Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Acc Chem Res ; 57(3): 399-412, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38277792

RESUMEN

The unwanted accumulation of marine micro- and macroorganisms such as algae and barnacles on submerged man-made structures and vessel hulls is a major challenge for any marine operation. Known as biofouling, this problem leads to reduced hydrodynamic efficiency, significantly increased fuel usage, microbially induced corrosion, and, if not managed appropriately, eventual loss of both performance and structural integrity. Ship hull biofouling in the international maritime transport network conservatively accounts for 0.6% of global carbon emissions, highlighting the global scale and the importance of this problem. Improved antifouling strategies to limit surface colonization are paramount for essential activities such as shipping, aquaculture, desalination, and the marine renewable energy sector, representing both a multibillion dollar cost and a substantial practical challenge. From an ecological perspective, biofouling is a primary contributor to the global spread of invasive marine species, which has extensive implications for the marine environment.Historically, heavy metal-based toxic biocides have been used to control biofouling. However, their unwanted collateral ecological damage on nontarget species and bioaccumulation has led to recent global bans. With expanding human activities within aquaculture and offshore energy, it is both urgent and apparent that environmentally friendly surface protection remains key for maintaining the function of both moving and stationary marine structures. Biofouling communities are typically a highly complex network of both micro- and macroorganisms, representing a broad section of life from bacteria to macrophytes and animals. Given this diversity, it is unrealistic to expect that a single antifouling "silver bullet" will prevent colonization with the exception of generally toxic biocides. For that reason, modern and future antifouling solutions are anticipated to rely on novel coating technologies and "combination therapies" where mixtures of narrow-spectrum bioactive components are used to provide coverage across fouling species. In contrast to the existing cohort of outdated, toxic antifouling strategies, such as copper- and tributyltin-releasing paints, modern drug discovery techniques are increasingly being employed for the rational design of effective yet safe alternatives. The challenge for a medicinal chemistry approach is to effectively account for the large taxonomic diversity among fouling organisms combined with a lack of well-defined conserved molecular targets within most taxa.The current Account summarizes our work employing the tools of modern medicinal chemistry to discover, modify, and develop optimized and scalable antifouling solutions based on naturally occurring antifouling and repelling compounds from both marine and terrestrial sources. Inspiration for rational design comes from targeted studies on allelopathic natural products, natural repelling peptides, and secondary metabolites from sessile marine organisms with clean exteriors, which has yielded several efficient and promising antifouling leads.


Asunto(s)
Incrustaciones Biológicas , Productos Biológicos , Desinfectantes , Animales , Humanos , Química Farmacéutica , Organismos Acuáticos , Incrustaciones Biológicas/prevención & control , Productos Biológicos/farmacología
2.
J Am Chem Soc ; 146(34): 23717-23728, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39143910

RESUMEN

In the fast-evolving landscape of targeted cancer therapies, the revolutionary class of biotherapeutics known as antibody-drug conjugates (ADCs) are taking center stage. Most clinically approved ADCs utilize cleavable linkers to temporarily attach potent cytotoxic payloads to antibodies, allowing selective payload release under tumor-specific conditions. In this study, we explored the utilization of 1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl (Dde), a cyclic ß-diketone featuring an active alkylidene group, to develop a novel chemically labile linker. This linker was designed to exploit the difference in reduction potential between the intracellular compartment and plasma. Upon reduction of an azido trigger strategically installed neighboring the cyclic ß-diketone, the resulting nucleophilic primary amine reacts with the alkylidene group facilitated by a favorable ring closure reaction in accordance with Baldwin's rules. Consequently, this reaction enables the simultaneous release of the attached cytotoxic payload. The therapeutic utility of this novel linker strategy was demonstrated by separate conjugation of the linker to two epidermal growth factor receptor (EGFR)-targeting ligands to afford a peptide-drug conjugate and an ADC. This work comprises a significant contribution to the bioconjugation field by introducing the alkylidene cyclic ß-diketone as a tunable scaffold used for the temporary conjugation of therapeutic agents to peptides and proteins.


Asunto(s)
Inmunoconjugados , Cetonas , Inmunoconjugados/química , Humanos , Cetonas/química , Línea Celular Tumoral , Antineoplásicos/química , Estructura Molecular
3.
Bioconjug Chem ; 35(7): 1007-1014, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38874557

RESUMEN

The synthesis of linker-payloads is a critical step in developing antibody-drug conjugates (ADCs), a rapidly advancing therapeutic approach in oncology. The conventional method for synthesizing cathepsin B-labile dipeptide linkers, which are commonly used in ADC development, involves the solution-phase assembly of cathepsin B-sensitive dipeptides, followed by the installation of self-immolative para-aminobenzyl carbonate to facilitate the attachment of potent cytotoxic payloads. However, this approach is often low yield and laborious, especially when extending the peptide chain with components like glutamic acid to improve mouse serum stability or charged amino acids or poly(ethylene glycol) moieties to enhance linker hydrophilicity. Here, we introduce a novel approach utilizing late-stage desulfurization chemistry, enabling safe, facile, and cost-effective access to the cathepsin B-cleavable linker, Val-Ala-PABC-MMAE, on resin for the first time.


Asunto(s)
Catepsina B , Inmunoconjugados , Oligopéptidos , Técnicas de Síntesis en Fase Sólida , Inmunoconjugados/química , Catepsina B/metabolismo , Técnicas de Síntesis en Fase Sólida/métodos , Oligopéptidos/química , Humanos , Animales , Ratones , Dipéptidos/química
4.
Org Biomol Chem ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352687

RESUMEN

The histidine bridge is a rare and often overlooked structural motif in macrocyclic peptide natural products, yet there are several examples in nature of cyclic peptides bearing this moiety that exhibit potent biological activity. These interesting compounds have been the focus of several studies reporting their isolation, biosynthesis and chemical synthesis over the last four decades. This review summarises the findings on the structure, biological activity and, where possible, proposed biosynthesis and progress towards the synthesis of histidine-bridged cyclic peptides.

5.
Org Biomol Chem ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259177

RESUMEN

Pallamolide A is a 7,8-seco-labdane terpenoid possessing a unique bicyclo[2.2.2]octane core and a spiro-butenolide moiety. A biomimetic synthesis of the bicyclic butenolide core over 10 steps is reported, featuring an unexpected autoxidation ring opening, and a vinylogous Mukaiyama aldol reaction which was spontaneously followed by an unusual intramolecular vinylogous aldol reaction to assemble the spiro-butenolide moiety and bicyclic core of pallamolide A.

6.
J Nat Prod ; 87(4): 764-773, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38423998

RESUMEN

The brevicidines represent a novel class of nonribosomal antimicrobial peptides that possess remarkable potency and selectivity toward highly problematic and resistant Gram-negative pathogenic bacteria. A recently discovered member of the brevicidine family, coined brevicidine B (2), comprises a single amino acid substitution (from d-Tyr2 to d-Phe2) in the amino acid sequence of the linear moiety of brevicidine (1) and was reported to exhibit broader antimicrobial activity against both Gram-negative (MIC = 2-4 µgmL-1) and Gram-positive (MIC = 2-8 µgmL-1) pathogens. Encouraged by this, we herein report the first total synthesis of the proposed structure of brevicidine B (2), building on our previously reported synthetic strategy to access brevicidine (1). In agreement with the original isolation paper, pleasingly, synthetic 2 demonstrated antimicrobial activity toward Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae (MIC = 4-8 µgmL-1). Interestingly, however, synthetic 2 was inactive toward all of the tested Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus strains. Substitution of d-Phe2 with its enantiomer, and other hydrophobic residues, yields analogues that were either inactive or only exhibited activity toward Gram-negative strains. The striking difference in the biological activity of our synthetic 2 compared to the reported natural compound warrants the re-evaluation of the original natural product for purity or possible differences in relative configuration. Finally, the evaluation of synthetic 1 and 2 in a human kidney organoid model of nephrotoxicity revealed substantial toxicity of both compounds, although 1 was less toxic than 2 and polymyxin B. These results indicate that modification to position 2 may afford a strategy to mitigate the nephrotoxicity of brevicidine.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Estructura Molecular , Pseudomonas aeruginosa/efectos de los fármacos , Humanos , Depsipéptidos/farmacología , Depsipéptidos/química , Depsipéptidos/síntesis química , Klebsiella pneumoniae/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química
7.
Angew Chem Int Ed Engl ; 63(39): e202407764, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-38932510

RESUMEN

Lipopeptides are an important class of biomolecules for drug development. Compared with conventional acylation, a chemoselective lipidation strategy offers a more efficient strategy for late-stage structural derivatisation of a peptide scaffold. It provides access to chemically diverse compounds possessing intriguing and non-native moieties. Utilising an allenamide, we report the first semisynthesis of antimicrobial lipopeptides leveraging a highly efficient thia-Michael addition of chemically diverse lipophilic thiols. Using chemoenzymatically prepared polymyxin B nonapeptide (PMBN) as a model scaffold, an optimised allenamide-mediated thia-Michael addition effected rapid and near quantitative lipidation, affording vinyl sulfide-linked lipopeptide derivatives. Harnessing the utility of this new methodology, 22 lipophilic thiols of unprecedented chemical diversity were introduced to the PMBN framework. These included alkyl thiols, substituted aromatic thiols, heterocyclic thiols and those bearing additional functional groups (e.g., amines), ultimately yielding analogues with potent Gram-negative antimicrobial activity and substantially attenuated nephrotoxicity. Furthermore, we report facile routes to transform the allenamide into a ß-keto amide on unprotected peptides, offering a powerful "jack-of-all-trades" synthetic intermediate to enable further peptide modification.


Asunto(s)
Amidas , Amidas/química , Amidas/síntesis química , Antibacterianos/química , Antibacterianos/síntesis química , Antibacterianos/farmacología , Lipopéptidos/química , Lipopéptidos/síntesis química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/síntesis química , Cetonas/química
8.
Biochemistry ; 62(17): 2669-2676, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37531216

RESUMEN

Glycocin F (GccF), a ribosomally synthesized, post-translationally modified peptide secreted by Lactobacillus plantarum KW30, rapidly inhibits the growth of susceptible bacteria at nanomolar concentrations. Previous studies have highlighted structural features important for its activity and have shown the absolute requirement for the Ser18 O-linked GlcNAc on the eight-residue loop linking the two short helices of the (C-X6-C)2 structure. Here, we show that an ostensibly very small chemical modification to Ser18, the substitution of the Cα proton with a methyl group, reduces the antimicrobial activity of GccF 1000-fold (IC50 1.5 µM cf. 1.5 nM). A comparison of the GccFα-methylSer18 NMR structure (PDB 8DFZ) with that of the native protein (PDB 2KUY) showed a marked difference in the orientation and mobility of the loop, as well as a markedly different positioning of the GlcNAc, suggesting that loop conformation, dynamics, and glycan presentation play an important role in the interaction of GccF with as yet unknown but essential physiological target molecules.


Asunto(s)
Antiinfecciosos , Péptidos , Péptidos/química , Espectroscopía de Resonancia Magnética , Imagen por Resonancia Magnética , Estructura Secundaria de Proteína , Antiinfecciosos/farmacología
9.
Cancer Immunol Immunother ; 72(7): 2267-2282, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36881133

RESUMEN

AIM: We have previously reported that polyfunctional T cell responses can be induced to the cancer testis antigen NY-ESO-1 in melanoma patients injected with mature autologous monocyte-derived dendritic cells (DCs) loaded with long NY-ESO-1-derived peptides together with α-galactosylceramide (α-GalCer), an agonist for type 1 Natural Killer T (NKT) cells. OBJECTIVE: To assess whether inclusion of α-GalCer in autologous NY-ESO-1 long peptide-pulsed DC vaccines (DCV + α-GalCer) improves T cell responses when compared to peptide-pulsed DC vaccines without α-GalCer (DCV). DESIGN, SETTING AND PARTICIPANTS: Single-centre blinded randomised controlled trial in patients ≥ 18 years old with histologically confirmed, fully resected stage II-IV malignant cutaneous melanoma, conducted between July 2015 and June 2018 at the Wellington Blood and Cancer Centre of the Capital and Coast District Health Board. INTERVENTIONS: Stage I. Patients were randomised to two cycles of DCV or DCV + α-GalCer (intravenous dose of 10 × 106 cells, interval of 28 days). Stage II. Patients assigned to DCV + α-GalCer were randomised to two further cycles of DCV + α-GalCer or observation, while patients initially assigned to DCV crossed over to two cycles of DCV + α-GalCer. OUTCOME MEASURES: Primary: Area under the curve (AUC) of mean NY-ESO-1-specific T cell count detected by ex vivo IFN-γ ELISpot in pre- and post-treatment blood samples, compared between treatment arms at Stage I. Secondary: Proportion of responders in each arm at Stage I; NKT cell count in each arm at Stage I; serum cytokine levels at Stage I; adverse events Stage I; T cell count for DCV + α-GalCer versus observation at Stage II, T cell count before versus after cross-over. RESULTS: Thirty-eight patients gave written informed consent; 5 were excluded before randomisation due to progressive disease or incomplete leukapheresis, 17 were assigned to DCV, and 16 to DCV + α-GalCer. The vaccines were well tolerated and associated with increases in mean total T cell count, predominantly CD4+ T cells, but the difference between the treatment arms was not statistically significant (difference - 6.85, 95% confidence interval, - 21.65 to 7.92; P = 0.36). No significant improvements in T cell response were associated with DCV + α-GalCer with increased dosing, or in the cross-over. However, the NKT cell response to α-GalCer-loaded vaccines was limited compared to previous studies, with mean circulating NKT cell levels not significantly increased in the DCV + α-GalCer arm and no significant differences in cytokine response between the treatment arms. CONCLUSIONS: A high population coverage of NY-ESO-1-specific T cell responses was achieved with a good safety profile, but we failed to demonstrate that loading with α-GalCer provided an additional advantage to the T cell response with this cellular vaccine design. CLINICAL TRIAL REGISTRATION: ACTRN12612001101875. Funded by the Health Research Council of New Zealand.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Masculino , Humanos , Adolescente , Neoplasias Cutáneas/terapia , Neoplasias Cutáneas/metabolismo , Péptidos/metabolismo , Anticuerpos/metabolismo , Citocinas/metabolismo , Células Dendríticas , Antígenos de Neoplasias , Melanoma Cutáneo Maligno
10.
Chemistry ; 29(31): e202300261, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-36849870

RESUMEN

Azide-enolate cycloaddition-rearrangements offer potential for rapid access to diverse molecular frameworks from simple precursors. We report here that investigations into the cycloadditions of ester or amide enolates with vinyl azides led to the identification of two reaction processes - direct α-amination of amides and lactams, and the synthesis of ene-γ-lactams from esters. The outcomes of these reactions depended on the fate of key vinyl triazoline intermediates generated in the initial cycloaddition step. Isolation of reaction intermediates in the ene-γ-lactam synthesis revealed the unexpected addition of two enolate equivalents, one of which is later eliminated. Computational studies further suggested an unusual reaction pathway involving direct addition of an enolate to the terminal carbon of the N-vinyl triazoline. In contrast, the α-amination of amides and lactams proceeded by rearrangement of the intermediate triazoline to give an imine, hydrolysis or reduction of which gave access to primary or secondary α-amino amides or lactams.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA