour Technol ; 361: 127675, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35878767

RESUMEN

In the present study, yard waste was pretreated by thermo-chemo-sonic pretreatment prior to anaerobic digestion to improve its anaerobic biodegradability. First, the pretreatment conditions were optimized using Box-Behnken design based response surface methodology for the maximum organic matter solubilisation. Then, the possible mechanism of delignification by thermo-chemo-sonic pretreatment was discussed. Moreover, the anaerobic digestion performance of untreated yard waste (UYW) and pretreated yard waste (PYW) was compared. The optimum pretreatment condition based on the increase in soluble COD and volatile solids (VS) was: 2997 kJ/kgTS ultrasonic energy, 74 °C, and 10.1 pH. The highest methane yield of 374 ± 28 mL/gVSadded for the PYW at the optimum condition was achieved, which was 37.5 % higher than the UYW (272 ± 16 mL/gVSadded). Finally, the environmental impacts associated with anaerobic digestion of both UYW and PYW were compared. The life cycle assessment confirmed a positive environmental impact of pretreatment.


Asunto(s)
Lignina , Metano , Anaerobiosis , Ambiente , Aguas del Alcantarillado
8.
Bioresour Technol ; 356: 127305, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35562026

RESUMEN

In order to identify the most environmental-friendly pretreatment for pyrolsis of wood residue to levoglucosan (LG), for the first time a comparative life cycle assessment (LCA) was carried out for hot water treatment (HWT), torrefaction, acid pretreatment (AP) and salt pretreatment (SP) pathways. Since LG production can facilitate both resource recovery (RR) and wood residue handling (WRH), two different functional units (FUs), i.e., 1 kg LG production and 1 kg wood residue handling were considered. AP was found to generate the least global warming potential of 134.60 kg CO2-eq and human carcinogenic toxicity of 0.59 kg 1,4-dichlorobenzene-eq. for RR perspective. However, for WRH perspective, HWT was found to be the best pretreatment (6.39 kg CO2-eq; 0.03 kg 1,4-dichlorobenzene-eq.). Sensitivity analysis revealed that a reduction in electricity consumption by 15% could reduce the overall impacts by 14.00-14.82 %. This study also highlights the impact of goal and FU selection on LCA.


Asunto(s)
Pirólisis , Madera , Animales , Biomasa , Dióxido de Carbono/análisis , Glucosa/análogos & derivados , Humanos , Estadios del Ciclo de Vida , Madera/química
9.
Bioresour Technol ; 359: 127496, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35718247

RESUMEN

The presence of furfural in the hydrolysates obtained from lignocellulosic biomass sources represents an enormous challenge during their fermentation because furfural is a toxic compound for different microorganisms. Rhodosporidium toruloides-1588 can grow and accumulate lipids using wood hydrolysate as a substrate containing up to 1 g/L of furfural. In this study, the capacity of R. toruloides-1588 to grow and accumulate lipids using furfural without glucose in the media has been observed. R. toruloides-1588 degraded up to 3 g/L of furfural into furfuryl alcohol (1.8 g/L) and 2-furoic acid (0.9 g/L). Furthermore, R. toruloides-1588 accumulated 52% and 30% of its dry weight into lipids using YM media and YM media without glucose, respectively. Fatty acids such as palmitic, stearic and oleic were the most abundant. Finally, R. toruloides-1588 could potentially utilize furfural as a carbon source.


Asunto(s)
Furaldehído , Rhodotorula , Furaldehído/farmacología , Glucosa , Lípidos
10.
J Environ Chem Eng ; 9(5): 106063, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34307017

RESUMEN

Under the current pandemic situation caused by the novel coronavirus SARS-CoV-2, wastewater monitoring has been increasingly investigated as a surveillance tool for community-wide disease prevalence. After a year into the pandemic, this review critically discusses the real progress made in the detection of SARS-CoV-2 using wastewater monitoring. The limitations and the key challenges faced in improving the detection methods are highlighted. As per the literature, the complex nature of the wastewater matrix poses problems in processing the samples and achieving high sensitivity at low loads of viral RNA using the current detection methods. Furthermore, in the absence of a gold standard analytical method for wastewater, the validation of the generated data for use in wastewater-based epidemiological modeling of the disease becomes practically difficult. However, research is advancing in adopting clinical methods to the wastewater by using appropriate processing controls, and recovery methods. Besides, the technological advances made by the industry including the development of PCR kits with improved detection limits, easy-to-use viral RNA concentration methods, ability to detect the coronavirus variants, and artificial intelligence and advanced data modeling for continuous and remote monitoring greatly help to debottleneck some of these problems. Currently, these technologies are limited to healthcare systems, however, their use for wastewater monitoring is expected to provide opportunities for wide-scale applications of wastewater-based epidemiology (WBE). Moreover, the data from wastewater monitoring act as the initial checkpoint for human health even before the appearance of symptoms, hence WBE needs more attention to manage current and future infectious transmissions.

11.
Waste Manag ; 121: 237-247, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33385952

RESUMEN

In the present study, the potential use of cellulosic microfibers (CMFs) extracted from hemp fiber (HF) and pulp and paper solid waste (mixed sludge (MS), deinked sludge (DS)) as a reinforcing agent in novel bio composite materials produced from recycled Polylactic acid (rPLA) was investigated. CMFs were extracted and treated using physicochemical method followed by enzymatic treatment with laccase and cellulase. The effects of CMFs concentrations (1.5, 3 and 6% w/w) and fiber size (75 µm-1.7 mm) on the mechanical properties (impact and tensile) and biodegradability of the biocomposite samples were investigated. A modified interfacial adhesion between rPLA matrix and the three fibers used, was clearly observed through mechanical tests due to alkali and enzymatic treatments. The use of different types of enzymatically treated cellulosic fibers for polylactic acid (PLA) recycling was assessed by Scaning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The combined physicochemical and enzymatic treatments led to a considerable size reduction of the cellulosic fibers (HF, MS and DS) resulting in the enhanced interfacial adhesion between rPLA matrix and fibers. The biocomposite obtained with rPLA with HF gave the most favorable values for Young's modulus (324.53 ± 3.10 MPa, p-value 0.03), impact strength (27.61 ± 2.94 kJ/m2, p-value 0.01) and biodegradation rate (1.97%).


Asunto(s)
Poliésteres , Reciclaje , Estudios de Factibilidad , Difracción de Rayos X
12.
Environ Toxicol Chem ; 40(12): 3434-3440, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34606656

RESUMEN

Pressures from anthropogenic activities are causing degradation of estuarine and coastal ecosystems around the world. Trace metals are key pollutants that are released and can partition in a range of environmental compartments, to be ultimately accumulated in exposed biota. The level of pressure varies with locations and the range and intensity of anthropogenic activities. The present study measured residues of trace metals in Mytilus mussel species collected from a range of locations around the world in areas experiencing a gradient of anthropogenic pressures that we classified as low, moderate, or high impact. The data showed no grouping/impact level when sampling sites in all countries were incorporated in the analysis, but there was significant clustering/impact level for most countries. Overall, high-impact areas were characterized by elevated concentrations of zinc, lead, nickel, and arsenic, whereas copper and silver were detected at higher concentrations in medium-impact areas. Finally, whereas most metals were found at lower concentrations in areas classified as low impact, cadmium was typically elevated in these areas. The present study provides a unique snapshot of worldwide levels of coastal metal contamination through the use of Mytilus species, a well-established marine biomonitoring tool. Environ Toxicol Chem 2021;40:3434-3440. © 2021 SETAC.


Asunto(s)
Metales Pesados , Mytilus , Oligoelementos , Contaminantes Químicos del Agua , Animales , Ecosistema , Monitoreo del Ambiente , Metales Pesados/análisis , Mytilus/metabolismo , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis
13.
Bioresour Technol ; 313: 123638, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32534757

RESUMEN

Lignocellulosic biomass has been used to produce biomolecules of industrial interest through thermochemical, biological, and chemical transformation. However, few works have been developed over lignin fractionation to obtain monolignols with commercial potentials, such as sinapyl, coniferyl, and p-coumaryl alcohols. This study is focused on developing a thermochemical method to delignify biomass. Additionally, an oxidative treatment with ozone was studied to increase the release of monolignol compounds. The results showed that with 30 sec of ozonation in liquid samples from softwood sawdust a total concentration of 368.50 ± 0.73 mg/kg of monolignols was released after microwave-assisted extraction (256.5 ± 0.51 mg/kg of sinapyl alcohol and 112 ± 0.22 mg/kg of coniferyl alcohol) and 629.20 ± 0.21 mg/kg was released after thermal treatment (453.70 ± 0.15 mg/kg of sinapyl alcohol and 175.5 ± 0.06 mg/kg of coniferyl alcohol). For p-coumaryl alcohol, 16.32 mg/kg was obtained only in hardwood samples. The results of the present study showed that ozonolysis improves monolignols release from forestry residues.


Asunto(s)
Lignina , Ozono , Biomasa , Agricultura Forestal , Estrés Oxidativo
14.
Data Brief ; 26: 104347, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31516937

RESUMEN

Lignocellulosic biomass is a promising alternative for the replacement of limited fossil resources to produce various chemical compounds, such as 5-hydroxymethylfurfural, furfural, vanillin, vanillic acid, ferulic acid, syringaldehyde, and 4-aminobenzoic acid. However, the complex biomass structure is a limitation to making effective use of this naturally found feedstock. This research presents a data set of different compounds obtained directly from forest residues, with special emphasis on achieving effective utilization of the biomass. The extraction method and the catalyst are considered as the two main factors in this valorization process.

15.
J Infect Public Health ; 12(6): 897-899, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31078492

RESUMEN

Most of the waterborne fecal pathogens belong to the family of Gram-negative bacteria. Hence, minimal inhibitory concentrations of chlortetracycline and ciprofloxacin antibiotics towards Gram-negative representative, Enterobacter aerogenes were estimated, which were 7 µg/ml and 0.125 µg/ml, respectively. The combined antimicrobial effect of chlortetracycline and ciprofloxacin against E. aerogenes was also investigated to establish their potential interaction towards the pathogens present in water. Eventually, the water samples obtained from various drinking water treatment plants from Québec municipality were tested for the occurrence of chlortetracycline-, ciprofloxacin- and chlortetracycline/ciprofloxacin-resistant strains.


Asunto(s)
Antibacterianos/farmacología , Clortetraciclina/farmacología , Ciprofloxacina/farmacología , Agua Potable/microbiología , Farmacorresistencia Bacteriana , Enterobacter aerogenes/efectos de los fármacos , Enterobacter aerogenes/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Quebec
16.
Int J Biol Macromol ; 115: 563-571, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29689286

RESUMEN

Nanotechnology-inspired biocatalytic systems attracted attention for many applications since nanosized supports for enzyme immobilization can improve efficiency-determining factors e.g. enhancing the surface area and loading capacity and reducing the mass transfer resistance. Among the nanomaterials, nanobiochar has unique features as a support for enzyme immobilization i.e. high surface to volume ratio, porous structure, and presence of functional groups on its surface. However, the performance of the immobilization is highly dependent on the immobilization conditions and the properties of the enzyme and the support material. In this research, crude laccase was covalently immobilized onto functionalized nanobiochar using a two-step method of diimide-activated amidation. The effect of different parameters was investigated. The optimal conditions were found to be 14 mg/mL of laccase concentration, 5 mg/mL of nanobiochar, 8.2 mM of cross-linker and 3 h of contact time. For investigating the pH, thermal, storage, and operational stability, the sample obtained from the optimized conditions was used. The results showed the higher stability of immobilized laccase against temperature and pH variation compared to free laccase. In addition, immobilized laccase maintained its catalytic performance up to seven cycles of utilization and showed more than 50% of initial activity after two months of room temperature storage.


Asunto(s)
Carbón Orgánico/química , Enzimas Inmovilizadas/química , Lacasa/química , Nanoestructuras/química , Pinus/química , Madera/química , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Lacasa/metabolismo , Nanotecnología , Temperatura , Trametes/enzimología
17.
Bioresour Technol ; 98(11): 2154-62, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17084079

RESUMEN

Starch industry wastewater was investigated to assess and improve its potential as a raw material for the conidia production of biocontrol fungi, Trichoderma viride. The wastewater was tested with and without supplements of glucose, soluble starch, meat peptone and probable conidiation inducer chemicals in shake flask culture. Addition of complex carbon source (soluble starch, 1% and 2% w/v) produced maximum conidia ( approximately 3.02 and 4.2 x 10(10)CFU/mL, respectively). On the other hand, glucose addition as a simpler carbon source was either ineffective or, reduced conidia production (from 1.6 x 10(8) in control to 3.0 x 10(7)CFU/mL in 5% w/v glucose supplement). Supplement of nitrogen source showed a small increase of conidia concentration. Propionic, maleic and humic acids, EDTA, pyridine, glycerol and CaCO(3) were examined as probable conidiation inducers and showed effect only on initial rate of conidiation with no increase in final conidia concentration. Intra and extracellular ATP correlation with spore production showed dependence on growth media used and conidia concentration at the end of fermentation. Addition of carbon and nitrogen sources showed an increase in protease activity (from 0.4985 to 2.43 IU/mL) and entomotoxicity (from 10448 to 12335 spruce budworm unit (SBU)/microL). Entomotoxicity was improved by 11% in fermenter over shake flask when starch industry wastewater was supplemented with meat peptone.


Asunto(s)
Residuos Industriales , Almidón/química , Trichoderma/crecimiento & desarrollo , Eliminación de Residuos Líquidos , Animales , Biodegradación Ambiental , Glucosa/metabolismo , Larva/fisiología , Carne , Mariposas Nocturnas/fisiología , Peptonas/metabolismo , Control Biológico de Vectores , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo , Trichoderma/metabolismo , Agua/química
18.
Chemosphere ; 67(4): 674-83, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17184817

RESUMEN

Rheology of Bacillus thuringiensis fermentation of hydrolyzed sludge was investigated in bench scale fermenter. Stable liquid formulations were developed and optimized for two-year based studies comprising various physical/chemical (viscosity, particle size, corrosion and suspendibility) and biological (microbial contamination, viable spores and entomotoxicity) parameters at different pHs and temperatures. The hydrolyzed sludge depicted non-Newtonian and pseudoplastic behaviour during fermentation with 90% to 96% confidence of fits into Casson, Power and IPC paste models. Higher values of consistency and flow index during exponential growth and stationary phase, respectively, affected downstream processing. The power law was also followed by stable formulations. Sorbitol, sodium monophosphate and sodium metabisulfite (2.2:1:1) as suspending agents produced suspendibility ranging from 69% to 94%. The stable formulation (FH-4) comprising sorbitol, sodium monophosphate and sodium metabisulfite deteriorated at pHs 6, 6.5 and temperatures, 40 and 50 degrees C, with no signs of corrosion and microbial contamination. The viscosity of FH-4 formulations decreased with shear rate which could improve handling and consequent spraying.


Asunto(s)
Bacillus thuringiensis/crecimiento & desarrollo , Bacillus thuringiensis/metabolismo , Fermentación/fisiología , Aguas del Alcantarillado , Hidrólisis , Plaguicidas/metabolismo , Reología , Resistencia al Corte , Viscosidad
19.
Environ Technol ; 28(3): 273-84, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17432380

RESUMEN

This study investigates the changes in biodegradability, rheology and metal concentration of wastewater sludge--non-hydrolyzed (raw), sterilized, and hydrolyzed (thermal alkaline pre-treatment) at total solids concentration from 10-50 g l(-1) to ascertain the bioavailability of nutrients for subsequent fermentation. The dissolved solids concentration increased linearly with total solids. Irrespective of the wastewater sludge (raw or, pre-treated), percentage biodegradability in terms of total solids (26.5-44.5%), total COD (25.8-56.5%) and dissolved solids (41.9-66.9%) was maximum around 20 g l(-1) solids concentration. The pseudoplasticity of sludge decreased (consistency index decreased from 895.1 to 5.2 and flow behaviour index increased from 0.28 to 0.88, for all sludge types) with pre-treatment and increased with total solids concentration. The pre-treated sludge, namely, sterilized and hydrolyzed sludge showed higher microbial growth (1-2 log cycles increase in comparison to raw sludge) suggesting their susceptibility to microbial degradation. The C:N ratio decreased with pre-treatment (raw sludge > sterilized > hydrolyzed) during biodegradation. Although the metal concentration increased in incubated hydrolyzed sludge, the final concentration was within the regulatory norms for agriculture application. Thus, pretreatment of sludge resulted in increase in biodegradability making it an excellent proponent for fermented value-added products.


Asunto(s)
Bacterias/metabolismo , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Bacterias/genética , Biodegradación Ambiental , Carbono/análisis , Fermentación , Metales Pesados/análisis , Nitrógeno/análisis , Reología
20.
Ultrason Sonochem ; 34: 380-388, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27773260

RESUMEN

The synergistic effects were evaluated during the oxidation of carbamazepine using a sono-electrochemical process. The sono-electrochemical oxidation was performed using two types of experimental units (having 1L and 100L of working volume, respectively) and containing one anode (Ti/PbO2) and one cathode (Ti). Different operating parameters, including power of ultrasounds, current intensity and reaction time were investigated. The degree of synergy increased when the current intensity decreased, whereas it increased with the power of ultrasounds imposed. The highest value of the synergy degree (33%) was recorded for the lowest current intensity (1.0A) and the highest power of ultrasounds (40W). Likewise, the benefits of ultrasound were observed during a long-term period of treatment of CBZ (30days of experiments without interruption). A relatively high degradation rate was recorded using the sono-electrochemical process (99.5%) (at I=1A, P=40W), compared to a percentage of CBZ degradation of 91% recorded during electrolysis alone (at I=1A, P=0W). Likewise, the scanning electron microscopy views and the measurements of the electrochemical impedance spectroscopy (EIS) revealed that there are not impurities deposited on the surface of electrode in the present of ultrasounds.


Asunto(s)
Carbamazepina/química , Sonicación , Contaminantes Químicos del Agua/química , Electroquímica , Oxidación-Reducción , Factores de Tiempo , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA