Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nature ; 618(7966): 767-773, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37286610

RESUMEN

Eukaryotic life appears to have flourished surprisingly late in the history of our planet. This view is based on the low diversity of diagnostic eukaryotic fossils in marine sediments of mid-Proterozoic age (around 1,600 to 800 million years ago) and an absence of steranes, the molecular fossils of eukaryotic membrane sterols1,2. This scarcity of eukaryotic remains is difficult to reconcile with molecular clocks that suggest that the last eukaryotic common ancestor (LECA) had already emerged between around 1,200 and more than 1,800 million years ago. LECA, in turn, must have been preceded by stem-group eukaryotic forms by several hundred million years3. Here we report the discovery of abundant protosteroids in sedimentary rocks of mid-Proterozoic age. These primordial compounds had previously remained unnoticed because their structures represent early intermediates of the modern sterol biosynthetic pathway, as predicted by Konrad Bloch4. The protosteroids reveal an ecologically prominent 'protosterol biota' that was widespread and abundant in aquatic environments from at least 1,640 to around 800 million years ago and that probably comprised ancient protosterol-producing bacteria and deep-branching stem-group eukaryotes. Modern eukaryotes started to appear in the Tonian period (1,000 to 720 million years ago), fuelled by the proliferation of red algae (rhodophytes) by around 800 million years ago. This 'Tonian transformation' emerges as one of the most profound ecological turning points in the Earth's history.


Asunto(s)
Evolución Biológica , Eucariontes , Fósiles , Bacterias/química , Bacterias/metabolismo , Eucariontes/química , Eucariontes/clasificación , Eucariontes/metabolismo , Células Eucariotas/química , Células Eucariotas/clasificación , Células Eucariotas/metabolismo , Esteroles/análisis , Esteroles/biosíntesis , Esteroles/aislamiento & purificación , Esteroles/metabolismo , Sedimentos Geológicos/química , Vías Biosintéticas , Organismos Acuáticos/química , Organismos Acuáticos/clasificación , Organismos Acuáticos/metabolismo , Biota , Filogenia , Historia Antigua
2.
Nature ; 548(7669): 578-581, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28813409

RESUMEN

The transition from dominant bacterial to eukaryotic marine primary productivity was one of the most profound ecological revolutions in the Earth's history, reorganizing the distribution of carbon and nutrients in the water column and increasing energy flow to higher trophic levels. But the causes and geological timing of this transition, as well as possible links with rising atmospheric oxygen levels and the evolution of animals, remain obscure. Here we present a molecular fossil record of eukaryotic steroids demonstrating that bacteria were the only notable primary producers in the oceans before the Cryogenian period (720-635 million years ago). Increasing steroid diversity and abundance marks the rapid rise of marine planktonic algae (Archaeplastida) in the narrow time interval between the Sturtian and Marinoan 'snowball Earth' glaciations, 659-645 million years ago. We propose that the incumbency of cyanobacteria was broken by a surge of nutrients supplied by the Sturtian deglaciation. The 'Rise of Algae' created food webs with more efficient nutrient and energy transfers, driving ecosystems towards larger and increasingly complex organisms. This effect is recorded by the concomitant appearance of biomarkers for sponges and predatory rhizarians, and the subsequent radiation of eumetazoans in the Ediacaran period.


Asunto(s)
Eucariontes/metabolismo , Fósiles , Animales , Biomarcadores/análisis , Ciclo del Carbono , Cianobacterias/aislamiento & purificación , Cianobacterias/metabolismo , Eucariontes/aislamiento & purificación , Cadena Alimentaria , Historia Antigua , Cubierta de Hielo , Océanos y Mares , Fósforo/metabolismo
3.
Proc Natl Acad Sci U S A ; 112(19): 5915-20, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25918387

RESUMEN

Hopanes and steranes found in Archean rocks have been presented as key evidence supporting the early rise of oxygenic photosynthesis and eukaryotes, but the syngeneity of these hydrocarbon biomarkers is controversial. To resolve this debate, we performed a multilaboratory study of new cores from the Pilbara Craton, Australia, that were drilled and sampled using unprecedented hydrocarbon-clean protocols. Hopanes and steranes in rock extracts and hydropyrolysates from these new cores were typically at or below our femtogram detection limit, but when they were detectable, they had total hopane (<37.9 pg per gram of rock) and total sterane (<32.9 pg per gram of rock) concentrations comparable to those measured in blanks and negative control samples. In contrast, hopanes and steranes measured in the exteriors of conventionally drilled and curated rocks of stratigraphic equivalence reach concentrations of 389.5 pg per gram of rock and 1,039 pg per gram of rock, respectively. Polycyclic aromatic hydrocarbons and diamondoids, which exceed blank concentrations, exhibit individual concentrations up to 80 ng per gram of rock in rock extracts and up to 1,000 ng per gram of rock in hydropyrolysates from the ultraclean cores. These results demonstrate that previously studied Archean samples host mixtures of biomarker contaminants and indigenous overmature hydrocarbons. Therefore, existing lipid biomarker evidence cannot be invoked to support the emergence of oxygenic photosynthesis and eukaryotes by ∼ 2.7 billion years ago. Although suitable Proterozoic rocks exist, no currently known Archean strata lie within the appropriate thermal maturity window for syngenetic hydrocarbon biomarker preservation, so future exploration for Archean biomarkers should screen for rocks with milder thermal histories.


Asunto(s)
Sedimentos Geológicos/química , Hidrocarburos/química , Oxígeno/química , Archaea , Australia , Biomarcadores/química , Cianobacterias/metabolismo , Fósiles , Paleontología , Fotosíntesis , Hidrocarburos Policíclicos Aromáticos/química , Solventes/química , Temperatura
4.
Archaea ; 2015: 875784, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25709557

RESUMEN

Hypersaline systems near salt saturation levels represent an extreme environment, in which organisms grow and survive near the limits of life. One of the abundant members of the microbial communities in hypersaline systems is the square archaeon, Haloquadratum walsbyi. Utilizing a short-read metagenome from Lake Tyrrell, a hypersaline ecosystem in Victoria, Australia, we performed a comparative genomic analysis of H. walsbyi to better understand the extent of variation between strains/subspecies. Results revealed that previously isolated strains/subspecies do not fully describe the complete repertoire of the genomic landscape present in H. walsbyi. Rearrangements, insertions, and deletions were observed for the Lake Tyrrell derived Haloquadratum genomes and were supported by environmental de novo sequences, including shifts in the dominant genomic landscape of the two most abundant strains. Analysis pertaining to halomucins indicated that homologs for this large protein are not a feature common for all species of Haloquadratum. Further, we analyzed ATP-binding cassette transporters (ABC-type transporters) for evidence of niche partitioning between different strains/subspecies. We were able to identify unique and variable transporter subunits from all five genomes analyzed and the de novo environmental sequences, suggesting that differences in nutrient and carbon source acquisition may play a role in maintaining distinct strains/subspecies.


Asunto(s)
Biodiversidad , Euryarchaeota/clasificación , Euryarchaeota/genética , Lagos/microbiología , Metagenoma , Euryarchaeota/aislamiento & purificación , Orden Génico , Genes Arqueales , Redes y Vías Metabólicas/genética , Metagenómica , Análisis de Secuencia de ADN , Sintenía , Victoria
5.
Rapid Commun Mass Spectrom ; 28(8): 845-54, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24623687

RESUMEN

RATIONALE: The organic content of speleothem calcite is a well-recognized component of their chemical composition. To date, the techniques for interpretation of this material include UV fluorescence, FTIR spectroscopy and biomarker analysis using gas chromatography/mass spectroscopy (GC/MS). However, investigation of the minute concentrations of molecules in speleothems demands careful sampling and laboratory controls. METHODS: To be certain extracted molecules were encapsulated at the time of speleothem growth and do not represent contamination, we submitted three pieces of speleothem calcite to a rigorous extraction procedure. Based on sequential digestion and analysis by GC/MS, we measured concentration profiles of individual compounds with increasing distance from sample surfaces. RESULTS: Declining concentrations toward interior extracts identified cholesterol, phthalates, and n-alkanes as surface contaminants. In contrast, iodo organic compounds had homogeneous concentration profiles and were also significantly above laboratory background levels, consistent with an indigenous origin. However, further laboratory testing demonstrated that iodo organics were produced by the reaction of iodine derived from the speleothem with solvent additives and other impurities of the extraction procedure. Sitosterol and some fatty acids demonstrated distributions which were probably indigenous to the speleothem archive, thus recording environmental conditions commensurate with time of growth. CONCLUSIONS: We do not aim to provide an environmental interpretation of extracted molecules, but highlight the caution necessary before doing so. We ultimately establish a framework for differentiating between organic constituents that are introduced to the speleothems during storage, handling and as artifacts of extraction, and those encapsulated in situ at the time of growth.


Asunto(s)
Carbonatos/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos/análisis , Compuestos Orgánicos/aislamiento & purificación , Cuevas , Compuestos Orgánicos/química
6.
Nature ; 455(7216): 1101-4, 2008 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-18948954

RESUMEN

The evolution of oxygenic photosynthesis had a profound impact on the Earth's surface chemistry, leading to a sharp rise in atmospheric oxygen between 2.45 and 2.32 billion years (Gyr) ago and the onset of extreme ice ages. The oldest widely accepted evidence for oxygenic photosynthesis has come from hydrocarbons extracted from approximately 2.7-Gyr-old shales in the Pilbara Craton, Australia, which contain traces of biomarkers (molecular fossils) indicative of eukaryotes and suggestive of oxygen-producing cyanobacteria. The soluble hydrocarbons were interpreted to be indigenous and syngenetic despite metamorphic alteration and extreme enrichment (10-20 per thousand) of (13)C relative to bulk sedimentary organic matter. Here we present micrometre-scale, in situ (13)C/(12)C measurements of pyrobitumen (thermally altered petroleum) and kerogen from these metamorphosed shales, including samples that originally yielded biomarkers. Our results show that both kerogen and pyrobitumen are strongly depleted in (13)C, indicating that indigenous petroleum is 10-20 per thousand lighter than the extracted hydrocarbons. These results are inconsistent with an indigenous origin for the biomarkers. Whatever their origin, the biomarkers must have entered the rock after peak metamorphism approximately 2.2 Gyr ago and thus do not provide evidence for the existence of eukaryotes and cyanobacteria in the Archaean eon. The oldest fossil evidence for eukaryotes and cyanobacteria therefore reverts to 1.78-1.68 Gyr ago and approximately 2.15 Gyr ago, respectively. Our results eliminate the evidence for oxygenic photosynthesis approximately 2.7 Gyr ago and exclude previous biomarker evidence for a long delay (approximately 300 million years) between the appearance of oxygen-producing cyanobacteria and the rise in atmospheric oxygen 2.45-2.32 Gyr ago.


Asunto(s)
Evolución Biológica , Cianobacterias/fisiología , Células Eucariotas/fisiología , Isótopos de Carbono/análisis , Sedimentos Geológicos/química , Hidrocarburos/química , Microscopía Electrónica de Rastreo
7.
Sci Rep ; 13(1): 19851, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37963973

RESUMEN

Fossilised true ferns (Pecopteris sp.) preserved in siderite concretions from the Mazon Creek Lagerstätte (Illinois) presented a unique opportunity to characterise the organic signatures of these late Carboniferous plants. Localised analyses of true fern fossils showed several highly abundant phytohopanoids and fernane/arborane derived aromatic products, which were present only negligibly within their siderite matrix, as well as from other types of fossilised plants. These terpenoids had been recognised in some extant ferns, but scarcely in sedimentary organic matter and their exact source remained ambiguous. The present fossil biomarker data confirms an ancient true fern origin. Furthermore, the excellent concretion preservation of a series of related terpenoid products provided a rare insight into their diagenetic formation. The benign properties of carbonate concretions could be exploited further for biomarker evidence of other fossilised organisms, with one important caveat being that biomarker signals attributed to isolated fossils be significantly distinct from background organic matter pervading the concretion matrix. For instance, hydrocarbon profiles of seed ferns (pteridosperms) and articulates (horsetails) also preserved in Mazon Creek concretions were indistinguishable from separate analysis of their concretion matrix, preventing biomarker recognition.


Asunto(s)
Helechos , Fósiles , Plantas , Carbonatos , Biomarcadores , Triterpenos Pentacíclicos
8.
Nat Ecol Evol ; 7(12): 2045-2054, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37884688

RESUMEN

Fossilized lipids offer a rare glimpse into ancient ecosystems. 2-Methylhopanes in sedimentary rocks were once used to infer the importance of cyanobacteria as primary producers throughout geological history. However, the discovery of hopanoid C-2 methyltransferase (HpnP) in Alphaproteobacteria led to the downfall of this molecular proxy. In the present study, we re-examined the distribution of HpnP in a new phylogenetic framework including recently proposed candidate phyla and re-interpreted a revised geological record of 2-methylhopanes based on contamination-free samples. We show that HpnP was probably present in the last common ancestor of cyanobacteria, while the gene appeared in Alphaproteobacteria only around 750 million years ago (Ma). A subsequent rise of sedimentary 2-methylhopanes around 600 Ma probably reflects the expansion of Alphaproteobacteria that coincided with the rise of eukaryotic algae-possibly connected by algal dependency on microbially produced vitamin B12. Our findings re-establish 2-methylhopanes as cyanobacterial biomarkers before 750 Ma and thus as a potential tool to measure the importance of oxygenic cyanobacteria as primary producers on early Earth. Our study illustrates how genetics can improve the diagnostic value of biomarkers and refine the reconstruction of early ecosystems.


Asunto(s)
Cianobacterias , Ecosistema , Filogenia , Cianobacterias/genética , Plantas , Biomarcadores
9.
Sci Adv ; 9(41): eadh9513, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824627

RESUMEN

Antarctic climate warming and atmospheric CO2 rise during the last deglaciation may be attributed in part to sea ice reduction in the Southern Ocean. Yet, glacial-interglacial Antarctic sea ice dynamics and underlying mechanisms are poorly constrained, as robust sea ice proxy evidence is sparse. Here, we present a molecular biomarker-based sea ice record that resolves the spring/summer sea ice variability off East Antarctica during the past 40 thousand years (ka). Our results indicate that substantial sea ice reduction culminated rapidly and contemporaneously with upwelling of carbon-enriched waters in the Southern Ocean at the onset of the last deglaciation but began at least ~2 ka earlier probably driven by an increasing local integrated summer insolation. Our findings suggest that sea ice reduction and associated feedbacks facilitated stratification breakup and outgassing of CO2 in the Southern Ocean and warming in Antarctica but may also have played a leading role in initializing these deglacial processes in the Southern Hemisphere.

10.
Sci Adv ; 9(34): eadf9999, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37624887

RESUMEN

The body fossil and biomarker records hint at an increase in biotic complexity between the two Cryogenian Snowball Earth episodes (ca. 661 million to ≤650 million years ago). Oxygen and nutrient availability can promote biotic complexity, but nutrient (particularly phosphorus) and redox dynamics across this interval remain poorly understood. Here, we present high-resolution paleoredox and phosphorus phase association data from multiple globally distributed drill core records through the non-glacial interval. These data are first correlated regionally by litho- and chemostratigraphy, and then calibrated within a series of global chronostratigraphic frameworks. The combined data show that regional differences in postglacial redox stabilization were partly controlled by the intensity of phosphorus recycling from marine sediments. The apparent increase in biotic complexity followed a global transition to more stable and less reducing conditions in shallow to mid-depth marine environments and occurred within a tolerable climatic window during progressive cooling after post-Snowball super-greenhouse conditions.

11.
Curr Biol ; 32(24): 5382-5389.e3, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36417903

RESUMEN

The oldest animals appear in the fossil record among Ediacara biota communities. They prelude animal-dominated ecosystems of the Phanerozoic and may hold clues to the appearance of modern animal phyla in the Cambrian explosion. However, little is known about the phylogeny of the Ediacaran organisms and even less about their diet and feeding behavior.1,2,3 An exception is mollusc-like Kimberella, for which a fossilized gut, feeding traces, and even potential coprolites have been found.4,5 By contrast, Ediacaran organic-walled tubes, such as Sabellidites and Calyptrina, are thought to belong to tube worms comparable with modern Siboglinidae that have no gut but gain their nutrition from symbiotic bacteria.6,7 Here, we examine the gut contents of Ediacaran animals using biomarker molecules. We show that 558-million-year (Ma)-old tube worm-like Calyptrina and mollusc-like Kimberella possessed a gut and shared a diet of green algae and bacteria. Despite their ancient age, sterol metabolism within the gut of both organisms was already comparable to extant invertebrates.8Dickinsonia, one of the key Ediacaran animals, show no traces of dietary molecules, indicating a different feeding mode and possible external digestion analogous to modern Placozoa. Lipid biomarkers uncover a range of feeding strategies in Ediacaran communities, highlighting true eumetazoan physiology of some Ediacaran animals.


Asunto(s)
Evolución Biológica , Ecosistema , Animales , Invertebrados/fisiología , Fósiles , Filogenia , Biomarcadores , Bacterias
12.
Nat Commun ; 13(1): 146, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013306

RESUMEN

The acquisition of photosynthesis is a fundamental step in the evolution of eukaryotes. However, few phototrophic organisms are unambiguously recognized in the Precambrian record. The in situ detection of metabolic byproducts in individual microfossils is the key for the direct identification of their metabolisms. Here, we report a new integrative methodology using synchrotron-based X-ray fluorescence and absorption. We evidence bound nickel-geoporphyrins moieties in low-grade metamorphic rocks, preserved in situ within cells of a ~1 Gyr-old multicellular eukaryote, Arctacellularia tetragonala. We identify these moieties as chlorophyll derivatives, indicating that A. tetragonala was a phototrophic eukaryote, one of the first unambiguous algae. This new approach, applicable to overmature rocks, creates a strong new proxy to understand the evolution of phototrophy and diversification of early ecosystems.


Asunto(s)
Clorofila/química , Chlorophyta/ultraestructura , Complejos de Coordinación/química , Fósiles , Fotosíntesis/fisiología , Evolución Biológica , Clorofila/historia , Chlorophyta/anatomía & histología , Chlorophyta/clasificación , Chlorophyta/fisiología , República Democrática del Congo , Ecosistema , Células Eucariotas , Sedimentos Geológicos/análisis , Historia Antigua , Microscopía Electrónica de Transmisión , Níquel/química , Filogenia , Células Vegetales/fisiología , Células Vegetales/ultraestructura , Tetrapirroles/química , Espectroscopía de Absorción de Rayos X
13.
Nature ; 437(7060): 866-70, 2005 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-16208367

RESUMEN

The disappearance of iron formations from the geological record approximately 1.8 billion years (Gyr) ago was the consequence of rising oxygen levels in the atmosphere starting 2.45-2.32 Gyr ago. It marks the end of a 2.5-Gyr period dominated by anoxic and iron-rich deep oceans. However, despite rising oxygen levels and a concomitant increase in marine sulphate concentration, related to enhanced sulphide oxidation during continental weathering, the chemistry of the oceans in the following mid-Proterozoic interval (approximately 1.8-0.8 Gyr ago) probably did not yet resemble our oxygen-rich modern oceans. Recent data indicate that marine oxygen and sulphate concentrations may have remained well below current levels during this period, with one model indicating that anoxic and sulphidic marine basins were widespread, and perhaps even globally distributed. Here we present hydrocarbon biomarkers (molecular fossils) from a 1.64-Gyr-old basin in northern Australia, revealing the ecological structure of mid-Proterozoic marine communities. The biomarkers signify a marine basin with anoxic, sulphidic, sulphate-poor and permanently stratified deep waters, hostile to eukaryotic algae. Phototrophic purple sulphur bacteria (Chromatiaceae) were detected in the geological record based on the new carotenoid biomarker okenane, and they seem to have co-existed with communities of green sulphur bacteria (Chlorobiaceae). Collectively, the biomarkers support mounting evidence for a long-lasting Proterozoic world in which oxygen levels remained well below modern levels.


Asunto(s)
Chlorobi/aislamiento & purificación , Chromatiaceae/aislamiento & purificación , Biología Marina , Agua de Mar/microbiología , Microbiología del Agua , Australia , Biomarcadores/análisis , Biomarcadores/química , Chlorobi/química , Chlorobi/metabolismo , Chromatiaceae/química , Chromatiaceae/metabolismo , Ecosistema , Fósiles , Historia Antigua , Hidrocarburos/análisis , Océanos y Mares , Oxígeno/análisis , Agua de Mar/química , Azufre/análisis , Factores de Tiempo
14.
Nat Ecol Evol ; 5(2): 169-173, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33230255

RESUMEN

The absence of unambiguous animal body fossils in rocks older than the late Ediacaran has rendered fossil lipids the most promising tracers of early organismic complexity. Yet much debate surrounds the various potential biological sources of putative metazoan steroids found in Precambrian rocks. Here we show that 26-methylated steranes-hydrocarbon structures currently attributed to the earliest animals-can form via geological alteration of common algal sterols, which carries important implications for palaeo-ecological interpretations and inhibits the use of such unconventional 'sponge' steranes for reconstructing early animal evolution.


Asunto(s)
Evolución Biológica , Fósiles , Animales , Esteroides
15.
Nat Ecol Evol ; 5(2): 165-168, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33230256

RESUMEN

The earliest fossils of animal-like organisms occur in Ediacaran rocks that are approximately 571 million years old. Yet 24-isopropylcholestanes and other C30 fossil sterol molecules have been suggested to reflect an important ecological role of demosponges as the first abundant animals by the end of the Cryogenian period (>635 million years ago). Here, we demonstrate that C30 24-isopropylcholestane is not diagnostic for sponges and probably formed in Neoproterozoic sediments through the geological methylation of C29 sterols of chlorophyte algae, the dominant eukaryotes at that time. These findings reconcile biomarker evidence with the geological record and revert the oldest evidence for animals back into the latest Ediacaran.


Asunto(s)
Fósiles , Esteroles , Animales , Biomarcadores , Eucariontes
17.
Nat Commun ; 11(1): 1261, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152319

RESUMEN

The Ediacara biota represents the first complex macroscopic organisms in the geological record, foreshadowing the radiation of eumetazoan animals in the Cambrian explosion. However, little is known about the contingencies that lead to their emergence, including the possible roles of nutrient availability and the quality of food sources. Here we present information on primary producers in the Ediacaran based on biomarker molecules that were extracted from sediments hosting Ediacaran macrofossils. High relative abundances of algal steranes over bacterial hopanes suggest that the Ediacara biota inhabited nutrient replete environments with an abundance of algal food sources comparable to Phanerozoic ecosystems. Thus, organisms of the Ediacara biota inhabited nutrient-rich environments akin to those that later fuelled the Cambrian explosion.


Asunto(s)
Ecología , Alimentos , Thoracica/fisiología , Animales , Bacterias , Evolución Biológica , Biomarcadores , Ciclo del Carbono , Ecosistema , Fósiles , Sedimentos Geológicos/química , Paleontología
18.
Geobiology ; 18(5): 544-559, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32216165

RESUMEN

The discovery of mid-Proterozoic (1.8-0.8 billion years ago, Ga) indigenous biomarkers is a challenge, since biologically informative molecules of such antiquity are commonly destroyed by metamorphism or overprinted by drilling fluids and other anthropogenic petroleum products. Previously, the oldest clearly indigenous biomarkers were reported from the 1.64 Ga Barney Creek Formation in the northern Australian McArthur Basin. In this study, we present the discovery of biomarker molecules from carbonaceous shales of the 1.73 Ga Wollogorang Formation in the southern McArthur Basin, extending the biomarker record back in time by ~90 million years. The extracted hydrocarbons illustrate typical mid-Proterozoic signatures with a large unresolved complex mixture, high methyl alkane/n-alkane ratios and the absence of eukaryotic steranes. Acyclic isoprenoids, saturated carotenoid derivatives, bacterial hopanes and aromatic hopanoids and steroids also were below detection limits. However, continuous homologous series of low molecular weight C14 -C19 2,3,4- and 2,3,6-trimethyl aryl isoprenoids (AI) were identified, and C20 -C22 AI homologues were tentatively identified. Based on elevated abundances relative to abiogenic isomers, we interpret the 2,3,6-AI isomer series as biogenic molecules and the 2,3,4-AI series as possibly biogenic. The biological sources for the 2,3,6-AI series include carotenoids of cyanobacteria and/or green sulphur bacteria (Chlorobiaceae). The lower concentrated 2,3,4-AI series may be derived from purple sulphur bacteria (Chromatiaceae). These degradation products of carotenoids are the oldest known clearly indigenous molecules of likely biogenic origin.


Asunto(s)
Chromatiaceae , Australia , Biomarcadores , Sedimentos Geológicos , Hidrocarburos
19.
Nat Ecol Evol ; 3(4): 582-589, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30911145

RESUMEN

The soft-bodied Ediacara biota (571-541 million years ago) represents the oldest complex large organisms in the fossil record, providing a bridge between largely microbial ecosystems of the Precambrian and the animal-dominated world of the Phanerozoic, potentially holding clues about the early evolution of Metazoa. However, the nature of most Ediacaran organisms remains unresolved, partly due to their enigmatic non-actualistic preservation. Here, we show that Flinders-style fossilization of Ediacaran organisms was promoted by unusually prolonged conservation of organic matter, coupled with differences in rheological behaviour of the over- and underlying sediments. In contrast with accepted models, cementation of overlying sand was not critical for fossil preservation, which is supported by the absence of cement in unweathered White Sea specimens and observations of soft sediment deformation in South Australian specimens. The rheological model, confirmed by laboratory simulations, implies that Ediacaran fossils do not necessarily reflect the external shape of the organism, but rather the morphology of a soft external or internal organic 'skeleton'. The rheological mechanism provides new constraints on biological interpretations of the Ediacara biota.


Asunto(s)
Fósiles , Sedimentos Geológicos , Australia , Biota , Océanos y Mares , Reología
20.
Geobiology ; 17(4): 360-380, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30734481

RESUMEN

The ca. 1.38 billion years (Ga) old Roper Group of the McArthur Basin, northern Australia, is one of the most extensive Proterozoic hydrocarbon-bearing units. Organic-rich black siltstones from the Velkerri Formation were deposited in a deep-water sequence and were analysed to determine their organic geochemical (biomarker) signatures, which were used to interpret the microbial diversity and palaeoenvironment of the Roper Seaway. The indigenous hydrocarbon biomarker assemblages describe a water column dominated by bacteria with large-scale heterotrophic reworking of the organic matter in the water column or bottom sediment. Possible evidence for microbial reworking includes a large unresolved complex mixture (UCM), high ratios of mid-chained and terminally branched monomethyl alkanes relative to n-alkanes-features characteristic of indigenous Proterozoic bitumen. Steranes, biomarkers for single-celled and multicellular eukaryotes, were below detection limits in all extracts analysed, despite eukaryotic microfossils having been previously identified in the Roper Group, albeit largely in organically lean shallower water facies. These data suggest that eukaryotes, while present in the Roper Seaway, were ecologically restricted and contributed little to export production. The 2,3,4- and 2,3,6-trimethyl aryl isoprenoids (TMAI) were absent or in very low concentration in the Velkerri Formation. The low abundance is primary and not caused by thermal destruction. The combination of increased dibenzothiophene in the Amungee Member of the Velkerri Formation and trace metal redox geochemistry suggests that degradation of carotenoids occurred during intermittent oxygen exposure at the sediment-water interface and/or the water column was rarely euxinic in the photic zone and likely only transiently euxinic at depth. A comparison of this work with recently published biomarker and trace elemental studies from other mid-Proterozoic basins demonstrates that microbial environments, water column geochemistry and basin redox were heterogeneous.


Asunto(s)
Ambiente , Sedimentos Geológicos/microbiología , Hidrocarburos/análisis , Microbiota , Biomarcadores Ambientales , Fósiles , Sedimentos Geológicos/análisis , Northern Territory
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA