Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Environ Sci (China) ; 67: 45-53, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29778173

RESUMEN

Wastewater treatment center (WTC) workers may be vulnerable to diseases caused by viruses, such as the common cold, influenza and gastro-intestinal infections. Although there is a substantial body of literature characterizing the microbial community found in wastewater, only a few studies have characterized the viral component of WTC aerosols, despite the fact that most diseases affecting WTC workers are of viral origin and that some of these viruses are transmitted through the air. In this study, we evaluated in four WTCs the presence of 11 viral pathogens of particular concern in this milieu and used a metagenomic approach to characterize the total viral community in the air of one of those WTCs. The presence of viruses in aerosols in different locations of individual WTCs was evaluated and the results obtained with four commonly used air samplers were compared. We detected four of the eleven viruses tested, including human adenovirus (hAdV), rotavirus, hepatitis A virus (HAV) and Herpes Simplex virus type 1 (HSV1). The results of the metagenomic assay uncovered very few viral RNA sequences in WTC aerosols, however sequences from human DNA viruses were in much greater relative abundance.


Asunto(s)
Aerosoles/análisis , Microbiología del Aire , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Virus , Eliminación de Residuos Líquidos , Aguas Residuales/virología , Humanos
2.
J Air Waste Manag Assoc ; 72(9): 1000-1011, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35426760

RESUMEN

During wastewater treatment, bioaerosols are generated and, can either remain in suspension for several hours or settle on surfaces and workers may be exposed. The presence of pathogens in the air could contribute to an increased frequency of gastrointestinal or respiratory illness amongst workers. Due to harsh winter conditions in Eastern Canada, many of the steps in the wastewater treatment process occur indoors, leading to a greater risk of significant occupational exposure especially if there is inadequate ventilation or a lack of personal protection. This work has used stationary sampling at various indoor wastewater treatment steps both in winter and summer. Bioaerosols were evaluated using both culture and molecular methods along with ventilation characterization. Endotoxins were quantified, as well as total cultivable and gram-negative bacteria and pathogen indicators using qPCR. This study highlights the presence of potential pathogens at all steps in the treatment process, which may represent a potential occupational hazard. Comparisons between summer and winter data suggest that water temperature is an important factor for microbial activity and suggest that increasing the rate of air changes per hour in summer would be beneficial to reduce the concentration of bioaerosols during this time of the year. The screening, grit/FOGs removal and biofiltration were the most bioaerosol-loaded sites. Based on strong correlations, we suggest the reconsideration of exposure limits in WWTPs. Workers should be encouraged to use personal respiratory protection to limit the risk of health problems, especially during long-term work.Implications: The work presented herein showcases significant correlations between concentrations of endotoxins, cultivable bacteria, gram-negative bacteria, and total bacteria by qPCR from air collected in indoor wastewater treatment plants. These correlations lead us to propose new limit of exposure values, revisited to fit the endotoxin exposure limits recommendations. The results can serve as guidelines for future proposals for air quality indicators.


Asunto(s)
Contaminación del Aire Interior , Exposición Profesional , Purificación del Agua , Aerosoles/análisis , Microbiología del Aire , Contaminación del Aire Interior/análisis , Endotoxinas/análisis , Humanos , Exposición Profesional/análisis , Indicadores de Calidad de la Atención de Salud , Estaciones del Año
3.
Sci Total Environ ; 599-600: 2095-2104, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28558432

RESUMEN

Bioaerosols are among the less studied particles in the environment. The lack of standardization in sampling procedures, difficulties related to the effect of sampling processes on the integrity of microorganisms, and challenges associated with the application of environmental microbiology analyses and molecular and culture methods frighten many young scientists. Every microorganism has its own particularities and acts differently when aerosolized in various conditions. Because the air is an extremely biologically diluted environment, it is necessary to concentrate its content before any analysis is performed. Challenges faced when applying molecular methods to air samples reveal the need for a better standardization of approaches for cell and nucleic acid recovery, the choice of genetic markers, and interpretation of data. This paper presents a few of the limits and difficulties tackled when molecular methods are applied to bioaerosols, suggests some improvements by specifying the critical stages that should be considered when studying the microbial ecology of bioaerosols, and provides thoughtful insights on how to overcome the challenges encountered.


Asunto(s)
Aerosoles/análisis , Microbiología del Aire , Monitoreo del Ambiente/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA