Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Anal Chem ; 95(19): 7422-7432, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37130053

RESUMEN

Peptide mass fingerprinting (PMF) using MALDI-TOF mass spectrometry allows the identification of bone species based on their type I collagen sequence. In the archaeological or paleontological field, PMF is known as zooarchaeology mass spectrometry (ZooMS) and is widely implemented to find markers for most species, including the extinct ones. In addition to the identification of bone species, ZooMS enables dating estimation by measuring the deamidation value of specific peptides. Herein, we report several enhancements to the classical ZooMS technique, which reduces to 10-fold the required bone sample amount (down to the milligram scale) and achieves robust deamidation value calculation in a high-throughput manner. These improvements rely on a 96-well plate samples preparation, a careful optimization of collagen extraction and digestion to avoid spurious post-translational modification production, and PMF at high resolution using matrix-assisted laser desorption ionization Fourier transform ion cyclotron resonance (MALDI-FTICR) analysis. This method was applied to the identification of a hundred bones of herbivores from the Middle Paleolithic site of Caours (Somme, France) well dated from the Eemian Last Interglacial climatic optimum. The method gave reliable species identification to bones already identified by their osteomorphology, as well as to more challenging samples consisting of small or burned bone fragments. Deamidation values of bones originating from the same geological layers have a low standard deviation. The method can be applied to archaeological bone remains and offers a robust capacity to identify traditionally unidentifiable bone fragments, thus increasing the number of identified specimens and providing invaluable information in specific contexts.


Asunto(s)
Péptidos , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Proteómica/métodos , Péptidos/química , Colágeno , Colágeno Tipo I
2.
Proteomics ; 22(3): e2100116, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34665929

RESUMEN

Fibroblasts (Fb) are key effector cells in systemic sclerosis (SSc). Fb stimulation with transforming growth factor beta 1 (TGF-ß1) is considered as a positive control in studies assessing fibrogenesis. The lack of standardization of TGF-ß1 stimulation might be responsible for discrepancies in experiments performed in different conditions. Using quantitative proteomics analysis, we evaluated the impact of changes in experimental conditions on proteomic profiles of primary Fb. Principal component analysis (PCA) identified several groups of differentially expressed proteins influenced by cell passage, culture medium, and both concentration and duration of exposure to TGF-ß1 stimulation. Bioinformatics analysis revealed that late passages expressed proteins involved in senescence. TGF-ß1 concentration and time of stimulation were correlated with the expression of proteins involved in the fibrogenesis and inflammatory processes. These data underline the need for standardization of culture conditions to allow inter-data comparisons in future in vitro studies, especially when using "omics" approaches.


Asunto(s)
Proteómica , Esclerodermia Sistémica , Células Cultivadas , Biología Computacional , Fibroblastos/metabolismo , Humanos , Esclerodermia Sistémica/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología
3.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36499572

RESUMEN

Diazotrophic bacteria isolated from the rhizosphere of a wild wheat ancestor, grown from its refuge area in the Fertile Crescent, were found to be efficient Plant Growth-Promoting Rhizobacteria (PGPR), upon interaction with an elite wheat cultivar. In nitrogen-starved plants, they increased the amount of nitrogen in the seed crop (per plant) by about twofold. A bacterial growth medium was developed to investigate the effects of bacterial exudates on root development in the elite cultivar, and to analyze the exo-metabolomes and exo-proteomes. Altered root development was observed, with distinct responses depending on the strain, for instance, with respect to root hair development. A first conclusion from these results is that the ability of wheat to establish effective beneficial interactions with PGPRs does not appear to have undergone systematic deep reprogramming during domestication. Exo-metabolome analysis revealed a complex set of secondary metabolites, including nutrient ion chelators, cyclopeptides that could act as phytohormone mimetics, and quorum sensing molecules having inter-kingdom signaling properties. The exo-proteome-comprised strain-specific enzymes, and structural proteins belonging to outer-membrane vesicles, are likely to sequester metabolites in their lumen. Thus, the methodological processes we have developed to collect and analyze bacterial exudates have revealed that PGPRs constitutively exude a highly complex set of metabolites; this is likely to allow numerous mechanisms to simultaneously contribute to plant growth promotion, and thereby to also broaden the spectra of plant genotypes (species and accessions/cultivars) with which beneficial interactions can occur.


Asunto(s)
Microbiología del Suelo , Triticum , Triticum/metabolismo , Raíces de Plantas/metabolismo , Rizosfera , Bacterias , Desarrollo de la Planta , Plantas , Nitrógeno/metabolismo , Exudados de Plantas/metabolismo
4.
Anal Chem ; 93(19): 7180-7187, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33961394

RESUMEN

Three-dimensional (3D)-printing techniques such as stereolithography (SLA) are currently gaining momentum for the production of miniaturized analytical devices and molds for soft lithography. However, most commercially available SLA resins inhibit polydimethylsiloxane (PDMS) curing, impeding reliable replication of the 3D-printed structures in this elastomeric material. Here, we report a systematic study, using 16 commercial resins, to identify a fast and straightforward treatment of 3D-printed structures and to support accurate PDMS replication using UV and/or thermal post-curing. In-depth analysis using Raman spectroscopy, nuclear magnetic resonance, and high-resolution mass spectrometry revealed that phosphine oxide-based photo-initiators, leaching out of the 3D-printed structures, are poisoning the Pt-based PDMS catalyst. Yet, upon UV and/or thermal treatments, photo-initiators were both eliminated and recombined into high molecular weight species that were sequestered in the molds.


Asunto(s)
Dimetilpolisiloxanos , Impresión Tridimensional
5.
Proc Natl Acad Sci U S A ; 115(47): E11033-E11042, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30397120

RESUMEN

The nuclear receptor REV-ERBα integrates the circadian clock with hepatic glucose and lipid metabolism by nucleating transcriptional comodulators at genomic regulatory regions. An interactomic approach identified O-GlcNAc transferase (OGT) as a REV-ERBα-interacting protein. By shielding cytoplasmic OGT from proteasomal degradation and favoring OGT activity in the nucleus, REV-ERBα cyclically increased O-GlcNAcylation of multiple cytoplasmic and nuclear proteins as a function of its rhythmically regulated expression, while REV-ERBα ligands mostly affected cytoplasmic OGT activity. We illustrate this finding by showing that REV-ERBα controls OGT-dependent activities of the cytoplasmic protein kinase AKT, an essential relay in insulin signaling, and of ten-of-eleven translocation (TET) enzymes in the nucleus. AKT phosphorylation was inversely correlated to REV-ERBα expression. REV-ERBα enhanced TET activity and DNA hydroxymethylated cytosine (5hmC) levels in the vicinity of REV-ERBα genomic binding sites. As an example, we show that the REV-ERBα/OGT complex modulates SREBP-1c gene expression throughout the fasting/feeding periods by first repressing AKT phosphorylation and by epigenomically priming the Srebf1 promoter for a further rapid response to insulin. Conclusion: REV-ERBα regulates cytoplasmic and nuclear OGT-controlled processes that integrate at the hepatic SREBF1 locus to control basal and insulin-induced expression of the temporally and nutritionally regulated lipogenic SREBP-1c transcript.


Asunto(s)
Insulina/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/biosíntesis , Animales , Línea Celular Tumoral , Relojes Circadianos/fisiología , Regulación de la Expresión Génica/genética , Glucosa/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , N-Acetilglucosaminiltransferasas/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
6.
Anal Chem ; 92(24): 15736-15744, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32897057

RESUMEN

Polybutadiene (PB) and polyisoprene (PI), the two most common polydienes (PD), are involved in a large number of materials and used in a wide variety of applications. The characterization of these polymers by mass spectrometry (MS) continues to be very challenging due to their high insolubility and the difficulty to ionize them. In this work, a cross-metathesis reaction was used to generate end-functionalized acetoxy ionizable oligomers for the structural deciphering of different commercial PB and PI samples. A cross-metathesis reaction was carried out between polymers and the Z-1,4-diacetoxy-2-butene as a chain transfer agent in dichloromethane using a Hoveyda-Grubbs second-generation catalyst. Well-defined acetoxy telechelic structures were obtained and analyzed by Fourier transform ion cyclotron resonance (FTICR) high-resolution MS. However, after depolymerization, low molar mass polyolefins contained some units with different configurations, suggesting an olefin isomerization reaction due to the decomposition of the catalyst. The addition of an electron-deficient reagent such as 2,6-dichloro-1,4-benzoquinone suppressed this isomerization in the case of both Z- and E-PB and PI. Ion mobility spectrometry-mass spectrometry (IMS-MS) and energy-resolved tandem mass spectrometry (ERMS) analyses confirmed a successful isomerization suppression. For comparing the results obtained by depolymerization with classical methods for polymer analysis, pyrolysis-comprehensive two-dimensional gas chromatography/mass spectrometry (Py-GC × GC-MS), atmospheric solid analysis probe (ASAP), and direct inlet probe-atmospheric pressure chemical ionization (DIP-APCI) analyses were performed on the same polymers. This strategy can be applied on a variety of synthetic and natural not yet characterized polymers.

7.
Biomacromolecules ; 21(10): 3997-4007, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-32841006

RESUMEN

Various biopolymers, including gelatin, have already been applied to serve a plethora of tissue engineering purposes. However, substantial concerns have arisen related to the safety and the reproducibility of these materials due to their animal origin and the risk associated with pathogen transmission as well as batch-to-batch variations. Therefore, researchers have been focusing their attention toward recombinant materials that can be produced in a laboratory with full reproducibility and can be designed according to specific needs (e.g., by introducing additional RGD sequences). In the present study, a recombinant protein based on collagen type I (RCPhC1) was functionalized with photo-cross-linkable methacrylamide (RCPhC1-MA), norbornene (RCPhC1-NB), or thiol (RCPhC1-SH) functionalities to enable high-resolution 3D printing via two-photon polymerization (2PP). The results indicated a clear difference in 2PP processing capabilities between the chain-growth-polymerized RCPhC1-MA and the step-growth-polymerized RCPhC1-NB/SH. More specifically, reduced swelling-related deformations resulting in a superior CAD-CAM mimicry were obtained for the RCPhC1-NB/SH hydrogels. In addition, RCPhC1-NB/SH allowed the processing of the material in the presence of adipose tissue-derived stem cells that survived the encapsulation process and also were able to proliferate when embedded in the printed structures. As a consequence, it is the first time that successful HD bioprinting with cell encapsulation is reported for recombinant hydrogel bioinks. Therefore, these results can be a stepping stone toward various tissue engineering applications.


Asunto(s)
Bioimpresión , Animales , Colágeno , Gelatina , Hidrogeles , Impresión Tridimensional , Reproducibilidad de los Resultados , Ingeniería de Tejidos , Andamios del Tejido
8.
J Proteome Res ; 16(10): 3477-3490, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28810121

RESUMEN

Skeletal muscle, the most abundant body tissue, plays vital roles in locomotion and metabolism. Myostatin is a negative regulator of skeletal muscle mass. In addition to increasing muscle mass, Myostatin inhibition impacts muscle contractility and energy metabolism. To decipher the mechanisms of action of the Myostatin inhibitors, we used proteomic and transcriptomic approaches to investigate the changes induced in skeletal muscles of transgenic mice overexpressing Follistatin, a physiological Myostatin inhibitor. Our proteomic workflow included a fractionation step to identify weakly expressed proteins and a comparison of fast versus slow muscles. Functional annotation of altered proteins supports the phenotypic changes induced by Myostatin inhibition, including modifications in energy metabolism, fiber type, insulin and calcium signaling, as well as membrane repair and regeneration. Less than 10% of the differentially expressed proteins were found to be also regulated at the mRNA level but the Biological Process annotation, and the KEGG pathways analysis of transcriptomic results shows a great concordance with the proteomic data. Thus this study describes the most extensive omics analysis of muscle overexpressing Follistatin, providing molecular-level insights to explain the observed muscle phenotypic changes.


Asunto(s)
Hipertrofia/genética , Enfermedades Musculares/genética , Miostatina/genética , Proteómica , Transcriptoma/genética , Animales , Modelos Animales de Enfermedad , Folistatina/farmacología , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Humanos , Hipertrofia/inducido químicamente , Hipertrofia/patología , Ratones , Ratones Transgénicos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Enfermedades Musculares/inducido químicamente , Enfermedades Musculares/patología , Miostatina/antagonistas & inhibidores , Regeneración/genética
9.
Anal Chem ; 89(17): 8589-8593, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28787122

RESUMEN

Obtaining the full MS/MS map for fragments and precursors of complex mixtures without hyphenation with chromatographic separation by a data-independent acquisition is a challenge in mass spectrometry which is solved by two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). Until now 2D FTICR MS afforded only a moderate resolution for precursor ion since this resolution is limited by the number of evolution interval steps to which the number of scans, the acquisition time, and the sample consumption are proportional. An overnight acquisition is already required to reach a quadrupole mass filter-like unit mass resolution. Here, we report that 2D FTICR MS using nonuniform sampling (NUS) obtained by randomly skipping points in the first dimension corresponding to the precursor selection gives access, after data processing, to the same structural information contained in a complex mixture. The resolution increases roughly as the inverse of the NUS ratio, up to 26 times at NUS 1/32, leading to an acquisition time reduced in the same ratio compared to a classical acquisition at the same resolution. As an example, the analysis of a natural oil is presented.

10.
Int J Biol Macromol ; 254(Pt 1): 127619, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37898251

RESUMEN

Given the clinical need for osteoregenerative materials incorporating controlled biomimetic and biophysical cues, a novel highly-substituted norbornene-modified gelatin was developed enabling thiol-ene crosslinking exploiting thiolated gelatin as cell-interactive crosslinker. Comparing the number of physical crosslinks, the degree of hydrolytic degradation upon modification, the network density and the chemical crosslinking type, the osteogenic effect of visco-elastic and topographical properties was evaluated. This novel network outperformed conventional gelatin-based networks in terms of osteogenesis induction, as evidenced in 2D dental pulp stem cell seeding assays, resulting from the presentation of both a local (substrate elasticity, 25-40 kPa) and a bulk (compressive modulus, 25-45 kPa) osteogenic substrate modulus in combination with adequate fibrillar cell adhesion spacing to optimally transfer traction forces from the fibrillar ECM (as evidenced by mesh size determination with the rubber elasticity theory) and resulting in a 1.7-fold increase in calcium production (compared to the gold standard gelatin methacryloyl (GelMA)).


Asunto(s)
Biomimética , Gelatina , Gelatina/química , Señales (Psicología) , Osteogénesis , Hidrogeles/química , Ingeniería de Tejidos/métodos
11.
Cell Death Dis ; 15(6): 391, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830870

RESUMEN

Tissue injury causes activation of mesenchymal lineage cells into wound-repairing myofibroblasts (MFs), whose uncontrolled activity ultimately leads to fibrosis. Although this process is triggered by deep metabolic and transcriptional reprogramming, functional links between these two key events are not yet understood. Here, we report that the metabolic sensor post-translational modification O-linked ß-D-N-acetylglucosaminylation (O-GlcNAcylation) is increased and required for myofibroblastic activation. Inhibition of protein O-GlcNAcylation impairs archetypal myofibloblast cellular activities including extracellular matrix gene expression and collagen secretion/deposition as defined in vitro and using ex vivo and in vivo murine liver injury models. Mechanistically, a multi-omics approach combining proteomic, epigenomic, and transcriptomic data mining revealed that O-GlcNAcylation controls the MF transcriptional program by targeting the transcription factors Basonuclin 2 (BNC2) and TEA domain transcription factor 4 (TEAD4) together with the Yes-associated protein 1 (YAP1) co-activator. Indeed, inhibition of protein O-GlcNAcylation impedes their stability leading to decreased functionality of the BNC2/TEAD4/YAP1 complex towards promoting activation of the MF transcriptional regulatory landscape. We found that this involves O-GlcNAcylation of BNC2 at Thr455 and Ser490 and of TEAD4 at Ser69 and Ser99. Altogether, this study unravels protein O-GlcNAcylation as a key determinant of myofibroblastic activation and identifies its inhibition as an avenue to intervene with fibrogenic processes.


Asunto(s)
Miofibroblastos , Transducción de Señal , Miofibroblastos/metabolismo , Animales , Ratones , Humanos , Fibrosis/metabolismo , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Ratones Endogámicos C57BL , Factores de Transcripción de Dominio TEA/metabolismo , Masculino , Procesamiento Proteico-Postraduccional , Acetilglucosamina/metabolismo , Transcripción Genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética
12.
PLoS One ; 18(1): e0279028, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36662875

RESUMEN

Nod-Like Receptor Pyrin domain-containing protein 6 (NLRP6), a member of the Nucleotide-oligomerization domain-Like Receptor (NLR) family of proteins, assembles together with the ASC protein to form an inflammasome upon stimulation by bacterial lipoteichoic acid and double-stranded DNA. Besides its expression in myeloid cells, NLRP6 is also expressed in intestinal epithelial cells where it may contribute to the maintenance of gut homeostasis and negatively controls colorectal tumorigenesis. Here, we report that NLRP6 is very faintly expressed in several colon cancer cell lines, detected only in cytoplasmic small dots were it colocalizes with ASC. Consequently, it is very hardly detected by standard western-blotting techniques by several presently available commercial antibodies which, in contrast, highly cross-react with a protein of 90kDa that we demonstrate to be unrelated to NLRP6. We report here these results to caution the community not to confuse the 90kDa protein with the endogenous human NLRP6.


Asunto(s)
Inflamasomas , Neoplasias , Humanos , Inflamasomas/metabolismo , Homeostasis , Células Epiteliales/metabolismo , Péptidos y Proteínas de Señalización Intracelular
13.
Bioact Mater ; 17: 204-220, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35386456

RESUMEN

The distribution of photo-crosslinkable moieties onto a protein backbone can affect a biomaterial's crosslinking behavior, and therefore also its mechanical and biological properties. A profound insight in this respect is essential for biomaterials exploited in tissue engineering and regenerative medicine. In the present work, photo-crosslinkable moieties have been introduced on the primary amine groups of: (i) a recombinant collagen peptide (RCPhC1) with a known amino acid (AA) sequence, and (ii) bovine skin collagen (COL BS) with an unknown AA sequence. The degree of substitution (DS) was quantified with two conventional techniques: an ortho-phthalic dialdehyde (OPA) assay and 1H NMR spectroscopy. However, neither of both provides information on the exact type and location of the modified AAs. Therefore, for the first time, proteomic analysis was evaluated herein as a tool to identify functionalized AAs as well as the exact position of photo-crosslinkable moieties along the AA sequence, thereby enabling an in-depth, unprecedented characterization of functionalized photo-crosslinkable biopolymers. Moreover, our strategy enabled to visualize the spatial distribution of the modifications within the overall structure of the protein. Proteomics has proven to provide unprecedented insight in the distribution of photo-crosslinkable moieties along the protein backbone, undoubtedly contributing to superior functional biomaterial design to serve regenerative medicine.

14.
ACS Omega ; 7(34): 29702-29713, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36061670

RESUMEN

Saccharomyces cerevisiae yeast is a fungus presenting a peripheral organelle called the cell wall. The cell wall protects the yeast cell from stress and provides means for communication with the surrounding environment. It has a complex molecular structure, composed of an internal part of cross-linked polysaccharides and an external part of mannoproteins. These latter are very interesting owing to their functional properties, dependent on their molecular features with massive mannosylations. Therefore, the molecular characterization of mannoproteins is a must relying on the optimal isolation and preparation of the cell wall fraction. Multiple methods are well reported for yeast cell wall isolation. The most applied one consists of yeast cell lysis by mechanical disruption. However, applying this classical approach to S288C yeast cells showed considerable contamination with noncell wall proteins, mainly comprising mitochondrial proteins. Herein, we tried to further purify the yeast cell wall preparation by two means: ultracentrifugation and Triton X-100 addition. While the first strategy showed limited outcomes in mitochondrial protein removal, the second strategy showed optimal results when Triton X-100 was added at 5%, allowing the identification of more mannoproteins and significantly enriching their amounts. This promising method could be reliably implemented on the lab scale for identification of mannoproteins and molecular characterization and industrial processes for "pure" cell wall isolation.

15.
Front Immunol ; 13: 904631, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844491

RESUMEN

Autoantibodies (Aabs) are frequent in systemic sclerosis (SSc). Although recognized as potent biomarkers, their pathogenic role is debated. This study explored the effect of purified immunoglobulin G (IgG) from SSc patients on protein and mRNA expression of dermal fibroblasts (FBs) using an innovative multi-omics approach. Dermal FBs were cultured in the presence of sera or purified IgG from patients with diffuse cutaneous SSc (dcSSc), limited cutaneous SSc or healthy controls (HCs). The FB proteome and transcriptome were explored using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and microarray assays, respectively. Proteomic analysis identified 3,310 proteins. SSc sera and purified IgG induced singular protein profile patterns. These FB proteome changes depended on the Aab serotype, with a singular effect observed with purified IgG from anti-topoisomerase-I autoantibody (ATA) positive patients compared to HC or other SSc serotypes. IgG from ATA positive SSc patients induced enrichment in proteins involved in focal adhesion, cadherin binding, cytosolic part, or lytic vacuole. Multi-omics analysis was performed in two ways: first by restricting the analysis of the transcriptomic data to differentially expressed proteins; and secondly, by performing a global statistical analysis integrating proteomics and transcriptomics. Transcriptomic analysis distinguished 764 differentially expressed genes and revealed that IgG from dcSSc can induce extracellular matrix (ECM) remodeling changes in gene expression profiles in FB. Global statistical analysis integrating proteomics and transcriptomics confirmed that IgG from SSc can induce ECM remodeling and activate FB profiles. This effect depended on the serotype of the patient, suggesting that SSc Aab might play a pathogenic role in some SSc subsets.


Asunto(s)
Inmunoglobulina G , Esclerodermia Sistémica , Autoanticuerpos , Cromatografía Liquida , Fibroblastos/metabolismo , Humanos , Proteoma/metabolismo , Proteómica , Espectrometría de Masas en Tándem
16.
Sci Rep ; 12(1): 11748, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35817787

RESUMEN

We provide an original multi-stage approach identifying a gene signature to assess murine fibroblast polarization. Prototypic polarizations (inflammatory/fibrotic) were induced by seeded mouse embryonic fibroblasts (MEFs) with TNFα or TGFß1, respectively. The transcriptomic and proteomic profiles were obtained by RNA microarray and LC-MS/MS. Gene Ontology and pathways analysis were performed among the differentially expressed genes (DEGs) and proteins (DEPs). Balb/c mice underwent daily intradermal injections of HOCl (or PBS) as an experimental murine model of inflammation-mediated fibrosis in a time-dependent manner. As results, 1456 and 2215 DEGs, and 289 and 233 DEPs were respectively found in MEFs in response to TNFα or TGFß1, respectively. Among the most significant pathways, we combined 26 representative genes to encompass the proinflammatory and profibrotic polarizations of fibroblasts. Based on principal component analysis, this signature deciphered baseline state, proinflammatory polarization, and profibrotic polarization as accurately as RNA microarray and LC-MS/MS did. Then, we assessed the gene signature on dermal fibroblasts isolated from the experimental murine model. We observed a proinflammatory polarization at day 7, and a mixture of a proinflammatory and profibrotic polarizations at day 42 in line with histological findings. Our approach provides a small-size and convenient gene signature to assess murine fibroblast polarization.


Asunto(s)
Fibroblastos , Factor de Necrosis Tumoral alfa , Animales , Cromatografía Liquida , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibrosis , Ratones , Ratones Endogámicos BALB C , Proteómica , ARN/metabolismo , Espectrometría de Masas en Tándem , Factor de Necrosis Tumoral alfa/metabolismo
17.
Cancers (Basel) ; 13(12)2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34204801

RESUMEN

O-GlcNAcylation is a cell glucose sensor. The addition of O-GlcNAc moieties to target protein is catalyzed by the O-Linked N-acetylglucosamine transferase (OGT). OGT is encoded by a single gene that yields differentially spliced OGT isoforms. One of them is targeted to mitochondria (mOGT). Although the impact of O-GlcNAcylation on cancer cells biology is well documented, mOGT's role remains poorly investigated. We performed studies using breast cancer cells with up-regulated mOGT or its catalytic inactive mutant to identify proteins specifically modified by mOGT. Proteomic approaches included isolation of mOGT protein partners and O-GlcNAcylated proteins from mitochondria-enriched fraction followed by their analysis by mass spectrometry. Moreover, we analyzed the impact of mOGT dysregulation on mitochondrial activity and cellular metabolism using a variety of biochemical assays. We found that mitochondrial OGT expression is glucose-dependent. Elevated mOGT expression affected the mitochondrial transmembrane potential and increased intramitochondrial ROS generation. Moreover, mOGT up-regulation caused a decrease in cellular ATP level. We identified many mitochondrial proteins as mOGT substrates. Most of these proteins are localized in the mitochondrial matrix and the inner mitochondrial membrane and participate in mitochondrial respiration, fatty acid metabolism, transport, translation, apoptosis, and mtDNA processes. Our findings suggest that mOGT interacts with and modifies many mitochondrial proteins, and its dysregulation affects cellular bioenergetics and mitochondria function.

18.
Commun Biol ; 4(1): 296, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674787

RESUMEN

The order Chlamydiales includes obligate intracellular pathogens capable of infecting mammals, fishes and amoeba. Unlike other intracellular bacteria for which intracellular adaptation led to the loss of glycogen metabolism pathway, all chlamydial families maintained the nucleotide-sugar dependent glycogen metabolism pathway i.e. the GlgC-pathway with the notable exception of both Criblamydiaceae and Waddliaceae families. Through detailed genome analysis and biochemical investigations, we have shown that genome rearrangement events have resulted in a defective GlgC-pathway and more importantly we have evidenced a distinct trehalose-dependent GlgE-pathway in both Criblamydiaceae and Waddliaceae families. Altogether, this study strongly indicates that the glycogen metabolism is retained in all Chlamydiales without exception, highlighting the pivotal function of storage polysaccharides, which has been underestimated to date. We propose that glycogen degradation is a mandatory process for fueling essential metabolic pathways that ensure the survival and virulence of extracellular forms i.e. elementary bodies of Chlamydiales.


Asunto(s)
Chlamydiales/metabolismo , Glucógeno/metabolismo , Glucogenólisis , Polisacáridos Bacterianos/metabolismo , Chlamydiales/genética , Chlamydiales/patogenicidad , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Cinética , Filogenia , Virulencia
19.
Plants (Basel) ; 8(9)2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31487879

RESUMEN

Starch granule morphology is highly variable depending on the botanical origin. Moreover, all investigated plant species display intra-tissular variability of granule size. In potato tubers, the size distribution of starch granules follows a unimodal pattern with diameters ranging from 5 to 100 µm. Several evidences indicate that granule morphology in plants is related to the complex starch metabolic pathway. However, the intra-sample variability of starch-binding metabolic proteins remains unknown. Here, we report on the molecular characterization of size-fractionated potato starch granules with average diameters of 14.2 ± 3.7 µm, 24.5 ± 6.5 µm, 47.7 ± 12.8 µm, and 61.8 ± 17.4 µm. In addition to changes in the phosphate contents as well as small differences in the amylopectin structure, we found that the starch-binding protein stoichiometry varies significantly according to granule size. Label-free quantitative proteomics of each granule fraction revealed that individual proteins can be grouped according to four distinct abundance patterns. This study corroborates that the starch proteome may influence starch granule growth and architecture and opens up new perspectives in understanding the dynamics of starch biosynthesis.

20.
J Mater Chem B ; 7(19): 3100-3108, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31441462

RESUMEN

Gelatin is frequently used in various biomedical applications. However, gelatin is generally extracted from an animal source, which can result in issues with reproducibility as well as pathogen transmittance. Therefore, we have investigated the potential of a recombinant peptide based on collagen I (RCPhC1) for tissue engineering applications and more specifically for adipose tissue regeneration. In the current paper, RCPhC1 was functionalized with photo-crosslinkable methacrylamide moieties to enable subsequent UV-induced crosslinking in the presence of a photo-initiator. The resulting biomaterial (RCPhC1-MA) was characterized by evaluating the crosslinking behaviour, the mechanical properties, the gel fraction, the swelling properties and the biocompatibility. The obtained results were compared with the data obtained for methacrylamide-modified gelatin (Gel-MA). The results indicated that the properties of RCPhC1-MA networks are comparable to those of animal-derived Gel-MA. RCPhC1-MA is thus an attractive synthetic alternative for animal-derived Gel-MA and is envisioned to be applicable for a wide range of tissue engineering purposes.


Asunto(s)
Materiales Biocompatibles/química , Colágeno/química , Ingeniería de Tejidos/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA