Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891821

RESUMEN

CAR-T cell therapy is at the forefront of next-generation multiple myeloma (MM) management, with two B-cell maturation antigen (BCMA)-targeted products recently approved. However, these products are incapable of breaking the infamous pattern of patient relapse. Two contributing factors are the use of BCMA as a target molecule and the artificial scFv format that is responsible for antigen recognition. Tackling both points of improvement in the present study, we used previously characterized VHHs that specifically target the idiotype of murine 5T33 MM cells. This idiotype represents one of the most promising yet challenging MM target antigens, as it is highly cancer- but also patient-specific. These VHHs were incorporated into VHH-based CAR modules, the format of which has advantages compared to scFv-based CARs. This allowed a side-by-side comparison of the influence of the targeting domain on T cell activation. Surprisingly, VHHs previously selected as lead compounds for targeted MM radiotherapy are not the best (CAR-) T cell activators. Moreover, the majority of the evaluated VHHs are incapable of inducing any T cell activation. As such, we highlight the importance of specific VHH selection, depending on its intended use, and thereby raise an important shortcoming of current common CAR development approaches.


Asunto(s)
Inmunoterapia Adoptiva , Mieloma Múltiple , Mieloma Múltiple/inmunología , Mieloma Múltiple/terapia , Humanos , Animales , Inmunoterapia Adoptiva/métodos , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo , Línea Celular Tumoral , Anticuerpos Antiidiotipos/inmunología , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Antígeno de Maduración de Linfocitos B/inmunología , Antígeno de Maduración de Linfocitos B/metabolismo , Cadenas Pesadas de Inmunoglobulina/inmunología , Cadenas Pesadas de Inmunoglobulina/química , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/química , Activación de Linfocitos/inmunología
2.
Int Rev Cell Mol Biol ; 382: 1-101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38225100

RESUMEN

Cancer cells develop several ways to subdue the immune system among others via upregulation of inhibitory immune checkpoint (ICP) proteins. These ICPs paralyze immune effector cells and thereby enable unfettered tumor growth. Monoclonal antibodies (mAbs) that block ICPs can prevent immune exhaustion. Due to their outstanding effects, mAbs revolutionized the field of cancer immunotherapy. However, current ICP therapy regimens suffer from issues related to systemic administration of mAbs, including the onset of immune related adverse events, poor pharmacokinetics, limited tumor accessibility and immunogenicity. These drawbacks and new insights on spatiality prompted the exploration of novel administration routes for mAbs for instance peritumoral delivery. Moreover, novel ICP drug classes that are adept to novel delivery technologies were developed to circumvent the drawbacks of mAbs. We therefore review the state-of-the-art and novel delivery strategies of ICP drugs.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Inmunoterapia
3.
Exp Hematol Oncol ; 13(1): 66, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987856

RESUMEN

CAR T cells are widely applied for relapsed hematological cancer patients. With six approved cell therapies, for Multiple Myeloma and other B-cell malignancies, new insights emerge. Profound evidence shows that patients who fail CAR T-cell therapy have, aside from antigen escape, a more glycolytic and weakened metabolism in their CAR T cells, accompanied by a short lifespan. Recent advances show that CAR T cells can be metabolically engineered towards oxidative phosphorylation, which increases their longevity via epigenetic and phenotypical changes. In this review we elucidate various strategies to rewire their metabolism, including the design of the CAR construct, co-stimulus choice, genetic modifications of metabolic genes, and pharmacological interventions. We discuss their potential to enhance CAR T-cell functioning and persistence through memory imprinting, thereby improving outcomes. Furthermore, we link the pharmacological treatments with their anti-cancer properties in hematological malignancies to ultimately suggest novel combination strategies.

4.
Methods Mol Biol ; 2801: 75-85, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578414

RESUMEN

Connexin proteins are the building blocks of gap junctions and connexin hemichannels. Both provide a pathway for cellular communication. Gap junctions support intercellular communication mechanisms and regulate homeostasis. In contrast, open connexin hemichannels connect the intracellular compartment and the extracellular environment, and their activation fuels inflammation and cell death. The development of clinically applicable connexin hemichannel blockers for therapeutic purposes is therefore gaining momentum. This chapter describes a well-established protocol optimized for assessing connexin hemichannel activity by using the reporter dye Yo-Pro1.


Asunto(s)
Conexina 43 , Conexinas , Humanos , Conexina 43/metabolismo , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Comunicación Celular , Inflamación/metabolismo
5.
Eur J Pharm Biopharm ; 196: 114183, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246566

RESUMEN

Monoclonal antibodies (mAbs) targeting the immune checkpoint axis, which contains the programmed cell death protein-1 (PD-1) and its ligand PD-L1, revolutionized the field of oncology. Unfortunately, the large size of mAbs and the presence of an Fc fraction limit their tumor penetrative capacities and support off-target effects, potentially resulting in unresponsive patients and immune-related adverse events (irAEs) respectively. Single-domain antibodies (sdAbs) are ten times smaller than conventional mAbs and represent an emerging antibody subclass that has been proposed as next generation immune checkpoint inhibitor (ICI) therapeutics. They demonstrate favorable characteristics, such as an excellent stability, high antigen-binding affinity and an enhanced tumor penetration. Because sdAbs have a short half-life, methods to prolong their presence in the circulation and at the target site might be necessary in some cases to unfold their full therapeutic potential. In this study, we investigated a peptide-based hydrogel as an injectable biomaterial depot formulation for the sustained release of the human PD-L1 sdAb K2. We showed that a hydrogel composed of the amphipathic hexapeptide hydrogelator H-FQFQFK-NH2 prolonged the in vivo release of K2 after subcutaneous (s.c.) injection, up to at least 72 h, as monitored by SPECT/CT and fluorescence imaging. Additionally, after encapsulation in the hydrogel and s.c. administration, a significantly extended systemic presence and tumor uptake of K2 was observed in mice bearing a melanoma tumor expressing human PD-L1. Altogether, this study describes how peptide hydrogels can be exploited to provide the sustained release of sdAbs, thereby potentially enhancing its clinical and therapeutic effects.


Asunto(s)
Melanoma , Anticuerpos de Dominio Único , Humanos , Animales , Ratones , Preparaciones de Acción Retardada , Antígeno B7-H1/metabolismo , Hidrogeles , Péptidos/química , Anticuerpos Monoclonales/uso terapéutico , Melanoma/tratamiento farmacológico
6.
Front Immunol ; 15: 1389018, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720898

RESUMEN

Introduction: Multiple myeloma (MM) remains incurable, despite the advent of chimeric antigen receptor (CAR)-T cell therapy. This unfulfilled potential can be attributed to two untackled issues: the lack of suitable CAR targets and formats. In relation to the former, the target should be highly expressed and reluctant to shedding; two characteristics that are attributed to the CS1-antigen. Furthermore, conventional CARs rely on scFvs for antigen recognition, yet this withholds disadvantages, mainly caused by the intrinsic instability of this format. VHHs have been proposed as valid scFv alternatives. We therefore intended to develop VHH-based CAR-T cells, targeting CS1, and to identify VHHs that induce optimal CAR-T cell activation together with the VHH parameters required to achieve this. Methods: CS1-specific VHHs were generated, identified and fully characterized, in vitro and in vivo. Next, they were incorporated into second-generation CARs that only differ in their antigen-binding moiety. Reporter T-cell lines were lentivirally transduced with the different VHH-CARs and CAR-T cell activation kinetics were evaluated side-by-side. Affinity, cell-binding capacity, epitope location, in vivo behavior, binding distance, and orientation of the CAR-T:MM cell interaction pair were investigated as predictive parameters for CAR-T cell activation. Results: Our data show that the VHHs affinity for its target antigen is relatively predictive for its in vivo tumor-tracing capacity, as tumor uptake generally decreased with decreasing affinity in an in vivo model of MM. This does not hold true for their CAR-T cell activation potential, as some intermediate affinity-binding VHHs proved surprisingly potent, while some higher affinity VHHs failed to induce equal levels of T-cell activation. This could not be attributed to cell-binding capacity, in vivo VHH behavior, epitope location, cell-to-cell distance or binding orientation. Hence, none of the investigated parameters proved to have significant predictive value for the extent of CAR-T cell activation. Conclusions: We gained insight into the predictive parameters of VHHs in the CAR-context using a VHH library against CS1, a highly relevant MM antigen. As none of the studied VHH parameters had predictive value, defining VHHs for optimal CAR-T cell activation remains bound to serendipity. These findings highlight the importance of screening multiple candidates.


Asunto(s)
Inmunoterapia Adoptiva , Mieloma Múltiple , Receptores Quiméricos de Antígenos , Anticuerpos de Dominio Único , Mieloma Múltiple/inmunología , Mieloma Múltiple/terapia , Humanos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Anticuerpos de Dominio Único/inmunología , Inmunoterapia Adoptiva/métodos , Animales , Línea Celular Tumoral , Ratones , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/inmunología , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Anticuerpos de Cadena Única/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
7.
J Control Release ; 370: 379-391, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697317

RESUMEN

Although various types of mRNA-based vaccines have been explored, the optimal conditions for induction of both humoral and cellular immunity remain rather unknown. In this study, mRNA vaccines of nucleoside-modified mRNA in lipoplexes (LPXs) or lipid nanoparticles (LNPs) were evaluated after administration in mice through different routes, assessing mRNA delivery, tolerability and immunogenicity. In addition, we investigated whether mRNA vaccines could benefit from the inclusion of the adjuvant alpha-galactosylceramide (αGC), an invariant Natural Killer T (iNKT) cell ligand. Intramuscular (IM) vaccination with ovalbumin (OVA)-encoding mRNA encapsulated in LNPs adjuvanted with αGC showed the highest antibody- and CD8+ T cell responses. Furthermore, we observed that addition of signal peptides and endocytic sorting signals of either LAMP1 or HLA-B7 in the OVA-encoding mRNA sequence further enhanced CD8+ T cell activation although reducing the induction of IgG antibody responses. Moreover, mRNA LNPs with the ionizable lipidoid C12-200 exhibited higher pro-inflammatory- and reactogenic activity compared to mRNA LNPs with SM-102, correlating with increased T cell activation and antitumor potential. We also observed that αGC could further enhance the cellular immunity of clinically relevant mRNA LNP vaccines, thereby promoting therapeutic antitumor potential. Finally, a Listeria monocytogenes mRNA LNP vaccine supplemented with αGC showed synergistic protective effects against listeriosis, highlighting a key advantage of co-activating iNKT cells in antibacterial mRNA vaccines. Taken together, our study offers multiple insights for optimizing the design of mRNA vaccines for disease applications, such as cancer and intracellular bacterial infections.


Asunto(s)
Vacunas contra el Cáncer , Galactosilceramidas , Ratones Endogámicos C57BL , Nanopartículas , Ovalbúmina , Animales , Galactosilceramidas/administración & dosificación , Galactosilceramidas/química , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/inmunología , Femenino , Nanopartículas/química , Nanopartículas/administración & dosificación , Ovalbúmina/inmunología , Ovalbúmina/administración & dosificación , Vacunas de ARNm , Adyuvantes Inmunológicos/administración & dosificación , Linfocitos T CD8-positivos/inmunología , ARN Mensajero/administración & dosificación , Ratones , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Lípidos/química , Liposomas
8.
Adv Sci (Weinh) ; 11(30): e2400700, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38845188

RESUMEN

Fluorescence molecular imaging plays a vital role in image-guided surgery. In this context, the urokinase plasminogen activator receptor (uPAR) is an interesting biomarker enabling the detection and delineation of various tumor types due to its elevated expression on both tumor cells and the tumor microenvironment. In this study, anti-uPAR Nanobodies (Nbs) are generated through llama immunization with human and murine uPAR protein. Extensive in vitro characterization and in vivo testing with radiolabeled variants are conducted to assess their pharmacokinetics and select lead compounds. Subsequently, the selected Nbs are converted into fluorescent agents, and their application for fluorescence-guided surgery is evaluated in various subcutaneous and orthotopic tumor models. The study yields a panel of high-affinity anti-uPAR Nbs, showing specific binding across multiple types of cancer cells in vitro and in vivo. Lead fluorescently-labeled compounds exhibit high tumor uptake with high contrast at 1 h after intravenous injection across all assessed uPAR-expressing tumor models, outperforming a non-targeting control Nb. Additionally, rapid and accurate tumor localization and demarcation are demonstrated in an orthotopic human glioma model. Utilizing these Nbs can potentially enhance the precision of surgical tumor resection and, consequently, improve survival rates in the clinic.


Asunto(s)
Receptores del Activador de Plasminógeno Tipo Uroquinasa , Anticuerpos de Dominio Único , Cirugía Asistida por Computador , Animales , Anticuerpos de Dominio Único/inmunología , Ratones , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Cirugía Asistida por Computador/métodos , Humanos , Modelos Animales de Enfermedad , Línea Celular Tumoral , Imagen Óptica/métodos , Neoplasias/inmunología , Neoplasias/diagnóstico por imagen , Neoplasias/cirugía , Colorantes Fluorescentes , Camélidos del Nuevo Mundo
9.
EJNMMI Radiopharm Chem ; 9(1): 54, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048805

RESUMEN

BACKGROUND: Radiofluorination of single domain antibodies (sdAbs) via N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB) has shown to be a promising strategy in the development of sdAb-based PET tracers. While automation of the prosthetic group (PG) [18F]SFB production, has been successfully reported, no practical method for large scale sdAb labelling has been reported. Therefore, we optimized and automated the PG production, enabling a subsequently efficient manual conjugation reaction to an anti-fibroblast activation protein (FAP)-α sdAb (4AH29) and an anti-folate receptor (FR)-α sdAb (2BD42). Both the alpha isoform of FAP and the FR are established tumour markers. FAP-α is known to be overexpressed mainly by cancer-associated fibroblasts in breast, ovarian, and other cancers, while its expression in normal tissues is low or undetectable. FR-α has an elevated expression in epithelial cancers, such as ovarian, brain and lung cancers. Non-invasive imaging techniques, such as PET-imaging, using tracers targeting specific tumour markers can provide molecular information over both the tumour and its environment, which aides in the diagnosis, therapy selection and assessment of the cancer treatment. RESULTS: [18F]SFB was synthesized using a fully automated three-step, one-pot reaction. The total procedure time was 54 min and results in [18F]SFB with a RCP > 90% and a RCY d.c. of 44 ± 4% (n = 13). The manual conjugation reaction after purification produced [18F]FB-sdAbs with a RCP > 95%, an end of synthesis activity > 600 MBq and an apparent molar activity > 10 GBq/µmol. Overall RCY d.c., corrected to the trapping of [18F]F- on the QMA, were 9% (n = 1) and 5 ± 2% (n = 3) for [18F]FB-2BD42 and [18F]FB-4AH29, respectively. CONCLUSION: [18F]SFB synthesis was successfully automated and upscaled on a Trasis AllInOne module. The anti-hFAP-α and anti-hFR-α sdAbs were radiofluorinated, yielding similar RCYs d.c. and RCPs, showing the potential of this method as a generic radiofluorination strategy for sdAbs. The radiofluorinated sdAbs showed a favourable biodistribution pattern and are attractive for further characterization as new PET tracers for FAP-α and FR-α imaging.

10.
Theranostics ; 14(7): 2656-2674, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38773967

RESUMEN

Rationale: AXL expression has been identified as a prognostic factor in acute myeloid leukemia (AML) and is detectable in approximately 50% of AML patients. In this study, we developed AXL-specific single domain antibodies (sdAbs), cross-reactive for both mouse and human AXL protein, to non-invasively image and treat AXL-expressing cancer cells. Methods: AXL-specific sdAbs were induced by immunizing an alpaca with mouse and human AXL proteins. SdAbs were characterized using ELISA, flow cytometry, surface plasmon resonance and the AlphaFold2 software. A lead compound was selected and labeled with 99mTc for evaluation as a diagnostic tool in mouse models of human (THP-1 cells) or mouse (C1498 cells) AML using SPECT/CT imaging. For therapeutic purposes, the lead compound was fused to a mouse IgG2a-Fc tail and in vitro functionality tests were performed including viability, apoptosis and proliferation assays in human AML cell lines and primary patient samples. Using these in vitro models, its anti-tumor effect was evaluated as a single agent, and in combination with standard of care agents venetoclax or cytarabine. Results: Based on its cell binding potential, cross-reactivity, nanomolar affinity and GAS6/AXL blocking capacity, we selected sdAb20 for further evaluation. Using SPECT/CT imaging, we observed tumor uptake of 99mTc-sdAb20 in mice with AXL-positive THP-1 or C1498 tumors. In THP-1 xenografts, an optimized protocol using pre-injection of cold sdAb20-Fc was required to maximize the tumor-to-background signal. Besides its diagnostic value, we observed a significant reduction in tumor cell proliferation and viability using sdAb20-Fc in vitro. Moreover, combining sdAb20-Fc and cytarabine synergistically induced apoptosis in human AML cell lines, while these effects were less clear when combined with venetoclax. Conclusions: Because of their diagnostic potential, sdAbs could be used to screen patients eligible for AXL-targeted therapy and to follow-up AXL expression during treatment and disease progression. When fused to an Fc-domain, sdAbs acquire additional therapeutic properties that can lead to a multidrug approach for the treatment of AXL-positive cancer patients.


Asunto(s)
Tirosina Quinasa del Receptor Axl , Leucemia Mieloide Aguda , Anticuerpos de Dominio Único , Animales , Femenino , Humanos , Ratones , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/inmunología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/inmunología , Proteínas Tirosina Quinasas Receptoras/inmunología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/inmunología , Células THP-1 , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Gastro Hep Adv ; 2(8): 1103-1119, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38098742

RESUMEN

Cancer immunotherapy has become an indispensable mode of treatment for a multitude of solid tumor cancers. Colorectal cancer (CRC) has been one of the many cancer types to benefit from immunotherapy, especially in advanced disease where standard treatment fails to prevent recurrence or results in poor survival. The efficacy of immunotherapy in CRC has not been without challenge, as early clinical trials observed dismal responses in unselected CRC patients treated with checkpoint inhibitors. Many studies and clinical trials have since refined immunotherapies available for CRC, solidifying immunotherapy as a powerful asset for CRC treatment. This review article examines CRC immunotherapies, from their foundation, through emerging avenues for improvement, to future directions.

12.
Blood Cancer J ; 13(1): 188, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110349

RESUMEN

Acute Myeloid Leukemia (AML) is a heterogeneous disease with limited treatment options and a high demand for novel targeted therapies. Since myeloid-related protein S100A9 is abundantly expressed in AML, we aimed to unravel the therapeutic impact and underlying mechanisms of targeting both intracellular and extracellular S100A9 protein in AML cell lines and primary patient samples. S100A9 silencing in AML cell lines resulted in increased apoptosis and reduced AML cell viability and proliferation. These therapeutic effects were associated with a decrease in mTOR and endoplasmic reticulum stress signaling. Comparable results on AML cell proliferation and mTOR signaling could be observed using the clinically available S100A9 inhibitor tasquinimod. Interestingly, while siRNA-mediated targeting of S100A9 affected both extracellular acidification and mitochondrial metabolism, tasquinimod only affected the mitochondrial function of AML cells. Finally, we found that S100A9-targeting approaches could significantly increase venetoclax sensitivity in AML cells, which was associated with a downregulation of BCL-2 and c-MYC in the combination group compared to single agent therapy. This study identifies S100A9 as a novel molecular target to treat AML and supports the therapeutic evaluation of tasquinimod in venetoclax-based regimens for AML patients.


Asunto(s)
Calgranulina B , Leucemia Mieloide Aguda , Humanos , Calgranulina B/genética , Calgranulina B/farmacología , Línea Celular Tumoral , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/farmacología , Serina-Treonina Quinasas TOR/uso terapéutico
13.
Vaccines (Basel) ; 12(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38250827

RESUMEN

The COVID-19 pandemic has brought significant changes and advances in the field of vaccination, including the implementation and widespread use of encapsidated mRNA vaccines in general healthcare practice. Here, we present two new mRNAs expressing antigenic parts of the SARS-CoV-2 spike protein and provide data supporting their functionality. The first mRNA, called RBD-mRNA, encodes a trimeric form of the virus spike protein receptor binding domain (RBD). The other mRNA, termed T-mRNA, codes for the relevant HLA I and II spike epitopes. The two mRNAs (COVARNA mRNAs) were designed to be used for delivery to cells in combination, with the RBD-mRNA being the primary source of antigen and the T-mRNA working as an enhancer of immunogenicity by supporting CD4 and CD8 T-cell activation. This innovative approach substantially differs from other available mRNA vaccines, which are largely directed to antibody production by the entire spike protein. In this study, we first show that both mRNAs are functionally transfected into human antigen-presenting cells (APCs). We obtained peripheral blood mononuclear cell (PBMC) samples from three groups of voluntary donors differing in their immunity against SARS-CoV-2: non-infected (naïve), infected-recovered (convalescent), and vaccinated. Using an established method of co-culturing autologous human dendritic cells (hDCs) with T-cells, we detected proliferation and cytokine secretion, thus demonstrating the ability of the COVARNA mRNAs to activate T-cells in an antigen-specific way. Interestingly, important differences in the intensity of the response between the infected-recovered (convalescent) and vaccinated donors were observed, with the levels of T-cell proliferation and cytokine secretion (IFNγ, IL-2R, and IL-13) being higher in the vaccinated group. In summary, our data support the further study of these mRNAs as a combined approach for future use as a vaccine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA