Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Cell ; 31(7): 1614-1632, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31123051

RESUMEN

Energy homeostasis is vital to all living organisms. In eukaryotes, this process is controlled by fuel gauging protein kinases: AMP-activated kinase in mammals, Sucrose Non-Fermenting1 (SNF1) in yeast (Saccharomyces cerevisiae), and SNF1-related kinase1 (SnRK1) in plants. These kinases are highly conserved in structure and function and (according to this paradigm) operate as heterotrimeric complexes of catalytic-α and regulatory ß- and γ-subunits, responding to low cellular nucleotide charge. Here, we determined that the Arabidopsis (Arabidopsis thaliana) SnRK1 catalytic α-subunit has regulatory subunit-independent activity, which is consistent with default activation (and thus controlled repression), a strategy more generally used by plants. Low energy stress (caused by darkness, inhibited photosynthesis, or hypoxia) also triggers SnRK1α nuclear translocation, thereby controlling induced but not repressed target gene expression to replenish cellular energy for plant survival. The myristoylated and membrane-associated regulatory ß-subunits restrict nuclear localization and inhibit target gene induction. Transgenic plants with forced SnRK1α-subunit localization consistently were affected in metabolic stress responses, but their analysis also revealed key roles for nuclear SnRK1 in leaf and root growth and development. Our findings suggest that plants have modified the ancient, highly conserved eukaryotic energy sensor to better fit their unique lifestyle and to more effectively cope with changing environmental conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Metabolismo Energético , Desarrollo de la Planta , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Fisiológico , Arabidopsis/genética , Dominio Catalítico , Metabolismo Energético/genética , Activación Enzimática , Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta/genética , Raíces de Plantas/crecimiento & desarrollo , Transporte de Proteínas , Estrés Fisiológico/genética
2.
J Exp Bot ; 67(22): 6215-6252, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27856705

RESUMEN

The SnRK1 (SNF1-related kinase 1) kinases are the plant cellular fuel gauges, activated in response to energy-depleting stress conditions to maintain energy homeostasis while also gatekeeping important developmental transitions for optimal growth and survival. Similar to their opisthokont counterparts (animal AMP-activated kinase, AMPK, and yeast Sucrose Non-Fermenting 1, SNF), they function as heterotrimeric complexes with a catalytic (kinase) α subunit and regulatory ß and γ subunits. Although the overall configuration of the kinase complexes is well conserved, plant-specific structural modifications (including a unique hybrid ßγ subunit) and associated differences in regulation reflect evolutionary divergence in response to fundamentally different lifestyles. While AMP is the key metabolic signal activating AMPK in animals, the plant kinases appear to be allosterically inhibited by sugar-phosphates. Their function is further fine-tuned by differential subunit expression, localization, and diverse post-translational modifications. The SnRK1 kinases act by direct phosphorylation of key metabolic enzymes and regulatory proteins, extensive transcriptional regulation (e.g. through bZIP transcription factors), and down-regulation of TOR (target of rapamycin) kinase signaling. Significant progress has been made in recent years. New tools and more directed approaches will help answer important fundamental questions regarding their structure, regulation, and function, as well as explore their potential as targets for selection and modification for improved plant performance in a changing environment.


Asunto(s)
Metabolismo Energético/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Evolución Biológica , Metabolismo Energético/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Homeostasis/genética , Homeostasis/fisiología , Proteínas Serina-Treonina Quinasas/genética
3.
FEMS Yeast Res ; 16(4)2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27189362

RESUMEN

Trehalose-6-P (T6P), an intermediate of trehalose biosynthesis, was identified as an important regulator of yeast sugar metabolism and signaling. tps1Δ mutants, deficient in T6P synthesis (TPS), are unable to grow on rapidly fermentable medium with uncontrolled influx in glycolysis, depletion of ATP and accumulation of sugar phosphates. However, the exact molecular mechanisms involved are not fully understood. We show that SNF1 deletion restores the tps1Δ growth defect on glucose, suggesting that lack of TPS hampers inactivation of SNF1 or SNF1-regulated processes. In addition to alternative, non-fermentable carbon metabolism, SNF1 controls two major processes: respiration and gluconeogenesis. The tps1Δ defect appears to be specifically associated with deficient inhibition of gluconeogenesis, indicating more downstream effects. Consistently, Snf1 dephosphorylation and inactivation on glucose medium are not affected, as confirmed with an in vivo Snf1 activity reporter. Detailed analysis shows that gluconeogenic Pck1 and Fbp1 expression, protein levels and activity are not repressed upon glucose addition to tps1Δ cells, suggesting a link between the metabolic defect and persistent gluconeogenesis. While SNF1 is essential for induction of gluconeogenesis, T6P/TPS is required for inactivation of gluconeogenesis in the presence of glucose, downstream and independent of SNF1 activity and the Cat8 and Sip4 transcription factors.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Gluconeogénesis , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Fosfatos de Azúcar/metabolismo , Trehalosa/análogos & derivados , Medios de Cultivo/química , Eliminación de Gen , Glucosa/metabolismo , Glucosiltransferasas/genética , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Trehalosa/metabolismo
4.
Biotechnol Biofuels ; 6(1): 120, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-23971950

RESUMEN

BACKGROUND: In addition to efficient pentose utilization, high inhibitor tolerance is a key trait required in any organism used for economically viable industrial bioethanol production with lignocellulose biomass. Although recent work has succeeded in establishing efficient xylose fermentation in robust industrial Saccharomyces cerevisiae strains, the resulting strains still lacked sufficient inhibitor tolerance for efficient sugar fermentation in lignocellulose hydrolysates. The aim of the present work was to combine high xylose fermentation activity and high inhibitor tolerance in a single industrial yeast strain. RESULTS: We have screened 580 yeast strains for high inhibitor tolerance using undetoxified acid-pretreated spruce hydrolysate and identified a triploid industrial baker's yeast strain as having the highest inhibitor tolerance. From this strain, a mating competent diploid segregant with even higher inhibitor tolerance was obtained. It was crossed with the recently developed D-xylose fermenting diploid industrial strain GS1.11-26, with the Ethanol Red genetic background. Screening of 819 diploid segregants from the tetraploid hybrid resulted in two strains, GSF335 and GSF767, combining high inhibitor tolerance and efficient xylose fermentation. In a parallel approach, meiotic recombination of GS1.11-26 with a haploid segregant of Ethanol Red and screening of 104 segregants resulted in a similar inhibitor tolerant diploid strain, GSE16. The three superior strains exhibited significantly improved tolerance to inhibitors in spruce hydrolysate, higher glucose consumption rates, higher aerobic growth rates and higher maximal ethanol accumulation capacity in very-high gravity fermentation, compared to GS1.11-26. In complex medium, the D-xylose utilization rate by the three superior strains ranged from 0.36 to 0.67 g/g DW/h, which was lower than that of GS1.11-26 (1.10 g/g DW/h). On the other hand, in batch fermentation of undetoxified acid-pretreated spruce hydrolysate, the three superior strains showed comparable D-xylose utilization rates as GS1.11-26, probably because of their higher inhibitor tolerance. They produced up to 23% more ethanol compared to Ethanol Red. CONCLUSIONS: We have successfully constructed three superior industrial S. cerevisiae strains that combine efficient D-xylose utilization with high inhibitor tolerance. Since the background strain Ethanol Red has a proven record of successful industrial application, the three new superior strains have strong potential for direct application in industrial bioethanol production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA