Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 160(3): 489-502, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25619690

RESUMEN

Protein kinase C (PKC) isozymes have remained elusive cancer targets despite the unambiguous tumor promoting function of their potent ligands, phorbol esters, and the prevalence of their mutations. We analyzed 8% of PKC mutations identified in human cancers and found that, surprisingly, most were loss of function and none were activating. Loss-of-function mutations occurred in all PKC subgroups and impeded second-messenger binding, phosphorylation, or catalysis. Correction of a loss-of-function PKCß mutation by CRISPR-mediated genome editing in a patient-derived colon cancer cell line suppressed anchorage-independent growth and reduced tumor growth in a xenograft model. Hemizygous deletion promoted anchorage-independent growth, revealing that PKCß is haploinsufficient for tumor suppression. Several mutations were dominant negative, suppressing global PKC signaling output, and bioinformatic analysis suggested that PKC mutations cooperate with co-occurring mutations in cancer drivers. These data establish that PKC isozymes generally function as tumor suppressors, indicating that therapies should focus on restoring, not inhibiting, PKC activity.


Asunto(s)
Proteína Quinasa C/química , Proteína Quinasa C/genética , Animales , Línea Celular Tumoral , Transferencia Resonante de Energía de Fluorescencia , Genes Supresores de Tumor , Xenoinjertos , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones Desnudos , Modelos Moleculares , Mutación , Trasplante de Neoplasias , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteína Quinasa C/metabolismo , Estructura Terciaria de Proteína
2.
Mol Pharmacol ; 101(4): 191-200, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35115411

RESUMEN

Amplification of pro-oncogenic kinases is a common genetic alteration driving tumorigenic phenotypes. Cancer cells rely on the amplified kinases to sustain cell proliferation, survival, and growth, presenting an opportunity to develop therapies targeting the amplified kinases. Utilizing small molecule catalytic inhibitors as therapies to target amplified kinases is plagued by de novo resistance driven by increased expression of the target, and amplified kinases can drive tumorigenic phenotypes independent of catalytic activity. Here, we discuss the emergence of proteolysis-targeting chimeras that provide an opportunity to target these oncogenic drivers effectively. SIGNIFICANCE STATEMENT: Protein kinases contribute to tumorigenesis through catalytic and noncatalytic mechanisms, and kinase gene amplifications are well described mechanisms of resistance to small molecule catalytic inhibitors. Repurposing catalytic inhibitors for the development of protein degraders will offer improved clinical benefits by targeting noncatalytic functions of kinases that promote tumorigenesis and overcoming resistance due to amplification.


Asunto(s)
Neoplasias , Carcinogénesis/genética , Proliferación Celular , Amplificación de Genes , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas Quinasas/genética
3.
J Biol Chem ; 295(25): 8470-8479, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32358059

RESUMEN

Identifying additional mitogen-activated protein kinase (MAPK) pathway regulators is invaluable in aiding our understanding of the complex signaling networks that regulate cellular processes, including cell proliferation and survival. Here, using in vitro kinase assays and by expressing WT or kinase-dead MAPK kinase kinase 19 (MAP3K19) in the HEK293T cell line and assessing activation of the extracellular signal-regulated kinase (ERK) and JUN N-terminal kinase (JNK) signaling pathways, we defined MAP3K19 as a novel regulator of MAPK signaling. We also observed that overexpression of WT MAP3K19 activates both the ERK and JNK pathways in a panel of cancer cell lines. Furthermore, MAP3K19 sustained ERK pathway activation in the presence of inhibitors targeting the RAF proto-oncogene Ser/Thr protein kinase (RAF) and MAPK/ERK kinase, indicating that MAP3K19 activates ERK via a RAF-independent mechanism. Findings from in vitro and in-cell kinase assays demonstrate that MAP3K19 is a kinase that directly phosphorylates both MAPK/ERK kinase (MEK) and MAPK kinase 7 (MKK7). Results from an short-hairpin RNA screen indicated that MAP3K19 is essential for maintaining survival in KRAS-mutant cancers; therefore, we depleted or inhibited MAP3K19 in KRAS-mutant cancer cell lines and observed that this reduces viability and decreases ERK and JNK pathway activation. In summary, our results reveal that MAP3K19 directly activates the ERK and JNK cascades and highlight a role for this kinase in maintaining survival of KRAS-mutant lung cancer cells.


Asunto(s)
Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/genética , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
4.
Proc Natl Acad Sci U S A ; 115(24): E5497-E5505, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29844158

RESUMEN

Conventional protein kinase C (PKC) family members are reversibly activated by binding to the second messengers Ca2+ and diacylglycerol, events that break autoinhibitory constraints to allow the enzyme to adopt an active, but degradation-sensitive, conformation. Perturbing these autoinhibitory constraints, resulting in protein destabilization, is one of many mechanisms by which PKC function is lost in cancer. Here, we address how a gain-of-function germline mutation in PKCα in Alzheimer's disease (AD) enhances signaling without increasing vulnerability to down-regulation. Biochemical analyses of purified protein demonstrate that this mutation results in an ∼30% increase in the catalytic rate of the activated enzyme, with no changes in the concentrations of Ca2+ or lipid required for half-maximal activation. Molecular dynamics simulations reveal that this mutation has both localized and allosteric effects, most notably decreasing the dynamics of the C-helix, a key determinant in the catalytic turnover of kinases. Consistent with this mutation not altering autoinhibitory constraints, live-cell imaging studies reveal that the basal signaling output of PKCα-M489V is unchanged. However, the mutant enzyme in cells displays increased sensitivity to an inhibitor that is ineffective toward scaffolded PKC, suggesting the altered dynamics of the kinase domain may influence protein interactions. Finally, we show that phosphorylation of a key PKC substrate, myristoylated alanine-rich C-kinase substrate, is increased in brains of CRISPR-Cas9 genome-edited mice containing the PKCα-M489V mutation. Our results unveil how an AD-associated mutation in PKCα permits enhanced agonist-dependent signaling via a mechanism that evades the cell's homeostatic down-regulation of constitutively active PKCα.


Asunto(s)
Enfermedad de Alzheimer/genética , Regulación hacia Abajo/genética , Mutación con Ganancia de Función/genética , Proteína Quinasa C-alfa/genética , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Células COS , Sistemas CRISPR-Cas/genética , Calcio/metabolismo , Catálisis , Dominio Catalítico/genética , Línea Celular , Chlorocebus aethiops , Activación Enzimática/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Fosforilación/genética , Transducción de Señal/genética
5.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799513

RESUMEN

Squamous cell carcinomas of the lung, head and neck, esophagus, and cervix account for more than two million cases of cancer per year worldwide with very few targetable therapies available and minimal clinical improvement in the past three decades. Although these carcinomas are differentiated anatomically, their genetic landscape shares numerous common genetic alterations. Amplification of the third chromosome's distal portion (3q) is a distinguishing genetic alteration in most of these carcinomas and leads to copy-number gain and amplification of numerous oncogenic proteins. This area of the chromosome harbors known oncogenes involved in squamous cell fate decisions and differentiation, including TP63, SOX2, ECT2, and PIK3CA. Furthermore, novel targetable oncogenic kinases within this amplicon include PRKCI, PAK2, MAP3K13, and TNIK. TCGA analysis of these genes identified amplification in more than 20% of clinical squamous cell carcinoma samples, correlating with a significant decrease in overall patient survival. Alteration of these genes frequently co-occurs and is dependent on 3q-chromosome amplification. The dependency of cancer cells on these amplified kinases provides a route toward personalized medicine in squamous cell carcinoma patients through development of small-molecules targeting these kinases.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias del Cuello Uterino/tratamiento farmacológico , Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidad , Ensayos Clínicos como Asunto , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Neoplasias Esofágicas/enzimología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/mortalidad , Femenino , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/enzimología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/mortalidad , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Masculino , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Medicina de Precisión/métodos , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptores de Factores de Crecimiento Endotelial Vascular/genética , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Análisis de Supervivencia , Neoplasias del Cuello Uterino/enzimología , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/mortalidad
6.
IUBMB Life ; 71(6): 738-748, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30548122

RESUMEN

For many decades, kinases have predominantly been characterized as oncogenes and drivers of tumorigenesis, because activating mutations in kinases occur in cancer with high frequency. The oncogenic functions of kinases relate to their roles as growth factor receptors and as critical mediators of mitogen-activated pathways. Indeed, some of the most promising cancer therapeutic agents are kinase inhibitors. However, cancer genomics studies, especially screens that utilize high-throughput identification of loss-of-function somatic mutations, are beginning to shed light on a widespread role for kinases as tumor suppressors. The initial characterization of tumor-suppressing kinases- in particular members of the protein kinase C (PKC) family, MKK4 of the mitogen-activated protein kinase kinase family, and DAPK3 of the death-associated protein kinase family- laid the foundation for bioinformatic approaches that enable the identification of other tumor-suppressing kinases. In this review, we discuss the important role that kinases play as tumor suppressors, using several examples to illustrate the history of their discovery and highlight the modern approaches that presently aid in the identification of tumor-suppressing kinases. © 2018 IUBMB Life, 71(6):738-748, 2019.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/genética , MAP Quinasa Quinasa 4/genética , Neoplasias/genética , Proteínas Supresoras de Tumor/genética , Carcinogénesis/genética , Humanos , Proteína Quinasa C/genética , Transducción de Señal , Proteínas Supresoras de Tumor/química
7.
Mol Cell ; 35(4): 442-53, 2009 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-19716789

RESUMEN

ATR and Chk1 are two key protein kinases in the replication checkpoint. Activation of ATR-Chk1 has been extensively investigated, but checkpoint termination and replication fork restart are less well understood. Here, we report that DNA damage not only activates Chk1, but also exposes a degron-like region at the carboxyl terminus of Chk1 to an Fbx6-containing SCF (Skp1-Cul1-F box) E3 ligase, which mediates the ubiquitination and degradation of Chk1 and, in turn, terminates the checkpoint. The protein levels of Chk1 and Fbx6 showed an inverse correlation in both cultured cancer cells and in human breast tumor tissues. Further, we show that low levels of Fbx6 and consequent impairment of replication stress-induced Chk1 degradation are associated with cancer cell resistance to the chemotherapeutic agent, camptothecin. We propose that Fbx6-dependent Chk1 degradation contributes to S phase checkpoint termination and that a defect in this mechanism might increase tumor cell resistance to certain anticancer drugs.


Asunto(s)
Daño del ADN , Replicación del ADN , Neoplasias/enzimología , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Ligasas SKP Cullina F-box/metabolismo , Estrés Fisiológico , Antineoplásicos Fitogénicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada , Camptotecina/farmacología , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Activación Enzimática , Humanos , Lisina , Neoplasias/genética , Neoplasias/patología , Fosforilación , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Estructura Terciaria de Proteína , Interferencia de ARN , Proteínas Ligasas SKP Cullina F-box/genética , Factores de Tiempo , Ubiquitinación
8.
Proc Natl Acad Sci U S A ; 111(38): E3957-65, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25201979

RESUMEN

Growth factor receptor levels are aberrantly high in diverse cancers, driving the proliferation and survival of tumor cells. Understanding the molecular basis for this aberrant elevation has profound clinical implications. Here we show that the pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) suppresses receptor tyrosine kinase (RTK) signaling output by a previously unidentified epigenetic mechanism unrelated to its previously described function as the hydrophobic motif phosphatase for the protein kinase AKT, protein kinase C, and S6 kinase. Specifically, we show that nuclear-localized PHLPP suppresses histone phosphorylation and acetylation, in turn suppressing the transcription of diverse growth factor receptors, including the EGF receptor. These data uncover a much broader role for PHLPP in regulation of growth factor signaling beyond its direct inactivation of AKT: By suppressing RTK levels, PHLPP dampens the downstream signaling output of two major oncogenic pathways, the PI3 kinase/AKT and the Rat sarcoma (RAS)/ERK pathways. Our data are consistent with a model in which PHLPP modifies the histone code to control the transcription of RTKs.


Asunto(s)
Receptores ErbB/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Modelos Biológicos , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Animales , Línea Celular Transformada , Receptores ErbB/genética , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Secuencias Repetitivas de Aminoácido , Transcripción Genética/fisiología
9.
J Biol Chem ; 290(25): 15406-15420, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-25903140

RESUMEN

The DAXX transcriptional repressor was originally associated with apoptotic cell death. However, recent evidence that DAXX represses several tumor suppressor genes, including the DAPK1 and DAPK3 protein kinases, and is up-regulated in many cancers argues that a pro-survival role may predominate in a cancer context. Here, we report that DAXX has potent growth-enhancing effects on primary prostatic malignancy through inhibition of autophagy. Through stable gene knockdown and mouse subcutaneous xenograft studies, we demonstrate that DAXX promotes tumorigenicity of human ALVA-31 and PC3 prostate cancer (PCa) cells in vivo. Importantly, DAXX represses expression of essential autophagy modulators DAPK3 and ULK1 in vivo, revealing autophagy suppression as a mechanism through which DAXX promotes PCa tumorigenicity. Furthermore, DAXX knockdown increases autophagic flux in cultured PCa cells. Finally, interrogation of the Oncomine(TM) database suggests that DAXX overexpression is associated with malignant transformation in several human cancers, including prostate and pancreatic cancers. Thus, DAXX may represent a new cancer biomarker for the detection of aggressive disease, whose tissue-specific down-regulation can serve as an improved therapeutic modality. Our results establish DAXX as a pro-survival protein in PCa and reveal that, in the early stages of tumorigenesis, autophagy suppresses prostate tumor formation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Autofagia , Biomarcadores de Tumor/biosíntesis , Regulación Neoplásica de la Expresión Génica , Proteínas Nucleares/biosíntesis , Neoplasias de la Próstata/metabolismo , Proteínas Represoras/biosíntesis , Proteínas Supresoras de Tumor/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Proteínas Co-Represoras , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Desnudos , Chaperonas Moleculares , Trasplante de Neoplasias , Proteínas Nucleares/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/genética , Proteínas Supresoras de Tumor/genética
10.
Proc Natl Acad Sci U S A ; 110(30): 12426-31, 2013 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-23836671

RESUMEN

Approximately 70% of patients with non-small-cell lung cancer present with late-stage disease and have limited treatment options, so there is a pressing need to develop efficacious targeted therapies for these patients. This remains a major challenge as the underlying genetic causes of ~50% of non-small-cell lung cancers remain unknown. Here we demonstrate that a targeted genetic dependency screen is an efficient approach to identify somatic cancer alterations that are functionally important. By using this approach, we have identified three kinases with gain-of-function mutations in lung cancer, namely FGFR4, MAP3K9, and PAK5. Mutations in these kinases are activating toward the ERK pathway, and targeted depletion of the mutated kinases inhibits proliferation, suppresses constitutive activation of downstream signaling pathways, and results in specific killing of the lung cancer cells. Genomic profiling of patients with lung cancer is ushering in an era of personalized medicine; however, lack of actionable mutations presents a significant hurdle. Our study indicates that targeted genetic dependency screens will be an effective strategy to elucidate somatic variants that are essential for lung cancer cell viability.


Asunto(s)
Neoplasias Pulmonares/genética , Quinasas Quinasa Quinasa PAM/genética , Mutación , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Quinasas p21 Activadas/genética , Proliferación Celular , Supervivencia Celular , Humanos , Neoplasias Pulmonares/patología , Sistema de Señalización de MAP Quinasas
11.
Arthritis Rheum ; 65(8): 2161-71, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23666743

RESUMEN

OBJECTIVE: Systemic lupus erythematosus (SLE) is a prototype autoimmune disease that is assumed to occur via a complex interplay of environmental and genetic factors. Rare causes of monogenic SLE have been described, providing unique insights into fundamental mechanisms of immune tolerance. The aim of this study was to identify the cause of an autosomal-recessive form of SLE. METHODS: We studied 3 siblings with juvenile-onset SLE from 1 consanguineous kindred and used next-generation sequencing to identify mutations in the disease-associated gene. We performed extensive biochemical, immunologic, and functional assays to assess the impact of the identified mutations on B cell biology. RESULTS: We identified a homozygous missense mutation in PRKCD, encoding protein kinase δ (PKCδ), in all 3 affected siblings. Mutation of PRKCD resulted in reduced expression and activity of the encoded protein PKCδ (involved in the deletion of autoreactive B cells), leading to resistance to B cell receptor- and calcium-dependent apoptosis and increased B cell proliferation. Thus, as for mice deficient in PKCδ, which exhibit an SLE phenotype and B cell expansion, we observed an increased number of immature B cells in the affected family members and a developmental shift toward naive B cells with an immature phenotype. CONCLUSION: Our findings indicate that PKCδ is crucial in regulating B cell tolerance and preventing self-reactivity in humans, and that PKCδ deficiency represents a novel genetic defect of apoptosis leading to SLE.


Asunto(s)
Apoptosis , Linfocitos B/patología , Lupus Eritematoso Sistémico/enzimología , Lupus Eritematoso Sistémico/genética , Mutación Missense , Proteína Quinasa C-delta/deficiencia , Proteína Quinasa C-delta/genética , Adolescente , Adulto , Linfocitos B/inmunología , Linfocitos B/metabolismo , Proliferación Celular , Niño , Femenino , Variación Genética , Homocigoto , Humanos , Hiperplasia , Tolerancia Inmunológica , Lupus Eritematoso Sistémico/patología , Masculino , Polimorfismo de Nucleótido Simple , Proteína Quinasa C-delta/inmunología , Adulto Joven
12.
Cell Chem Biol ; 31(2): 326-337.e11, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38016478

RESUMEN

PIM kinases have important pro-tumorigenic roles and mediate several oncogenic traits, including cell proliferation, survival, and chemotherapeutic resistance. As a result, multiple PIM inhibitors have been pursued as investigational new drugs in cancer; however, response to PIM inhibitors in solid tumors has fallen short of expectations. We found that inhibition of PIM kinase activity stabilizes protein levels of all three PIM isoforms (PIM1/2/3), and this can promote resistance to PIM inhibitors and chemotherapy. To overcome this effect, we designed PIM proteolysis targeting chimeras (PROTACs) to target PIM for degradation. PIM PROTACs effectively downmodulated PIM levels through the ubiquitin-proteasome pathway. Importantly, degradation of PIM kinases was more potent than inhibition of catalytic activity at inducing apoptosis in prostate cancer cell line models. In conclusion, we provide evidence of the advantages of degrading PIM kinases versus inhibiting their catalytic activity to target the oncogenic functions of PIM kinases.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Fosforilación , Apoptosis , Proliferación Celular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-pim-1
13.
Mol Cancer Ther ; : OF1-OF11, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853421

RESUMEN

Most patients with lung squamous cell carcinoma (LSCC) undergo chemotherapy, radiotherapy, and adjuvant immunotherapy for locally advanced disease. The efficacy of these treatments is still limited because of dose-limiting toxicity or locoregional recurrence. New combination approaches and targets such as actionable oncogenic drivers are needed to advance treatment options for patients with LSCC. Moreover, other options for chemotherapy-ineligible patients are limited. As such, there is a critical need for the development of selective and potent chemoradiosensitizers for locally advanced LSCC. In this study, we investigated inhibiting TRAF2- and NCK-interacting protein kinase (TNIK), which is amplified in 40% of patients with LSCC, as a strategy to sensitize LSCC tumors to chemotherapy and radiotherapy. Employing a range of human LSCC cell lines and the TNIK inhibitor NCB-0846, we investigated the potential of TNIK as a chemo- and radiosensitizing target with in vitro and in vivo preclinical models. The combination of NCB-0846 with cisplatin or etoposide was at best additive. Interestingly, pre-treating LSCC cells with NCB-0846 prior to ionizing radiation (IR) potentiated the cytotoxicity of IR in a TNIK-specific fashion. Characterization of the radiosensitization mechanism suggested that TNIK inhibition may impair the DNA damage response and promote mitotic catastrophe in irradiated cells. In a subcutaneous xenograft in vivo model, pretreatment with NCB-0846 significantly enhanced the efficacy of IR and caused elevated necrosis in TNIKhigh LK2 tumors but not TNIKlow KNS62 tumors. Overall, these results indicate that TNIK inhibition may be a promising strategy to increase the efficacy of radiotherapy in patients with LSCC with high TNIK expression.

14.
Mol Cancer Ther ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38670554

RESUMEN

Most patients with lung squamous cell carcinoma (LSCC) undergo chemotherapy, radiotherapy, and adjuvant immunotherapy for locally advanced disease. The efficacy of these treatments is still limited due to dose-limiting toxicity or locoregional recurrence. New combination approaches and targets such as actionable oncogenic drivers are needed to advance treatment options for LSCC patients. Moreover, other options for chemotherapy-ineligible patients are also limited. As such there is a critical need for the development of selective and potent chemoradiosensitizers for locally advanced LSCC. Here, we investigated inhibiting TRAF2 and NCK-interacting protein kinase (TNIK), which is amplified in 40% of LSCC patients, as a strategy to sensitize LSCC tumors to chemo- and radiotherapy. Employing a range of human LSCC cell lines and the TNIK inhibitor NCB-0846, we investigated the potential of TNIK as a chemo- and radiosensitizing target with in vitro and in vivo preclinical models. The combination of NCB-0846 with cisplatin or etoposide was at best additive. Interestingly, pre-treating LSCC cells with NCB-0846 prior to ionizing radiation (IR) potentiated the cytotoxicity of IR in a TNIK-specific fashion. Characterization of the radiosensitization mechanism suggested that TNIK inhibition may impair the DNA damage response and promote mitotic catastrophe in irradiated cells. In a subcutaneous xenograft in vivo model, pretreatment with NCB-0846 significantly enhanced the efficacy of IR and caused elevated necrosis in TNIKhigh LK2 tumors but not TNIKlow KNS62 tumors. Overall, these results indicate that TNIK inhibition may be a promising strategy to increase the efficacy of radiotherapy in LSCC patients with high TNIK expression.

15.
Nat Commun ; 12(1): 4055, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34210965

RESUMEN

Poly(ADP-ribose) polymerase 1 (PARP1) and PARP2 are recruited and activated by DNA damage, resulting in ADP-ribosylation at numerous sites, both within PARP1 itself and in other proteins. Several PARP1 and PARP2 inhibitors are currently employed in the clinic or undergoing trials for treatment of various cancers. These drugs act primarily by trapping PARP1 on damaged chromatin, which can lead to cell death, especially in cells with DNA repair defects. Although PARP1 trapping is thought to be caused primarily by the catalytic inhibition of PARP-dependent modification, implying that ADP-ribosylation (ADPr) can counteract trapping, it is not known which exact sites are important for this process. Following recent findings that PARP1- or PARP2-mediated modification is predominantly serine-linked, we demonstrate here that serine ADPr plays a vital role in cellular responses to PARP1/PARP2 inhibitors. Specifically, we identify three serine residues within PARP1 (499, 507, and 519) as key sites whose efficient HPF1-dependent modification counters PARP1 trapping and contributes to inhibitor tolerance. Our data implicate genes that encode serine-specific ADPr regulators, HPF1 and ARH3, as potential PARP1/PARP2 inhibitor therapy biomarkers.


Asunto(s)
Proteínas Portadoras/metabolismo , Daño del ADN , Reparación del ADN , Neoplasias/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Serina/metabolismo , ADP-Ribosilación , Línea Celular , Línea Celular Tumoral , Humanos , Neoplasias/enzimología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Procesamiento Proteico-Postraduccional
16.
Cancer Discov ; 11(6): 1411-1423, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33495197

RESUMEN

Lung squamous cell carcinoma (LSCC) is the second most prevalent type of lung cancer. Despite extensive genomic characterization, no targeted therapies are approved for the treatment of LSCC. Distal amplification of the 3q chromosome is the most frequent genomic alteration in LSCC, and there is an urgent need to identify efficacious druggable targets within this amplicon. We identify the protein kinase TNIK as a therapeutic target in LSCC. TNIK is amplified in approximately 50% of LSCC cases. TNIK genetic depletion or pharmacologic inhibition reduces the growth of LSCC cells in vitro and in vivo. In addition, TNIK inhibition showed antitumor activity and increased apoptosis in established LSCC patient-derived xenografts. Mechanistically, we identified the tumor suppressor Merlin/NF2 as a novel TNIK substrate and showed that TNIK and Merlin are required for the activation of focal adhesion kinase. In conclusion, our data identify targeting TNIK as a potential therapeutic strategy in LSCC. SIGNIFICANCE: Targeted therapies have not yet been approved for the treatment of LSCC, due to lack of identification of actionable cancer drivers. We define TNIK catalytic activity as essential for maintaining LSCC viability and validate the antitumor efficacy of TNIK inhibition in preclinical models of LSCC.This article is highlighted in the In This Issue feature, p. 1307.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Ratones , Terapia Molecular Dirigida , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética
17.
Trends Endocrinol Metab ; 19(6): 223-30, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18511290

RESUMEN

The Ser/Thr-specific phosphatase PHLPP [pleckstrin homology (PH) domain leucine-rich repeat protein phosphatase] provides 'the brakes' for Akt and protein kinase C (PKC) signaling. The two isoforms of this recently discovered family, PHLPP1 and PHLPP2, control the amplitude and duration of signaling of Akt and PKC by catalyzing the dephosphorylation of the hydrophobic phosphorylation motif, a C-terminal phosphorylation switch that controls these kinases. Aberrant regulation of either kinase accompanies many diseases, notably diabetes and cancer. By specifically dephosphorylating the hydrophobic motif, PHLPP controls the degree of agonist-evoked signaling by Akt and the cellular levels of PKC. This review focuses on the function of PHLPP1 and PHLPP2 in modulating signaling by Akt and PKC.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Sitios de Unión , Humanos , Modelos Biológicos , Proteínas Nucleares/clasificación , Proteínas Nucleares/genética , Fosfoproteínas Fosfatasas , Filogenia
18.
Cancers (Basel) ; 11(12)2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31817861

RESUMEN

Protein kinases are critical regulators of signaling cascades that control cellular proliferation, growth, survival, metabolism, migration, and invasion. Deregulation of kinase activity can lead to aberrant regulation of biological processes and to the onset of diseases, including cancer. In this review, we focus on oncogenic kinases and the signaling pathways they regulate that underpin tumor development. We highlight genomic biomarker-based precision medicine intervention strategies that match kinase inhibitors alone or in combination to mutationally activated kinase drivers, as well as progress towards implementation of these treatment strategies in the clinic. We also discuss the challenges for identification of novel protein kinase cancer drivers in the genomic era.

19.
Oncogene ; 38(15): 2860-2875, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30552384

RESUMEN

Metastasis to distant organs is a major cause for solid cancer mortality, and the acquisition of migratory and invasive phenotype is a key factor in initiation of malignancy. In this study we investigated the contribution of Mixed-Lineage Kinase 4 (MLK4) to aggressive phenotype of breast cancer cells. Our TCGA cancer genomic data analysis revealed that amplification or mRNA upregulation of MLK4 occurred in 23% of invasive breast carcinoma cases. To find the association between MLK4 expression and the specific subtype of breast cancer, we performed a transcriptomic analysis of multiple datasets, which showed that MLK4 is highly expressed in triple-negative breast cancer compared to other molecular subtypes. Depletion of MLK4 in cell lines with high MLK4 expression impaired proliferation and anchorage-dependent colony formation. Moreover, silencing of MLK4 expression significantly reduced the migratory potential and invasiveness of breast cancer cells as well as the number of spheroids formed in 3D cultures. These in vitro findings translate into slower rate of tumor growth in mice upon MLK4 knock-down. Furthermore, we established that MLK4 activates NF-κB signaling and promotes a mesenchymal phenotype in breast cancer cells. Immunohistochemical staining of samples obtained from breast cancer patients revealed a strong positive correlation between high expression of MLK4 and metastatic potential of tumors, which was predominantly observed in TNBC subgroup. Taken together, our results show that high expression of MLK4 promotes migratory and invasive phenotype of breast cancer and may represent a novel target for anticancer treatment.


Asunto(s)
Movimiento Celular/ética , Quinasas Quinasa Quinasa PAM/genética , Invasividad Neoplásica/genética , Neoplasias de la Mama Triple Negativas/genética , Regulación hacia Arriba/genética , Animales , Línea Celular , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Células HEK293 , Humanos , Células MCF-7 , Ratones , FN-kappa B/genética , Invasividad Neoplásica/patología , Transducción de Señal/genética , Transcriptoma/genética , Neoplasias de la Mama Triple Negativas/patología
20.
Cancer Discov ; 8(10): 1210-1212, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30279193

RESUMEN

RAS is one of the most frequently altered oncogenes, yet RAS-driven tumors are largely refractory to anticancer therapies. Fedele and colleagues demonstrate that SHP2 inhibitors prevent adaptive MEK inhibitor resistance; therefore, combining MEK and SHP2 inhibitors represents an exciting new therapeutic approach for the treatment of RAS-driven cancers. Cancer Discov; 8(10); 1210-2. ©2018 AACR. See related article by Fedele et al., p. 1237.


Asunto(s)
Inhibidores de Proteínas Quinasas , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA