Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cell ; 178(6): 1465-1477.e17, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31491388

RESUMEN

Most human protein-coding genes are regulated by multiple, distinct promoters, suggesting that the choice of promoter is as important as its level of transcriptional activity. However, while a global change in transcription is recognized as a defining feature of cancer, the contribution of alternative promoters still remains largely unexplored. Here, we infer active promoters using RNA-seq data from 18,468 cancer and normal samples, demonstrating that alternative promoters are a major contributor to context-specific regulation of transcription. We find that promoters are deregulated across tissues, cancer types, and patients, affecting known cancer genes and novel candidates. For genes with independently regulated promoters, we demonstrate that promoter activity provides a more accurate predictor of patient survival than gene expression. Our study suggests that a dynamic landscape of active promoters shapes the cancer transcriptome, opening new diagnostic avenues and opportunities to further explore the interplay of regulatory mechanisms with transcriptional aberrations in cancer.


Asunto(s)
Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias/genética , Regiones Promotoras Genéticas/genética , Transcriptoma/genética , Bases de Datos Genéticas , Humanos , RNA-Seq/métodos
2.
Cell ; 171(6): 1437-1452.e17, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29195078

RESUMEN

We previously piloted the concept of a Connectivity Map (CMap), whereby genes, drugs, and disease states are connected by virtue of common gene-expression signatures. Here, we report more than a 1,000-fold scale-up of the CMap as part of the NIH LINCS Consortium, made possible by a new, low-cost, high-throughput reduced representation expression profiling method that we term L1000. We show that L1000 is highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts. We further show that the expanded CMap can be used to discover mechanism of action of small molecules, functionally annotate genetic variants of disease genes, and inform clinical trials. The 1.3 million L1000 profiles described here, as well as tools for their analysis, are available at https://clue.io.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Línea Celular Tumoral , Resistencia a Antineoplásicos , Perfilación de la Expresión Génica/economía , Humanos , Neoplasias/tratamiento farmacológico , Especificidad de Órganos , Preparaciones Farmacéuticas/metabolismo , Análisis de Secuencia de ARN/economía , Análisis de Secuencia de ARN/métodos , Bibliotecas de Moléculas Pequeñas
3.
Nature ; 578(7793): 129-136, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025019

RESUMEN

Transcript alterations often result from somatic changes in cancer genomes1. Various forms of RNA alterations have been described in cancer, including overexpression2, altered splicing3 and gene fusions4; however, it is difficult to attribute these to underlying genomic changes owing to heterogeneity among patients and tumour types, and the relatively small cohorts of patients for whom samples have been analysed by both transcriptome and whole-genome sequencing. Here we present, to our knowledge, the most comprehensive catalogue of cancer-associated gene alterations to date, obtained by characterizing tumour transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)5. Using matched whole-genome sequencing data, we associated several categories of RNA alterations with germline and somatic DNA alterations, and identified probable genetic mechanisms. Somatic copy-number alterations were the major drivers of variations in total gene and allele-specific expression. We identified 649 associations of somatic single-nucleotide variants with gene expression in cis, of which 68.4% involved associations with flanking non-coding regions of the gene. We found 1,900 splicing alterations associated with somatic mutations, including the formation of exons within introns in proximity to Alu elements. In addition, 82% of gene fusions were associated with structural variants, including 75 of a new class, termed 'bridged' fusions, in which a third genomic location bridges two genes. We observed transcriptomic alteration signatures that differ between cancer types and have associations with variations in DNA mutational signatures. This compendium of RNA alterations in the genomic context provides a rich resource for identifying genes and mechanisms that are functionally implicated in cancer.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , ARN/genética , Variaciones en el Número de Copia de ADN , ADN de Neoplasias , Genoma Humano , Genómica , Humanos , Transcriptoma
6.
Nat Methods ; 16(12): 1297-1305, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31740818

RESUMEN

High-throughput complementary DNA sequencing technologies have advanced our understanding of transcriptome complexity and regulation. However, these methods lose information contained in biological RNA because the copied reads are often short and modifications are not retained. We address these limitations using a native poly(A) RNA sequencing strategy developed by Oxford Nanopore Technologies. Our study generated 9.9 million aligned sequence reads for the human cell line GM12878, using thirty MinION flow cells at six institutions. These native RNA reads had a median length of 771 bases, and a maximum aligned length of over 21,000 bases. Mitochondrial poly(A) reads provided an internal measure of read-length quality. We combined these long nanopore reads with higher accuracy short-reads and annotated GM12878 promoter regions to identify 33,984 plausible RNA isoforms. We describe strategies for assessing 3' poly(A) tail length, base modifications and transcript haplotypes.


Asunto(s)
Secuenciación de Nanoporos/métodos , Poli A/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma , Células Cultivadas , Humanos
7.
PLoS Comput Biol ; 17(7): e1009132, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34214079

RESUMEN

While advancements in genome sequencing have identified millions of somatic mutations in cancer, their functional impact is poorly understood. We previously developed the expression-based variant impact phenotyping (eVIP) method to use gene expression data to characterize the function of gene variants. The eVIP method uses a decision tree-based algorithm to predict the functional impact of somatic variants by comparing gene expression signatures induced by introduction of wild-type (WT) versus mutant cDNAs in cell lines. The method distinguishes between variants that are gain-of-function, loss-of-function, change-of-function, or neutral. We present eVIP2, software that allows for pathway analysis (eVIP Pathways) and usage with RNA-seq data. To demonstrate the eVIP2 software and approach, we characterized two recurrent frameshift variants in RNF43, a negative regulator of Wnt signaling, frequently mutated in colorectal, gastric, and endometrial cancer. RNF43 WT, RNF43 R117fs, RNF43 G659fs, or GFP control cDNA were overexpressed in HEK293T cells. Analysis with eVIP2 predicted that the frameshift at position 117 was a loss-of-function mutation, as expected. The second frameshift at position 659 has been previously described as a passenger mutation that maintains the RNF43 WT function as a negative regulator of Wnt. Surprisingly, eVIP2 predicted G659fs to be a change-of-function mutation. Additional eVIP Pathways analysis of RNF43 G659fs predicted 10 pathways to be significantly altered, including TNF-α via NFκB signaling, KRAS signaling, and hypoxia, highlighting the benefit of a more comprehensive approach when determining the impact of gene variant function. To validate these predictions, we performed reporter assays and found that each pathway activated by expression of RNF43 G659fs, but not expression of RNF43 WT, was identified as impacted by eVIP2, supporting that RNF43 G659fs is a change-of-function mutation and its effect on the identified pathways. Pathway activation was further validated by Western blot analysis. Lastly, we show primary colon adenocarcinoma patient samples with R117fs and G659fs variants have transcriptional profiles similar to BRAF missense mutations with activated RAS/MAPK signaling, consistent with KRAS signaling pathways being GOF in both variants. The eVIP2 method is an important step towards overcoming the current challenge of variant interpretation in the implementation of precision medicine. eVIP2 is available at https://github.com/BrooksLabUCSC/eVIP2.


Asunto(s)
Variación Genética/genética , Genómica/métodos , Transcriptoma/genética , Algoritmos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas/genética , Modelos Genéticos , Mutación/genética , Fenotipo , Ubiquitina-Proteína Ligasas/genética , Vía de Señalización Wnt/genética
8.
N Engl J Med ; 374(2): 135-45, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26536169

RESUMEN

BACKGROUND: Papillary renal-cell carcinoma, which accounts for 15 to 20% of renal-cell carcinomas, is a heterogeneous disease that consists of various types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal-cell carcinoma, and no effective forms of therapy for advanced disease exist. METHODS: We performed comprehensive molecular characterization of 161 primary papillary renal-cell carcinomas, using whole-exome sequencing, copy-number analysis, messenger RNA and microRNA sequencing, DNA-methylation analysis, and proteomic analysis. RESULTS: Type 1 and type 2 papillary renal-cell carcinomas were shown to be different types of renal cancer characterized by specific genetic alterations, with type 2 further classified into three individual subgroups on the basis of molecular differences associated with patient survival. Type 1 tumors were associated with MET alterations, whereas type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-antioxidant response element (ARE) pathway. A CpG island methylator phenotype (CIMP) was observed in a distinct subgroup of type 2 papillary renal-cell carcinomas that was characterized by poor survival and mutation of the gene encoding fumarate hydratase (FH). CONCLUSIONS: Type 1 and type 2 papillary renal-cell carcinomas were shown to be clinically and biologically distinct. Alterations in the MET pathway were associated with type 1, and activation of the NRF2-ARE pathway was associated with type 2; CDKN2A loss and CIMP in type 2 conveyed a poor prognosis. Furthermore, type 2 papillary renal-cell carcinoma consisted of at least three subtypes based on molecular and phenotypic features. (Funded by the National Institutes of Health.).


Asunto(s)
Carcinoma Papilar/metabolismo , Neoplasias Renales/metabolismo , Mutación , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Carcinoma Papilar/genética , Islas de CpG/fisiología , Metilación de ADN , Humanos , Neoplasias Renales/genética , MicroARNs/química , Factor 2 Relacionado con NF-E2/genética , Fenotipo , Proteínas Proto-Oncogénicas c-met/química , Proteínas Proto-Oncogénicas c-met/genética , ARN Mensajero/química , ARN Neoplásico/química , Análisis de Secuencia de ARN , Transducción de Señal/fisiología
9.
J Biol Chem ; 292(32): 13381-13390, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28655759

RESUMEN

In eukaryotes, precursor mRNA (pre-mRNA) splicing removes non-coding intron sequences to produce mature mRNA. This removal is controlled in part by RNA-binding proteins that regulate alternative splicing decisions through interactions with the splicing machinery. RNA binding motif protein 25 (RBM25) is a putative splicing factor strongly conserved across eukaryotic lineages. However, the role of RBM25 in global splicing regulation and its cellular functions are unknown. Here we show that RBM25 is required for the viability of multiple human cell lines, suggesting that it could play a key role in pre-mRNA splicing. Indeed, transcriptome-wide analysis of splicing events demonstrated that RBM25 regulates a large fraction of alternatively spliced exons throughout the human genome. Moreover, proteomic analysis indicated that RBM25 interacts with components of the early spliceosome and regulators of alternative splicing. Previously, we identified an RBM25 species that is mono-methylated at lysine 77 (RBM25K77me1), and here we used quantitative mass spectrometry to show that RBM25K77me1 is abundant in multiple human cell lines. We also identified a region of RBM25 spanning Lys-77 that binds with high affinity to serine- and arginine-rich splicing factor 2 (SRSF2), a crucial protein in exon definition, but only when Lys-77 is unmethylated. Together, our findings uncover a pivotal role for RBM25 as an essential regulator of alternative splicing and reveal a new potential mechanism for regulation of pre-mRNA splicing by lysine methylation of a splicing factor.


Asunto(s)
Empalme Alternativo , Regulación de la Expresión Génica , Procesamiento Proteico-Postraduccional , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Empalmosomas/metabolismo , Línea Celular , Proliferación Celular , Supervivencia Celular , Exones , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/genética , Proteínas Inmovilizadas/metabolismo , Inmunoprecipitación , Lisina/metabolismo , Metilación , Proteínas Nucleares , Dominios y Motivos de Interacción de Proteínas , Proteómica/métodos , Precursores del ARN/química , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Factores de Empalme Serina-Arginina/química , Factores de Empalme Serina-Arginina/genética
10.
Genome Res ; 25(11): 1771-80, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26294686

RESUMEN

Alternative splicing is regulated by RNA binding proteins (RBPs) that recognize pre-mRNA sequence elements and activate or repress adjacent exons. Here, we used RNA interference and RNA-seq to identify splicing events regulated by 56 Drosophila proteins, some previously unknown to regulate splicing. Nearly all proteins affected alternative first exons, suggesting that RBPs play important roles in first exon choice. Half of the splicing events were regulated by multiple proteins, demonstrating extensive combinatorial regulation. We observed that SR and hnRNP proteins tend to act coordinately with each other, not antagonistically. We also identified a cross-regulatory network where splicing regulators affected the splicing of pre-mRNAs encoding other splicing regulators. This large-scale study substantially enhances our understanding of recent models of splicing regulation and provides a resource of thousands of exons that are regulated by 56 diverse RBPs.


Asunto(s)
Empalme Alternativo , Proteínas de Drosophila/genética , Drosophila/genética , Proteínas de Unión al ARN/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Animales , Proteínas de Drosophila/metabolismo , Exones , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Interferencia de ARN , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Análisis de Secuencia de ARN , Factores Asociados con la Proteína de Unión a TATA/metabolismo
11.
Nature ; 471(7339): 473-9, 2011 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-21179090

RESUMEN

Drosophila melanogaster is one of the most well studied genetic model organisms; nonetheless, its genome still contains unannotated coding and non-coding genes, transcripts, exons and RNA editing sites. Full discovery and annotation are pre-requisites for understanding how the regulation of transcription, splicing and RNA editing directs the development of this complex organism. Here we used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events, and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches. These data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Transcripción Genética/genética , Empalme Alternativo/genética , Animales , Secuencia de Bases , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Exones/genética , Femenino , Genes de Insecto/genética , Genoma de los Insectos/genética , Masculino , MicroARNs/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Isoformas de Proteínas/genética , Edición de ARN/genética , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Pequeño no Traducido/análisis , ARN Pequeño no Traducido/genética , Análisis de Secuencia , Caracteres Sexuales
12.
Mol Cell ; 33(4): 438-49, 2009 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-19250905

RESUMEN

Heterogeneous nuclear ribonucleoproteins (hnRNPs) have been traditionally seen as proteins packaging RNA nonspecifically into ribonucleoprotein particles (RNPs), but evidence suggests specific cellular functions on discrete target pre-mRNAs. Here we report genome-wide analysis of alternative splicing patterns regulated by four Drosophila homologs of the mammalian hnRNP A/B family (hrp36, hrp38, hrp40, and hrp48). Analysis of the global RNA-binding distributions of each protein revealed both small and extensively bound regions on target transcripts. A significant subset of RNAs were bound and regulated by more than one hnRNP protein, revealing a combinatorial network of interactions. In vitro RNA-binding site selection experiments (SELEX) identified distinct binding motif specificities for each protein, which were overrepresented in their respective regulated and bound transcripts. These results indicate that individual heterogeneous ribonucleoproteins have specific affinities for overlapping, but distinct, populations of target pre-mRNAs controlling their patterns of RNA processing.


Asunto(s)
Empalme Alternativo/genética , Drosophila/genética , Genoma de los Insectos , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Células Cultivadas , Drosophila/metabolismo , Datos de Secuencia Molecular , Precursores del ARN/genética
13.
Genome Res ; 21(2): 193-202, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20921232

RESUMEN

Alternative splicing is generally controlled by proteins that bind directly to regulatory sequence elements and either activate or repress splicing of adjacent splice sites in a target pre-mRNA. Here, we have combined RNAi and mRNA-seq to identify exons that are regulated by Pasilla (PS), the Drosophila melanogaster ortholog of mammalian NOVA1 and NOVA2. We identified 405 splicing events in 323 genes that are significantly affected upon depletion of ps, many of which were annotated as being constitutively spliced. The sequence regions upstream and within PS-repressed exons and downstream from PS-activated exons are enriched for YCAY repeats, and these are consistent with the location of these motifs near NOVA-regulated exons in mammals. Thus, the RNA regulatory map of PS and NOVA1/2 is highly conserved between insects and mammals despite the fact that the target gene orthologs regulated by PS and NOVA1/2 are almost entirely nonoverlapping. This observation suggests that the regulatory codes of individual RNA binding proteins may be nearly immutable, yet the regulatory modules controlled by these proteins are highly evolvable.


Asunto(s)
Drosophila/genética , Mamíferos/genética , ARN Mensajero/metabolismo , Empalme Alternativo , Animales , Antígenos de Neoplasias/genética , Células Cultivadas , Biología Computacional , Secuencia Conservada/genética , Proteínas de Drosophila/genética , Exones , Perfilación de la Expresión Génica , Intrones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Antígeno Ventral Neuro-Oncológico , Interferencia de ARN , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Ribonucleoproteínas/genética
14.
Genome Biol ; 25(1): 173, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956576

RESUMEN

BACKGROUND: RNA-seq has brought forth significant discoveries regarding aberrations in RNA processing, implicating these RNA variants in a variety of diseases. Aberrant splicing and single nucleotide variants (SNVs) in RNA have been demonstrated to alter transcript stability, localization, and function. In particular, the upregulation of ADAR, an enzyme that mediates adenosine-to-inosine editing, has been previously linked to an increase in the invasiveness of lung adenocarcinoma cells and associated with splicing regulation. Despite the functional importance of studying splicing and SNVs, the use of short-read RNA-seq has limited the community's ability to interrogate both forms of RNA variation simultaneously. RESULTS: We employ long-read sequencing technology to obtain full-length transcript sequences, elucidating cis-effects of variants on splicing changes at a single molecule level. We develop a computational workflow that augments FLAIR, a tool that calls isoform models expressed in long-read data, to integrate RNA variant calls with the associated isoforms that bear them. We generate nanopore data with high sequence accuracy from H1975 lung adenocarcinoma cells with and without knockdown of ADAR. We apply our workflow to identify key inosine isoform associations to help clarify the prominence of ADAR in tumorigenesis. CONCLUSIONS: Ultimately, we find that a long-read approach provides valuable insight toward characterizing the relationship between RNA variants and splicing patterns.


Asunto(s)
Haplotipos , Humanos , Línea Celular Tumoral , Polimorfismo de Nucleótido Simple , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Neoplasias Pulmonares/genética , Empalme del ARN , Inosina/metabolismo , Inosina/genética , Análisis de Secuencia de ARN , Adenocarcinoma del Pulmón/genética , Edición de ARN , Programas Informáticos
15.
bioRxiv ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38562899

RESUMEN

Genome-wide identification of chromatin organization and structure has been generally probed by measuring accessibility of the underlying DNA to nucleases or methyltransferases. These methods either only observe the positioning of a single nucleosome or rely on large enzymes to modify or cleave the DNA. We developed adduct sequencing (Add-seq), a method to probe chromatin accessibility by treating chromatin with the small molecule angelicin, which preferentially intercalates into DNA not bound to core nucleosomes. We show that Nanopore sequencing of the angelicin-modified DNA is possible and allows visualization and analysis of long single molecules with distinct chromatin structure. The angelicin modification can be detected from the Nanopore current signal data using a neural network model trained on unmodified and modified chromatin-free DNA. Applying Add-seq to Saccharomyces cerevisiae nuclei, we identified expected patterns of accessibility around annotated gene loci in yeast. We also identify individual clusters of single molecule reads displaying different chromatin structure at specific yeast loci, which demonstrates heterogeneity in the chromatin structure of the yeast population. Thus, using Add-seq, we are able to profile DNA accessibility in the yeast genome across long molecules.

16.
RNA ; 17(10): 1884-94, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21865603

RESUMEN

RNA sequence elements involved in the regulation of pre-mRNA splicing have previously been identified in vertebrate genomes by computational methods. Here, we apply such approaches to predict splicing regulatory elements in Drosophila melanogaster and compare them with elements previously found in the human, mouse, and pufferfish genomes. We identified 99 putative exonic splicing enhancers (ESEs) and 231 putative intronic splicing enhancers (ISEs) enriched near weak 5' and 3' splice sites of constitutively spliced introns, distinguishing between those found near short and long introns. We found that a significant proportion (58%) of fly enhancer sequences were previously reported in at least one of the vertebrates. Furthermore, 20% of putative fly ESEs were previously identified as ESEs in human, mouse, and pufferfish; while only two fly ISEs, CTCTCT and TTATAA, were identified as ISEs in all three vertebrate species. Several putative enhancer sequences are similar to characterized binding-site motifs for Drosophila and mammalian splicing regulators. To provide additional evidence for the function of putative ISEs, we separately identified 298 intronic hexamers significantly enriched within sequences phylogenetically conserved among 15 insect species. We found that 73 putative ISEs were among those enriched in conserved regions of the D. melanogaster genome. The functions of nine enhancer sequences were verified in a heterologous splicing reporter, demonstrating that these sequences are sufficient to enhance splicing in vivo. Taken together, these data identify a set of predicted positive-acting splicing regulatory motifs in the Drosophila genome and reveal regulatory sequences that are present in distant metazoan genomes.


Asunto(s)
Drosophila melanogaster/metabolismo , Evolución Molecular , Empalme del ARN , Animales , Secuencia de Bases , Drosophila melanogaster/genética , Exones , Intrones
17.
Nature ; 450(7167): 203-18, 2007 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-17994087

RESUMEN

Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.


Asunto(s)
Drosophila/clasificación , Drosophila/genética , Evolución Molecular , Genes de Insecto/genética , Genoma de los Insectos/genética , Genómica , Filogenia , Animales , Codón/genética , Elementos Transponibles de ADN/genética , Drosophila/inmunología , Drosophila/metabolismo , Proteínas de Drosophila/genética , Orden Génico/genética , Genoma Mitocondrial/genética , Inmunidad/genética , Familia de Multigenes/genética , ARN no Traducido/genética , Reproducción/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Sintenía/genética
18.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-37829573

RESUMEN

MET exon 14 skipping ( METΔ14 ) is a well-characterized oncogene in the Ras-MAPK pathway driving lung adenocarcinoma (LUAD). Previous studies on METΔ14 revealed this aberrantly spliced oncogene is expressed in LUAD primary samples and is associated with heterozygous somatic mutations and deletions near exon 14 splice sites. Upon further examination of DNA and RNA sequencing data from primary samples, we highlight that METΔ14 is overexpressed in an allele-specific manner. These data suggest that dose-dependence of METΔ14 may be critical to oncogenesis.

19.
bioRxiv ; 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37398362

RESUMEN

Background: RNA-Seq has brought forth significant discoveries regarding aberrations in RNA processing, implicating these RNA variants in a variety of diseases. Aberrant splicing and single nucleotide variants in RNA have been demonstrated to alter transcript stability, localization, and function. In particular, the upregulation of ADAR, an enzyme which mediates adenosine-to-inosine editing, has been previously linked to an increase in the invasiveness of lung ADC cells and associated with splicing regulation. Despite the functional importance of studying splicing and SNVs, short read RNA-Seq has limited the community's ability to interrogate both forms of RNA variation simultaneously. Results: We employed long-read technology to obtain full-length transcript sequences, elucidating cis-effects of variants on splicing changes at a single molecule level. We have developed a computational workflow that augments FLAIR, a tool that calls isoform models expressed in long-read data, to integrate RNA variant calls with the associated isoforms that bear them. We generated nanopore data with high sequence accuracy of H1975 lung adenocarcinoma cells with and without knockdown of ADAR. We applied our workflow to identify key inosine-isoform associations to help clarify the prominence of ADAR in tumorigenesis. Conclusions: Ultimately, we find that a long-read approach provides valuable insight toward characterizing the relationship between RNA variants and splicing patterns.

20.
Life Sci Alliance ; 6(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37487637

RESUMEN

U2AF1 is one of the most recurrently mutated splicing factors in lung adenocarcinoma and has been shown to cause transcriptome-wide pre-mRNA splicing alterations; however, the full-length altered mRNA isoforms associated with the mutation are largely unknown. To better understand the impact U2AF1 has on full-length isoform fate and function, we conducted high-throughput long-read cDNA sequencing from isogenic human bronchial epithelial cells with and without a U2AF1 S34F mutation. We identified 49,366 multi-exon transcript isoforms, more than half of which did not match GENCODE or short-read-assembled isoforms. We found 198 transcript isoforms with significant expression and usage changes relative to WT, only 68% of which were assembled by short reads. Expression of isoforms from immune-related genes is largely down-regulated in mutant cells and without observed splicing changes. Finally, we reveal that isoforms likely targeted by nonsense-mediated decay are down-regulated in U2AF1 S34F cells, suggesting that isoform changes may alter the translational output of those affected genes. Altogether, our work provides a resource of full-length isoforms associated with U2AF1 S34F in lung cells.


Asunto(s)
Células Epiteliales , Empalme del ARN , Humanos , Factor de Empalme U2AF/genética , Factor de Empalme U2AF/metabolismo , Empalme del ARN/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Células Epiteliales/metabolismo , Mutación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA