Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ecol Appl ; 31(6): e02358, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33870598

RESUMEN

Earth-observing satellites are a major research tool for spatially explicit ecosystem nowcasting and forecasting. However, there are practical challenges when integrating satellite data into usable real-time products for stakeholders. The need of forecast immediacy and accuracy means that forecast systems must account for missing data and data latency while delivering a timely, accurate, and actionable product to stakeholders. This is especially true for species that have legal protection. Acipenser oxyrinchus oxyrinchus (Atlantic sturgeon) were listed under the United States Endangered Species Act in 2012, which triggered immediate management action to foster population recovery and increase conservation measures. Building upon an existing research occurrence model, we developed an Atlantic sturgeon forecast system in the Delaware Bay, USA. To overcome missing satellite data due to clouds and produce a 3-d forecast of ocean conditions, we implemented data interpolating empirical orthogonal functions (DINEOF) on daily observed satellite data. We applied the Atlantic sturgeon research model to the DINEOF output and found that it correctly predicted Atlantic sturgeon telemetry occurrences over 90% of the time within a 3-d forecast. A similar framework has been utilized to forecast harmful algal blooms, but to our knowledge, this is the first time a species distribution model has been applied to DINEOF gap-filled data to produce a forecast product for fishes. To implement this product into an applied management setting, we worked with state and federal organizations to develop real-time and forecasted risk maps in the Delaware River Estuary for both state-level managers and commercial fishers. An automated system creates and distributes these risk maps to subscribers' mobile devices, highlighting areas that should be avoided to reduce interactions. Additionally, an interactive web interface allows users to plot historic, current, future, and climatological risk maps as well as the underlying model output of Atlantic sturgeon occurrence. The mobile system and web tool provide both stakeholders and managers real-time access to estimated occurrences of Atlantic sturgeon, enabling conservation planning and informing fisher behavior to reduce interactions with this endangered species while minimizing impacts to fisheries and other projects.


Asunto(s)
Ecosistema , Especies en Peligro de Extinción , Imágenes Satelitales , Animales , Bahías , Delaware , Explotaciones Pesqueras , Peces , Ríos , Telemetría
2.
PLoS One ; 15(6): e0234442, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32555585

RESUMEN

Seasonal migrations are key to the production and persistence of marine fish populations but movements within shelf migration corridors or, "flyways", are poorly known. Atlantic sturgeon and striped bass, two critical anadromous species, are known for their extensive migrations along the US Mid-Atlantic Bight. Seasonal patterns of habitat selection have been described within spawning rivers, estuaries,and shelf foraging habitats, but information on the location and timing of key coastal migrations is limited. Using a gradient-based array of acoustic telemetry receivers, we compared the seasonal incidence and movement behavior of these species in the near-shelf region of Maryland, USA. Atlantic sturgeon incidence was highest in the spring and fall and tended to be biased toward shallow regions, while striped bass had increased presence during spring and winter months and selected deeper waters. Incidence was transient (mean = ~2 d) for both species with a pattern of increased residency (>2 d) during autumn and winter, particularly for striped bass, with many individuals exhibiting prolonged presence on the outer shelf during winter. Flyways also differed spatially between northern and southern migrations for both species and were related to temperature: striped bass were more likely to occur in cool conditions while Atlantic sturgeon preferred warmer temperatures. Observed timing and spatial distribution within the Mid-Atlantic flyway were dynamic between years and sensitive to climate variables. As shelf ecosystems come under increasing maritime development, gridded telemetry designs represent a feasible approach to provide impact responses within key marine flyways like those that occur within the US Mid-Atlantic Bight.


Asunto(s)
Migración Animal , Lubina/fisiología , Seguimiento de Parámetros Ecológicos/estadística & datos numéricos , Animales , Océano Atlántico , Seguimiento de Parámetros Ecológicos/instrumentación , Seguimiento de Parámetros Ecológicos/métodos , Estuarios , Maryland , Tecnología de Sensores Remotos/instrumentación , Tecnología de Sensores Remotos/estadística & datos numéricos , Estaciones del Año , Agua de Mar , Análisis Espacio-Temporal , Temperatura
3.
PLoS One ; 11(2): e0148617, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26849043

RESUMEN

We developed a long-term tagging method that can be used to understand species assemblages and social groupings associated with large marine fishes such as the Sand Tiger shark Carcharias taurus. We deployed internally implanted archival VEMCO Mobile Transceivers (VMTs; VEMCO Ltd. Nova Scotia, Canada) in 20 adult Sand Tigers, of which two tags were successfully recovered (10%). The recovered VMTs recorded 29,646 and 44,210 detections of telemetered animals respectively. To our knowledge, this is the first study to demonstrate a method for long-term (~ 1 year) archival acoustic transceiver tag implantation, retention, and recovery in a highly migratory marine fish. Results show low presumed mortality (n = 1, 5%), high VMT retention, and that non-lethal recovery after almost a year at liberty can be achieved for archival acoustic transceivers. This method can be applied to study the social interactions and behavioral ecology of large marine fishes.


Asunto(s)
Tiburones/fisiología , Telemetría/métodos , Migración Animal , Animales , Femenino , Masculino , Conducta Social , Telemetría/instrumentación , Factores de Tiempo
4.
Sci Rep ; 6: 34087, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27686155

RESUMEN

Complex social networks and behaviors are difficult to observe for free-living marine species, especially those that move great distances. Using implanted acoustic transceivers to study the inter- and intraspecific interactions of sand tiger sharks Carcharias taurus, we observed group behavior that has historically been associated with higher order mammals. We found evidence strongly suggestive of fission-fusion behavior, or changes in group size and composition of sand tigers, related to five behavioral modes (summering, south migration, community bottleneck, dispersal, north migration). Our study shows sexually dimorphic behavior during migration, in addition to presenting evidence of a potential solitary phase for these typically gregarious sharks. Sand tigers spent up to 95 consecutive and 335 cumulative hours together, with the strongest relationships occurring between males. Species that exhibit fission-fusion group dynamics pose a particularly challenging issue for conservation and management because changes in group size and composition affect population estimates and amplify anthropogenic impacts.

5.
PLoS One ; 8(11): e81321, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24260570

RESUMEN

Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) experienced severe declines due to habitat destruction and overfishing beginning in the late 19(th) century. Subsequent to the boom and bust period of exploitation, there has been minimal fishing pressure and improving habitats. However, lack of recovery led to the 2012 listing of Atlantic sturgeon under the Endangered Species Act. Although habitats may be improving, the availability of high quality spawning habitat, essential for the survival and development of eggs and larvae may still be a limiting factor in the recovery of Atlantic sturgeon. To estimate adult Atlantic sturgeon spatial distributions during riverine occupancy in the Delaware River, we utilized a maximum entropy (MaxEnt) approach along with passive biotelemetry during the likely spawning season. We found that substrate composition and distance from the salt front significantly influenced the locations of adult Atlantic sturgeon in the Delaware River. To broaden the scope of this study we projected our model onto four scenarios depicting varying locations of the salt front in the Delaware River: the contemporary location of the salt front during the likely spawning season, the location of the salt front during the historic fishery in the late 19(th) century, an estimated shift in the salt front by the year 2100 due to climate change, and an extreme drought scenario, similar to that which occurred in the 1960's. The movement of the salt front upstream as a result of dredging and climate change likely eliminated historic spawning habitats and currently threatens areas where Atlantic sturgeon spawning may be taking place. Identifying where suitable spawning substrate and water chemistry intersect with the likely occurrence of adult Atlantic sturgeon in the Delaware River highlights essential spawning habitats, enhancing recovery prospects for this imperiled species.


Asunto(s)
Distribución Animal/fisiología , Peces/fisiología , Modelos Estadísticos , Reproducción/fisiología , Animales , Cambio Climático , Delaware , Ecosistema , Especies en Peligro de Extinción , Entropía , Femenino , Industrias , Masculino , Ríos , Salinidad , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA