Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38869008

RESUMEN

Cofilin, an actin-severing protein, plays key roles in muscle sarcomere addition and maintenance. Our previous work found that Drosophila cofilin (DmCFL) knockdown in muscle causes progressive deterioration of muscle structure and function and produces features seen in nemaline myopathy caused by cofilin mutations. We hypothesized that disruption of actin cytoskeleton dynamics by DmCFL knockdown would impact other aspects of muscle development, and, thus, conducted an RNA-sequencing analysis that unexpectedly revealed upregulated expression of numerous neuromuscular junction (NMJ) genes. We found that DmCFL is enriched in the muscle postsynaptic compartment and that DmCFL muscle knockdown causes F-actin disorganization in this subcellular domain prior to the sarcomere defects observed later in development. Despite NMJ gene expression changes, we found no significant changes in gross presynaptic Bruchpilot active zones or total postsynaptic glutamate receptor levels. However, DmCFL knockdown resulted in mislocalization of GluRIIA class glutamate receptors in more deteriorated muscles and strongly impaired NMJ transmission strength. These findings expand our understanding of the roles of cofilin in muscle to include NMJ structural development and suggest that NMJ defects may contribute to the pathophysiology of nemaline myopathy.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Unión Neuromuscular , Transmisión Sináptica , Animales , Unión Neuromuscular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Factores Despolimerizantes de la Actina/metabolismo , Factores Despolimerizantes de la Actina/genética , Actinas/metabolismo , Sarcómeros/metabolismo , Técnicas de Silenciamiento del Gen , Citoesqueleto de Actina/metabolismo , Miopatías Nemalínicas/metabolismo , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología
2.
PLoS Biol ; 21(1): e3001969, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36701299

RESUMEN

Noonan syndrome (NS) and NS with multiple lentigines (NSML) cognitive dysfunction are linked to SH2 domain-containing protein tyrosine phosphatase-2 (SHP2) gain-of-function (GoF) and loss-of-function (LoF), respectively. In Drosophila disease models, we find both SHP2 mutations from human patients and corkscrew (csw) homolog LoF/GoF elevate glutamatergic transmission. Cell-targeted RNAi and neurotransmitter release analyses reveal a presynaptic requirement. Consistently, all mutants exhibit reduced synaptic depression during high-frequency stimulation. Both LoF and GoF mutants also show impaired synaptic plasticity, including reduced facilitation, augmentation, and post-tetanic potentiation. NS/NSML diseases are characterized by elevated MAPK/ERK signaling, and drugs suppressing this signaling restore normal neurotransmission in mutants. Fragile X syndrome (FXS) is likewise characterized by elevated MAPK/ERK signaling. Fragile X Mental Retardation Protein (FMRP) binds csw mRNA and neuronal Csw protein is elevated in Drosophila fragile X mental retardation 1 (dfmr1) nulls. Moreover, phosphorylated ERK (pERK) is increased in dfmr1 and csw null presynaptic boutons. We find presynaptic pERK activation in response to stimulation is reduced in dfmr1 and csw nulls. Trans-heterozygous csw/+; dfmr1/+ recapitulate elevated presynaptic pERK activation and function, showing FMRP and Csw/SHP2 act within the same signaling pathway. Thus, a FMRP and SHP2 MAPK/ERK regulative mechanism controls basal and activity-dependent neurotransmission strength.


Asunto(s)
Proteínas de Drosophila , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Animales , Humanos , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Transmisión Sináptica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(12): e2216887120, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36920921

RESUMEN

In the developmental remodeling of brain circuits, neurons are removed by glial phagocytosis to optimize adult behavior. Fragile X mental retardation protein (FMRP) regulates neuron-to-glia signaling to drive glial phagocytosis for targeted neuron pruning. We find that FMRP acts in a mothers against decapentaplegic (Mad)-insulin receptor (InR)-protein kinase B (Akt) pathway to regulate pretaporter (Prtp) and amyloid precursor protein-like (APPL) signals directing this glial clearance. Neuronal RNAi of Drosophila fragile X mental retardation 1 (dfmr1) elevates mad transcript levels and increases pMad signaling. Neuronal dfmr1 and mad RNAi both elevate phospho-protein kinase B (pAkt) and delay neuron removal but cause opposite effects on InR expression. Genetically correcting pAkt levels in the mad RNAi background restores normal remodeling. Consistently, neuronal dfmr1 and mad RNAi both decrease Prtp levels, whereas neuronal InR and akt RNAi increase Prtp levels, indicating FMRP works with pMad and insulin signaling to tightly regulate Prtp signaling and thus control glial phagocytosis for correct circuit remodeling. Neuronal dfmr1 and mad and akt RNAi all decrease APPL levels, with the pathway signaling higher glial endolysosome activity for phagocytosis. These findings reveal a FMRP-dependent control pathway for neuron-to-glia communication in neuronal pruning, identifying potential molecular mechanisms for devising fragile X syndrome treatments.


Asunto(s)
Proteínas de Drosophila , Síndrome del Cromosoma X Frágil , Animales , Encéfalo/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
4.
J Neurosci ; 44(12)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38267256

RESUMEN

Imaging brain learning and memory circuit kinase signaling is a monumental challenge. The separation of phases-based activity reporter of kinase (SPARK) biosensors allow circuit-localized studies of multiple interactive kinases in vivo, including protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) signaling. In the precisely-mapped Drosophila brain learning/memory circuit, we find PKA and ERK signaling differentially enriched in distinct Kenyon cell connectivity nodes. We discover that potentiating normal circuit activity induces circuit-localized PKA and ERK signaling, expanding kinase function within new presynaptic and postsynaptic domains. Activity-induced PKA signaling shows extensive overlap with previously selective ERK signaling nodes, while activity-induced ERK signaling arises in new connectivity nodes. We find targeted synaptic transmission blockade in Kenyon cells elevates circuit-localized ERK induction in Kenyon cells with normally high baseline ERK signaling, suggesting lateral and feedback inhibition. We discover overexpression of the pathway-linking Meng-Po (human SBK1) serine/threonine kinase to improve learning acquisition and memory consolidation results in dramatically heightened PKA and ERK signaling in separable Kenyon cell circuit connectivity nodes, revealing both synchronized and untapped signaling potential. Finally, we find that a mechanically-induced epileptic seizure model (easily shocked "bang-sensitive" mutants) has strongly elevated, circuit-localized PKA and ERK signaling. Both sexes were used in all experiments, except for the hemizygous male-only seizure model. Hyperexcitable, learning-enhanced, and epileptic seizure models have comparably elevated interactive kinase signaling, suggesting a common basis of use-dependent induction. We conclude that PKA and ERK signaling modulation is locally coordinated in use-dependent spatial circuit dynamics underlying seizure susceptibility linked to learning/memory potential.


Asunto(s)
Aprendizaje , Transducción de Señal , Animales , Femenino , Masculino , Humanos , Aprendizaje/fisiología , Transducción de Señal/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Encéfalo/metabolismo , Drosophila/metabolismo , Convulsiones
5.
J Neurosci ; 44(17)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38471782

RESUMEN

Cytoplasmic protein tyrosine phosphatase nonreceptor type 11 (PTPN11) and Drosophila homolog Corkscrew (Csw) regulate the mitogen-activated protein kinase (MAPK) pathway via a conserved autoinhibitory mechanism. Disease-causing loss-of-function (LoF) and gain-of-function (GoF) mutations both disrupt this autoinhibition to potentiate MAPK signaling. At the Drosophila neuromuscular junction glutamatergic synapse, LoF/GoF mutations elevate transmission strength and reduce activity-dependent synaptic depression. In both sexes of LoF/GoF mutations, the synaptic vesicles (SV)-colocalized synapsin phosphoprotein tether is highly elevated at rest, but quickly reduced with stimulation, suggesting a larger SV reserve pool with greatly heightened activity-dependent recruitment. Transmission electron microscopy of mutants reveals an elevated number of SVs clustered at the presynaptic active zones, suggesting that the increased vesicle availability is causative for the elevated neurotransmission. Direct neuron-targeted extracellular signal-regulated kinase (ERK) GoF phenocopies both increased local presynaptic MAPK/ERK signaling and synaptic transmission strength in mutants, confirming the presynaptic regulatory mechanism. Synapsin loss blocks this elevation in both presynaptic PTPN11 and ERK mutants. However, csw null mutants cannot be rescued by wild-type Csw in neurons: neurotransmission is only rescued by expressing Csw in both neurons and glia simultaneously. Nevertheless, targeted LoF/GoF mutations in either neurons or glia alone recapitulate the elevated neurotransmission. Thus, PTPN11/Csw mutations in either cell type are sufficient to upregulate presynaptic function, but a dual requirement in neurons and glia is necessary for neurotransmission. Taken together, we conclude that PTPN11/Csw acts in both neurons and glia, with LoF and GoF similarly upregulating MAPK/ERK signaling to enhance presynaptic Synapsin-mediated SV trafficking.


Asunto(s)
Proteínas de Drosophila , Sistema de Señalización de MAP Quinasas , Neuroglía , Neuronas , Terminales Presinápticos , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Sinapsinas , Transmisión Sináptica , Vesículas Sinápticas , Animales , Femenino , Masculino , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Sistema de Señalización de MAP Quinasas/fisiología , Mutación , Neuroglía/metabolismo , Neuroglía/fisiología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Terminales Presinápticos/metabolismo , Terminales Presinápticos/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Sinapsinas/metabolismo , Sinapsinas/genética , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo
6.
Development ; 149(9)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35394012

RESUMEN

Both mRNA-binding Fragile X mental retardation protein (FMRP; Fmr1) and mRNA-binding Staufen regulate synaptic bouton formation and glutamate receptor (GluR) levels at the Drosophila neuromuscular junction (NMJ) glutamatergic synapse. Here, we tested whether these RNA-binding proteins act jointly in a common mechanism. We found that both dfmr1 and staufen mutants, and trans-heterozygous double mutants, displayed increased synaptic bouton formation and GluRIIA accumulation. With cell-targeted RNA interference, we showed a downstream Staufen role within postsynaptic muscle. With immunoprecipitation, we showed that FMRP binds staufen mRNA to stabilize postsynaptic transcripts. Staufen is known to target actin-binding, GluRIIA anchor Coracle, and we confirmed that Staufen binds to coracle mRNA. We found that FMRP and Staufen act sequentially to co-regulate postsynaptic Coracle expression, and showed that Coracle, in turn, controls GluRIIA levels and synaptic bouton development. Consistently, we found that dfmr1, staufen and coracle mutants elevate neurotransmission strength. We also identified that FMRP, Staufen and Coracle all suppress pMad activation, providing a trans-synaptic signaling linkage between postsynaptic GluRIIA levels and presynaptic bouton development. This work supports an FMRP-Staufen-Coracle-GluRIIA-pMad pathway regulating structural and functional synapse development.


Asunto(s)
Proteínas de Drosophila , Ácido Glutámico , Animales , Drosophila , Proteínas de Drosophila/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Terminales Presinápticos , ARN Mensajero/genética , Receptores de Glutamato/genética , Sinapsis
7.
J Cell Sci ; 134(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33973638

RESUMEN

The synaptic cleft manifests enriched glycosylation, with structured glycans coordinating signaling between presynaptic and postsynaptic cells. Glycosylated signaling ligands orchestrating communication are tightly regulated by secreted glycan-binding lectins. Using the Drosophila neuromuscular junction (NMJ) as a model glutamatergic synapse, we identify a new Ca2+-binding (C-type) lectin, Lectin-galC1 (LGC1), which modulates presynaptic function and neurotransmission strength. We find that LGC1 is enriched in motoneuron presynaptic boutons and secreted into the NMJ extracellular synaptomatrix. We show that LGC1 limits locomotor peristalsis and coordinated movement speed, with a specific requirement for synaptic function, but not NMJ architecture. LGC1 controls neurotransmission strength by limiting presynaptic active zone (AZ) and postsynaptic glutamate receptor (GluR) aligned synapse number, reducing both spontaneous and stimulation-evoked synaptic vesicle (SV) release, and capping SV cycling rate. During high-frequency stimulation (HFS), mutants have faster synaptic depression and impaired recovery while replenishing depleted SV pools. Although LGC1 removal increases the number of glutamatergic synapses, we find that LGC1-null mutants exhibit decreased SV density within presynaptic boutons, particularly SV pools at presynaptic active zones. Thus, LGC1 regulates NMJ neurotransmission to modulate coordinated movement.


Asunto(s)
Proteínas de Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Lectinas Tipo C , Unión Neuromuscular/metabolismo , Terminales Presinápticos/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica , Vesículas Sinápticas/metabolismo
8.
Cell ; 135(5): 838-51, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19041749

RESUMEN

Disruption of the Transient Receptor Potential (TRP) mucolipin 1 (TRPML1) channel results in the neurodegenerative disorder mucolipidosis type IV (MLIV), a lysosomal storage disease with severe motor impairments. The mechanisms underlying MLIV are poorly understood and there is no treatment. Here, we report a Drosophila MLIV model, which recapitulates the key disease features, including abnormal intracellular accumulation of macromolecules, motor defects, and neurodegeneration. The basis for the buildup of macromolecules was defective autophagy, which resulted in oxidative stress and impaired synaptic transmission. Late-apoptotic cells accumulated in trpml mutant brains, suggesting diminished cell clearance. The accumulation of late-apoptotic cells and motor deficits were suppressed by expression of trpml(+) in neurons, glia, or hematopoietic cells. We conclude that the neurodegeneration and motor defects result primarily from decreased clearance of apoptotic cells. Since hematopoietic cells in humans are involved in clearance of apoptotic cells, our results raise the possibility that bone marrow transplantation may limit the progression of MLIV.


Asunto(s)
Apoptosis , Modelos Animales de Enfermedad , Drosophila/metabolismo , Mucolipidosis/metabolismo , Animales , Humanos , Enfermedades Neurodegenerativas/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo
9.
J Neurosci ; 41(6): 1218-1241, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33402421

RESUMEN

Critical periods are developmental windows during which neural circuits effectively adapt to the new sensory environment. Animal models of fragile X syndrome (FXS), a common monogenic autism spectrum disorder (ASD), exhibit profound impairments of sensory experience-driven critical periods. However, it is not known whether the causative fragile X mental retardation protein (FMRP) acts uniformly across neurons, or instead manifests neuron-specific functions. Here, we use the genetically-tractable Drosophila brain antennal lobe (AL) olfactory circuit of both sexes to investigate neuron-specific FMRP roles in the odorant experience-dependent remodeling of the olfactory sensory neuron (OSN) innervation during an early-life critical period. We find targeted OSN class-specific FMRP RNAi impairs innervation remodeling within AL synaptic glomeruli, whereas global dfmr1 null mutants display relatively normal odorant-driven refinement. We find both OSN cell autonomous and cell non-autonomous FMRP functions mediate odorant experience-dependent remodeling, with AL circuit FMRP imbalance causing defects in overall glomerulus innervation refinement. We find OSN class-specific FMRP levels bidirectionally regulate critical period remodeling, with odorant experience selectively controlling OSN synaptic terminals in AL glomeruli. We find OSN class-specific FMRP loss impairs critical period remodeling by disrupting responses to lateral modulation from other odorant-responsive OSNs mediating overall AL gain control. We find that silencing glutamatergic AL interneurons reduces OSN remodeling, while conversely, interfering with the OSN class-specific GABAA signaling enhances remodeling. These findings reveal control of OSN synaptic remodeling by FMRP with neuron-specific circuit functions, and indicate how neural circuitry can compensate for global FMRP loss to reinstate normal critical period brain circuit remodeling.SIGNIFICANCE STATEMENT Fragile X syndrome (FXS), the leading monogenic cause of intellectual disability and autism spectrum disorder (ASD), manifests severe neurodevelopmental delays. Likewise, FXS disease models display disrupted neurodevelopmental critical periods. In the well-mapped Drosophila olfactory circuit model, perturbing the causative fragile X mental retardation protein (FMRP) within a single olfactory sensory neuron (OSN) class impairs odorant-dependent remodeling during an early-life critical period. Importantly, this impairment requires activation of other OSNs, and the olfactory circuit can compensate when FMRP is removed from all OSNs. Understanding the neuron-specific FMRP requirements within a developing neural circuit, as well as the FMRP loss compensation mechanisms, should help us engineer FXS treatments. This work suggests FXS treatments could use homeostatic mechanisms to alleviate circuit-level deficits.


Asunto(s)
Período Crítico Psicológico , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Corteza Olfatoria/crecimiento & desarrollo , Corteza Olfatoria/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Masculino , Plasticidad Neuronal/efectos de los fármacos , Neuronas/química , Neuronas/efectos de los fármacos , Odorantes , Bulbo Olfatorio/química , Bulbo Olfatorio/metabolismo , Corteza Olfatoria/química , Neuronas Receptoras Olfatorias/química , Neuronas Receptoras Olfatorias/metabolismo , Optogenética/métodos
10.
J Cell Sci ; 133(15)2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32788209

RESUMEN

The exceedingly narrow synaptic cleft (<20 nm) and adjacent perisynaptic extracellular space contain an astonishing array of secreted and membrane-anchored glycoproteins. A number of these extracellular molecules regulate intercellular trans-synaptic signaling by binding to ligands, acting as co-receptors or modulating ligand-receptor interactions. Recent work has greatly expanded our understanding of extracellular proteoglycan and glycan-binding lectin families as key regulators of intercellular signaling at the synapse. These secreted proteins act to regulate the compartmentalization of glycoprotein ligands and receptors, crosslink dynamic extracellular and cell surface lattices, modulate both exocytosis and endocytosis vesicle cycling, and control postsynaptic receptor trafficking. Here, we focus closely on the Drosophila glutamatergic neuromuscular junction (NMJ) as a model synapse for understanding extracellular roles of the many heparan sulfate proteoglycan (HSPG) and lectin proteins that help determine synaptic architecture and neurotransmission strength. We particularly concentrate on the roles of extracellular HSPGs and lectins in controlling trans-synaptic signaling, especially that mediated by the Wnt and BMP pathways. These signaling mechanisms are causally linked to a wide spectrum of neurological disease states that impair coordinated movement and cognitive functions.


Asunto(s)
Proteínas de Drosophila , Proteoglicanos de Heparán Sulfato , Proteínas de Drosophila/genética , Lectinas/genética , Unión Neuromuscular , Sinapsis
11.
BMC Biol ; 18(1): 94, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32731855

RESUMEN

BACKGROUND: Neural circuits are initially assembled during development when neurons synapse with potential partners and later refined as appropriate connections stabilize into mature synapses while inappropriate contacts are eliminated. Disruptions to this synaptogenic process impair connectivity optimization and can cause neurodevelopmental disorders. Intellectual disability (ID) and autism spectrum disorder (ASD) are often characterized by synaptic overgrowth, with the maintenance of immature or inappropriate synapses. Such synaptogenic defects can occur through mutation of a single gene, such as fragile X mental retardation protein (FMRP) loss causing the neurodevelopmental disorder fragile X syndrome (FXS). FXS represents the leading heritable cause of ID and ASD, but many other genes that play roles in ID and ASD have yet to be identified. RESULTS: In a Drosophila FXS disease model, one dfmr150M null mutant stock exhibits previously unreported axonal overgrowths at developmental and mature stages in the giant fiber (GF) escape circuit. These excess axon projections contain both chemical and electrical synapse markers, indicating mixed synaptic connections. Extensive analyses show these supernumerary synapses connect known GF circuit neurons, rather than new, inappropriate partners, indicating hyperconnectivity within the circuit. Despite the striking similarities to well-characterized FXS synaptic defects, this new GF circuit hyperconnectivity phenotype is driven by genetic background mutations in this dfmr150M stock. Similar GF circuit synaptic overgrowth is not observed in independent dfmr1 null alleles. Bulked segregant analysis (BSA) was combined with whole genome sequencing (WGS) to identify the quantitative trait loci (QTL) linked to neural circuit hyperconnectivity. The results reveal 8 QTL associated with inappropriate synapse formation and maintenance in the dfmr150M mutant background. CONCLUSIONS: Synaptogenesis is a complex, precisely orchestrated neurodevelopmental process with a large cohort of gene products coordinating the connectivity, synaptic strength, and excitatory/inhibitory balance between neuronal partners. This work identifies a number of genetic regions that contain mutations disrupting proper synaptogenesis within a particularly well-mapped neural circuit. These QTL regions contain potential new genes involved in synapse formation and refinement. Given the similarity of the synaptic overgrowth phenotype to known ID and ASD inherited conditions, identifying these genes should increase our understanding of these devastating neurodevelopmental disease states.


Asunto(s)
Drosophila melanogaster/genética , Síndrome del Cromosoma X Frágil/genética , Mutación , Neuronas/fisiología , Sinapsis/metabolismo , Animales , Animales Modificados Genéticamente/genética , Modelos Animales de Enfermedad , Proteínas de Drosophila/metabolismo , Antecedentes Genéticos
12.
J Neurosci ; 39(16): 2995-3012, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30755492

RESUMEN

Critical periods are windows of development when the environment has a pronounced effect on brain circuitry. Models of neurodevelopmental disorders, including autism spectrum disorders, intellectual disabilities, and schizophrenia, are linked to disruption of critical period remodeling. Critical periods open with the onset of sensory experience; however, it remains unclear exactly how sensory input modifies brain circuits. Here, we examine olfactory sensory neuron (OSN) innervation of the Drosophila antennal lobe of both sexes as a genetic model of this question. We find that olfactory sensory experience during an early-use critical period drives loss of OSN innervation of antennal lobe glomeruli and subsequent axon retraction in a dose-dependent mechanism. This remodeling does not result from olfactory receptor loss or OSN degeneration, but rather from rapid synapse elimination and axon pruning in the target olfactory glomerulus. Removal of the odorant stimulus only during the critical period leads to OSN reinnervation, demonstrating that remodeling is transiently reversible. We find that this synaptic refinement requires the OSN-specific olfactory receptor and downstream activity. Conversely, blocking OSN synaptic output elevates glomeruli remodeling. We find that GABAergic neurotransmission has no detectable role, but that glutamatergic signaling via NMDA receptors is required for OSN synaptic refinement. Together, these results demonstrate that OSN inputs into the brain manifest robust, experience-dependent remodeling during an early-life critical period, which requires olfactory reception, OSN activity, and NMDA receptor signaling. This work reveals a pathway linking initial olfactory sensory experience to glutamatergic neurotransmission in the activity-dependent remodeling of brain neural circuitry in an early-use critical period.SIGNIFICANCE STATEMENT Neurodevelopmental disorders manifest symptoms at specific developmental milestones that suggest an intersection between early sensory experience and brain neural circuit remodeling. One classic example is Fragile X syndrome caused by loss of an RNA-binding translation regulator of activity-dependent synaptic refinement. As a model, Drosophila olfactory circuitry is well characterized, genetically tractable, and rapidly developing, and thus ideally suited to probe underlying mechanisms. Here, we find olfactory sensory neurons are dramatically remodeled by heightened sensory experience during an early-life critical period. We demonstrate removing the olfactory stimulus during the critical period can reverse the connectivity changes. We find that this remodeling requires neural activity and NMDA receptor-mediated glutamatergic transmission. This improved understanding may help us design treatments for neurodevelopmental disorders.


Asunto(s)
Encéfalo/fisiología , Plasticidad Neuronal/fisiología , Neuronas Receptoras Olfatorias/fisiología , Células Receptoras Sensoriales/fisiología , Transmisión Sináptica/fisiología , Animales , Período Crítico Psicológico , Drosophila , Neurogénesis/fisiología , Bulbo Olfatorio/fisiopatología
13.
Trends Genet ; 33(10): 703-714, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28826631

RESUMEN

Fragile X syndrome (FXS), a heritable intellectual and autism spectrum disorder (ASD), results from the loss of Fragile X mental retardation protein (FMRP). This neurodevelopmental disease state exhibits neural circuit hyperconnectivity and hyperexcitability. Canonically, FMRP functions as an mRNA-binding translation suppressor, but recent findings have enormously expanded its proposed roles. Although connections between burgeoning FMRP functions remain unknown, recent advances have extended understanding of its involvement in RNA, channel, and protein binding that modulate calcium signaling, activity-dependent critical period development, and the excitation-inhibition (E/I) neural circuitry balance. In this review, we contextualize 3 years of FXS model research. Future directions extrapolated from recent advances focus on discovering links between FMRP roles to determine whether FMRP has a multitude of unrelated functions or whether combinatorial mechanisms can explain its multifaceted existence.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Humanos
14.
Development ; 144(19): 3499-3510, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28860114

RESUMEN

Synaptogenesis requires orchestrated communication between pre- and postsynaptic cells via coordinated trans-synaptic signaling across the extracellular synaptomatrix. The first Wnt signaling ligand discovered, Drosophila Wingless (Wg; Wnt1 in mammals), plays crucial roles in synaptic development, regulating synapse architecture as well as functional differentiation. Here, we investigate synaptogenic functions of the secreted extracellular deacylase Notum, which restricts Wg signaling by cleaving an essential palmitoleate moiety. At the glutamatergic neuromuscular junction (NMJ) synapse, we find that Notum secreted from the postsynaptic muscle acts to strongly modulate synapse growth, structural architecture, ultrastructural development and functional differentiation. In Notum null flies, we find upregulated extracellular Wg ligand and nuclear trans-synaptic signal transduction, as well as downstream misregulation of both pre- and postsynaptic molecular assembly. Structural, functional and molecular synaptogenic defects are all phenocopied by Wg overexpression, suggesting that Notum acts solely by inhibiting Wg trans-synaptic signaling. Moreover, these synaptic development phenotypes are suppressed by genetically correcting Wg levels in Notum null mutants, indicating that Notum normally functions to coordinate synaptic structural and functional differentiation via negative regulation of Wg trans-synaptic signaling in the extracellular synaptomatrix.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Espacio Extracelular/metabolismo , Transducción de Señal , Sinapsis/metabolismo , Proteína Wnt1/metabolismo , Animales , Diferenciación Celular , Movimiento Celular , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestructura , Drosophila melanogaster/ultraestructura , Ligandos , Músculos/metabolismo , Mutación/genética , Neuroglía/metabolismo , Unión Neuromuscular/metabolismo , Fenotipo , Sinapsis/ultraestructura
15.
Neurobiol Dis ; 127: 53-64, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30771457

RESUMEN

Recent work shows Fragile X Mental Retardation Protein (FMRP) drives the translation of very large proteins (>2000 aa) mediating neurodevelopment. Loss of function results in Fragile X syndrome (FXS), the leading heritable cause of intellectual disability (ID) and autism spectrum disorder (ASD). Using the Drosophila FXS disease model, we discover FMRP positively regulates the translation of the very large A-Kinase Anchor Protein (AKAP) Rugose (>3000 aa), homolog of ASD-associated human Neurobeachin (NBEA). In the central brain Mushroom Body (MB) circuit, where Protein Kinase A (PKA) signaling is necessary for learning/memory, FMRP loss reduces Rugose levels and targeted FMRP overexpression elevates Rugose levels. Using a new in vivo transgenic PKA activity reporter (PKA-SPARK), we find FMRP loss reduces PKA activity in MB Kenyon cells whereas FMRP overexpression elevates PKA activity. Consistently, loss of Rugose reduces PKA activity, but Rugose overexpression has no independent effect. A well-established PKA output is regulation of F-actin cytoskeleton dynamics. In the FXS disease model, F-actin is aberrantly accumulated in MB lobes and single MB Kenyon cells. Consistently, Rugose loss results in similar F-actin accumulation. Moreover, targeted FMRP, Rugose and PKA overexpression all result in increased F-actin accumulation in the MB circuit. These findings uncover a FMRP-Rugose-PKA mechanism regulating actin cytoskeleton. This study reveals a novel FMRP mechanism controlling neuronal PKA activity, and demonstrates a shared mechanistic connection between FXS and NBEA associated ASD disease states, with a common link to PKA and F-actin misregulation in brain neural circuits. SIGNIFICANCE STATEMENT: Autism spectrum disorder (ASD) arises from a wide array of genetic lesions, and it is therefore critical to identify common underlying molecular mechanisms. Here, we link two ASD states; Neurobeachin (NBEA) associated ASD and Fragile X syndrome (FXS), the most common inherited ASD. Using established Drosophila disease models, we find Fragile X Mental Retardation Protein (FMRP) positively regulates translation of NBEA homolog Rugose, consistent with a recent advance showing FMRP promotes translation of very large proteins associated with ASD. FXS exhibits reduced cAMP induction, a potent activator of PKA, and Rugose/NBEA is a PKA anchor. Consistently, we find brain PKA activity strikingly reduced in both ASD models. We discover this pathway regulation controls actin cytoskeleton dynamics in brain neural circuits.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Actinas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Aprendizaje/fisiología , Memoria/fisiología , Animales , Animales Modificados Genéticamente , Drosophila , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Cuerpos Pedunculados/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Regulación hacia Arriba
16.
J Cell Sci ; 130(14): 2344-2358, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28576972

RESUMEN

Synaptogenesis is coordinated by trans-synaptic signals that traverse the specialized synaptomatrix between presynaptic and postsynaptic cells. Matrix metalloproteinase (Mmp) activity sculpts this environment, balanced by secreted tissue inhibitors of Mmp (Timp). Here, we use the simplified Drosophila melanogaster matrix metalloproteome to test the consequences of eliminating all Timp regulatory control of Mmp activity at the neuromuscular junction (NMJ). Using in situ zymography, we find Timp limits Mmp activity at the NMJ terminal and shapes extracellular proteolytic dynamics surrounding individual synaptic boutons. In newly generated timp null mutants, NMJs exhibit architectural overelaboration with supernumerary synaptic boutons. With cell-targeted RNAi and rescue studies, we find that postsynaptic Timp limits presynaptic architecture. Functionally, timp null mutants exhibit compromised synaptic vesicle cycling, with activity that is lower in amplitude and fidelity. NMJ defects manifest in impaired locomotor function. Mechanistically, we find that Timp limits BMP trans-synaptic signaling and the downstream synapse-to-nucleus signal transduction. Pharmacologically restoring Mmp inhibition in timp null mutants corrects bone morphogenetic protein (BMP) signaling and synaptic properties. Genetically restoring BMP signaling in timp null mutants corrects NMJ structure and motor function. Thus, Timp inhibition of Mmp proteolytic activity restricts BMP trans-synaptic signaling to coordinate synaptogenesis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Unión Neuromuscular/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica
17.
Development ; 143(1): 75-87, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26603384

RESUMEN

Synaptogenesis requires orchestrated intercellular communication between synaptic partners, with trans-synaptic signals necessarily traversing the extracellular synaptomatrix separating presynaptic and postsynaptic cells. Extracellular matrix metalloproteinases (Mmps) regulated by secreted tissue inhibitors of metalloproteinases (Timps), cleave secreted and membrane-associated targets to sculpt the extracellular environment and modulate intercellular signaling. Here, we test the roles of Mmp at the neuromuscular junction (NMJ) model synapse in the reductionist Drosophila system, which contains just two Mmps (secreted Mmp1 and GPI-anchored Mmp2) and one secreted Timp. We found that all three matrix metalloproteome components co-dependently localize in the synaptomatrix and show that both Mmp1 and Mmp2 independently restrict synapse morphogenesis and functional differentiation. Surprisingly, either dual knockdown or simultaneous inhibition of the two Mmp classes together restores normal synapse development, identifying a reciprocal suppression mechanism. The two Mmp classes co-regulate a Wnt trans-synaptic signaling pathway modulating structural and functional synaptogenesis, including the GPI-anchored heparan sulfate proteoglycan (HSPG) Wnt co-receptor Dally-like protein (Dlp), cognate receptor Frizzled-2 (Frz2) and Wingless (Wg) ligand. Loss of either Mmp1 or Mmp2 reciprocally misregulates Dlp at the synapse, with normal signaling restored by co-removal of both Mmp classes. Correcting Wnt co-receptor Dlp levels in both Mmp mutants prevents structural and functional synaptogenic defects. Taken together, these results identify an Mmp mechanism that fine-tunes HSPG co-receptor function to modulate Wnt signaling to coordinate synapse structural and functional development.


Asunto(s)
Drosophila/embriología , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Neurogénesis/fisiología , Unión Neuromuscular/embriología , Sinapsis/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Comunicación Celular/fisiología , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Receptores Frizzled/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/genética , Unión Neuromuscular/metabolismo , Proteínas Nucleares/metabolismo , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Vía de Señalización Wnt/fisiología , Proteína Wnt1/metabolismo
18.
J Neurosci ; 37(41): 9844-9858, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28887386

RESUMEN

Fragile X mental retardation protein (FMRP) loss causes Fragile X syndrome (FXS), a major disorder characterized by autism, intellectual disability, hyperactivity, and seizures. FMRP is both an RNA- and channel-binding regulator, with critical roles in neural circuit formation and function. However, it remains unclear how these FMRP activities relate to each other and how dysfunction in their absence underlies FXS neurological symptoms. In testing circuit level defects in the Drosophila FXS model, we discovered a completely unexpected and highly robust neuronal dye iontophoresis phenotype in the well mapped giant fiber (GF) circuit. Controlled dye injection into the GF interneuron results in a dramatic increase in dye uptake in neurons lacking FMRP. Transgenic wild-type FMRP reintroduction rescues the mutant defect, demonstrating a specific FMRP requirement. This phenotype affects only small dyes, but is independent of dye charge polarity. Surprisingly, the elevated dye iontophoresis persists in shaking B mutants that eliminate gap junctions and dye coupling among GF circuit neurons. We therefore used a wide range of manipulations to investigate the dye uptake defect, including timed injection series, pharmacology and ion replacement, and optogenetic activity studies. The results show that FMRP strongly limits the rate of dye entry via a cytosolic mechanism. This study reveals an unexpected new phenotype in a physical property of central neurons lacking FMRP that could underlie aspects of FXS disruption of neural function.SIGNIFICANCE STATEMENT FXS is a leading heritable cause of intellectual disability and autism spectrum disorders. Although researchers established the causal link with FMRP loss >;25 years ago, studies continue to reveal diverse FMRP functions. The Drosophila FXS model is key to discovering new FMRP roles, because of its genetic malleability and individually identified neuron maps. Taking advantage of a well characterized Drosophila neural circuit, we discovered that neurons lacking FMRP take up dramatically more current-injected small dye. After examining many neuronal properties, we determined that this dye defect is cytoplasmic and occurs due to a highly elevated dye iontophoresis rate. We also report several new factors affecting neuron dye uptake. Understanding how FMRP regulates iontophoresis should reveal new molecular factors underpinning FXS dysfunction.


Asunto(s)
Sistema Nervioso Central/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Neuronas/metabolismo , Animales , Sistema Nervioso Central/citología , Colorantes , Dendritas/metabolismo , Drosophila , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Uniones Comunicantes/metabolismo , Interneuronas/metabolismo , Iontoforesis , Ratones , Ratones Mutantes Neurológicos , Optogenética
19.
Hum Mol Genet ; 25(17): 3699-3714, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27466186

RESUMEN

The multiple galactosemia disease states manifest long-term neurological symptoms. Galactosemia I results from loss of galactose-1-phosphate uridyltransferase (GALT), which converts galactose-1-phosphate + UDP-glucose to glucose-1-phosphate + UDP-galactose. Galactosemia II results from loss of galactokinase (GALK), phosphorylating galactose to galactose-1-phosphate. Galactosemia III results from the loss of UDP-galactose 4'-epimerase (GALE), which interconverts UDP-galactose and UDP-glucose, as well as UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. UDP-glucose pyrophosphorylase (UGP) alternatively makes UDP-galactose from uridine triphosphate and galactose-1-phosphate. All four UDP-sugars are essential donors for glycoprotein biosynthesis with critical roles at the developing neuromuscular synapse. Drosophila galactosemia I (dGALT) and II (dGALK) disease models genetically interact; manifesting deficits in coordinated movement, neuromuscular junction (NMJ) development, synaptic glycosylation, and Wnt trans-synaptic signalling. Similarly, dGALE and dUGP mutants display striking locomotor and NMJ formation defects, including expanded synaptic arbours, glycosylation losses, and differential changes in Wnt trans-synaptic signalling. In combination with dGALT loss, both dGALE and dUGP mutants compromise the synaptomatrix glycan environment that regulates Wnt trans-synaptic signalling that drives 1) presynaptic Futsch/MAP1b microtubule dynamics and 2) postsynaptic Frizzled nuclear import (FNI). Taken together, these findings indicate UDP-sugar balance is a key modifier of neurological outcomes in all three interacting galactosemia disease models, suggest that Futsch homolog MAP1B and the Wnt Frizzled receptor may be disease-relevant targets in epimerase and transferase galactosemias, and identify UGP as promising new potential therapeutic target for galactosemia neuropathology.


Asunto(s)
Galactoquinasa/genética , Galactosemias/fisiopatología , Unión Neuromuscular/patología , Sinapsis/fisiología , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética , Animales , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila/genética , Galactosemias/metabolismo , Galactosemias/patología , Glicosilación , Humanos , Unión Neuromuscular/metabolismo , Sinapsis/metabolismo , Vía de Señalización Wnt
20.
Development ; 142(7): 1346-56, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25804740

RESUMEN

The activity-dependent refinement of neural circuit connectivity during critical periods of brain development is essential for optimized behavioral performance. We hypothesize that this mechanism is defective in fragile X syndrome (FXS), the leading heritable cause of intellectual disability and autism spectrum disorders. Here, we use optogenetic tools in the Drosophila FXS disease model to test activity-dependent dendritogenesis in two extrinsic neurons of the mushroom body (MB) learning and memory brain center: (1) the input projection neuron (PN) innervating Kenyon cells (KCs) in the MB calyx microglomeruli and (2) the output MVP2 neuron innervated by KCs in the MB peduncle. Both input and output neuron classes exhibit distinctive activity-dependent critical period dendritic remodeling. MVP2 arbors expand in Drosophila mutants null for fragile X mental retardation 1 (dfmr1), as well as following channelrhodopsin-driven depolarization during critical period development, but are reduced by halorhodopsin-driven hyperpolarization. Optogenetic manipulation of PNs causes the opposite outcome--reduced dendritic arbors following channelrhodopsin depolarization and expanded arbors following halorhodopsin hyperpolarization during development. Importantly, activity-dependent dendritogenesis in both neuron classes absolutely requires dfmr1 during one developmental window. These results show that dfmr1 acts in a neuron type-specific activity-dependent manner for sculpting dendritic arbors during early-use, critical period development of learning and memory circuitry in the Drosophila brain.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Memoria , Red Nerviosa/metabolismo , Animales , Dendritas/metabolismo , Técnicas de Silenciamiento del Gen , Marcación de Gen , Cuerpos Pedunculados/metabolismo , Mutación/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA