Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Trends Biochem Sci ; 48(1): 5-8, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563657

RESUMEN

Scientific discovery has advanced human society in countless ways, but research requires the expenditure of energy and resources. This Scientific Life article details one laboratory's efforts to reduce the environmental impact of wet-lab research and provides a series of resources to improve lab sustainability.

2.
PLoS Biol ; 21(7): e3002208, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37440471

RESUMEN

As climate change affects weather patterns and soil health, agricultural productivity could decrease substantially. Synthetic biology can be used to enhance climate resilience in plants and create the next generation of crops, if the public will accept it.


Asunto(s)
Agricultura , Productos Agrícolas , Humanos , Productos Agrícolas/genética , Suelo , Personal Administrativo , Cambio Climático
3.
Plant Physiol ; 188(2): 738-748, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34904660

RESUMEN

The ability to engineer plant form will enable the production of novel agricultural products designed to tolerate extreme stresses, boost yield, reduce waste, and improve manufacturing practices. While historically, plants were altered through breeding to change their size or shape, advances in our understanding of plant development and our ability to genetically engineer complex eukaryotes are leading to the direct engineering of plant structure. In this review, I highlight the central role of auxin in plant development and the synthetic biology approaches that could be used to turn auxin-response regulators into powerful tools for modifying plant form. I hypothesize that recoded, gain-of-function auxin response proteins combined with synthetic regulation could be used to override endogenous auxin signaling and control plant structure. I also argue that auxin-response regulators are key to engineering development in nonmodel plants and that single-cell -omics techniques will be essential for characterizing and modifying auxin response in these plants. Collectively, advances in synthetic biology, single-cell -omics, and our understanding of the molecular mechanisms underpinning development have set the stage for a new era in the engineering of plant structure.


Asunto(s)
Productos Agrícolas/genética , Fitomejoramiento/métodos , Desarrollo de la Planta/genética , Desarrollo de la Planta/fisiología , Plantas Modificadas Genéticamente/fisiología , Biología Sintética/métodos
4.
Semin Cell Dev Biol ; 79: 68-77, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-28864344

RESUMEN

A plant's form is an important determinant of its fitness and economic value. Here, we review strategies for producing plants with altered forms. Historically, the process of changing a plant's form has been slow in agriculture, requiring iterative rounds of growth and selection. We discuss modern techniques for identifying genes involved in the development of plant form and tools that will be needed to effectively design and engineer plants with altered forms. Synthetic genetic circuits are highlighted for their potential to generate novel plant forms. We emphasize understanding development as a prerequisite to engineering and discuss the potential role of computer models in translating knowledge about single genes or pathways into a more comprehensive understanding of development.


Asunto(s)
Ingeniería Genética/métodos , Raíces de Plantas/genética , Tallos de la Planta/genética , Plantas/genética , Productos Agrícolas/anatomía & histología , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes/genética , Ingeniería Genética/tendencias , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Tallos de la Planta/anatomía & histología , Tallos de la Planta/crecimiento & desarrollo , Plantas/anatomía & histología , Plantas/metabolismo , Plantas Modificadas Genéticamente
5.
Nat Methods ; 11(5): 508-20, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24781324

RESUMEN

Cells navigate environments, communicate and build complex patterns by initiating gene expression in response to specific signals. Engineers seek to harness this capability to program cells to perform tasks or create chemicals and materials that match the complexity seen in nature. This Review describes new tools that aid the construction of genetic circuits. Circuit dynamics can be influenced by the choice of regulators and changed with expression 'tuning knobs'. We collate the failure modes encountered when assembling circuits, quantify their impact on performance and review mitigation efforts. Finally, we discuss the constraints that arise from circuits having to operate within a living cell. Collectively, better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.


Asunto(s)
Redes Reguladoras de Genes , Ingeniería Genética/métodos , Biología Sintética/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas de Unión al ADN/metabolismo , Ambiente , Fermentación , Regulación de la Expresión Génica , Vectores Genéticos , Microbiota , Células Procariotas , Regiones Promotoras Genéticas , Interferencia de ARN , Recombinasas/metabolismo
6.
Mol Syst Biol ; 12(1): 854, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26769567

RESUMEN

A surprise that has emerged from transcriptomics is the prevalence of genomic antisense transcription, which occurs counter to gene orientation. While frequent, the roles of antisense transcription in regulation are poorly understood. We built a synthetic system in Escherichia coli to study how antisense transcription can change the expression of a gene and tune the response characteristics of a regulatory circuit. We developed a new genetic part that consists of a unidirectional terminator followed by a constitutive antisense promoter and demonstrate that this part represses gene expression proportionally to the antisense promoter strength. Chip-based oligo synthesis was applied to build a large library of 5,668 terminator-promoter combinations that was used to control the expression of three repressors (PhlF, SrpR, and TarA) in a simple genetic circuit (NOT gate). Using the library, we demonstrate that antisense promoters can be used to tune the threshold of a regulatory circuit without impacting other properties of its response function. Finally, we determined the relative contributions of antisense RNA and transcriptional interference to repressing gene expression and introduce a biophysical model to capture the impact of RNA polymerase collisions on gene repression. This work quantifies the role of antisense transcription in regulatory networks and introduces a new mode to control gene expression that has been previously overlooked in genetic engineering.


Asunto(s)
Redes Reguladoras de Genes/genética , ARN sin Sentido/genética , Biología Sintética , Transcripción Genética , Fenómenos Biofísicos , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Ingeniería Genética , Regiones Promotoras Genéticas
7.
Nat Methods ; 10(7): 659-64, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23727987

RESUMEN

Large genetic engineering projects require more cistrons and consequently more strong and reliable transcriptional terminators. We have measured the strengths of a library of terminators, including 227 that are annotated in Escherichia coli--90 of which we also tested in the reverse orientation--and 265 synthetic terminators. Within this library we found 39 strong terminators, yielding >50-fold reduction in downstream expression, that have sufficient sequence diversity to reduce homologous recombination when used together in a design. We used these data to determine how the terminator sequence contributes to its strength. The dominant parameters were incorporated into a biophysical model that considers the role of the hairpin in the displacement of the U-tract from the DNA. The availability of many terminators of varying strength, as well as an understanding of the sequence dependence of their properties, will extend their usability in the forward design of synthetic cistrons.


Asunto(s)
ADN Bacteriano/genética , Escherichia coli/genética , Biología Sintética/métodos , Regiones Terminadoras Genéticas/genética , Secuencia de Bases , Datos de Secuencia Molecular
8.
Curr Opin Plant Biol ; 71: 102315, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36462457

RESUMEN

Plant biotechnologists seek to modify plants through genetic reprogramming, but our ability to precisely control gene expression in plants is still limited. Here, we review transcription and translation in the model plants Arabidopsis thaliana and Nicotiana benthamiana with an eye toward control points that may be used to predictably modify gene expression. We highlight differences in gene expression requirements between these plants and other species, and discuss the ways in which our understanding of gene expression has been used to engineer plants. This review is intended to serve as a resource for plant scientists looking to achieve precise control over gene expression.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Plantas/genética , Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Expresión Génica , Plantas Modificadas Genéticamente/genética
9.
Science ; 377(6607): 747-751, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35951698

RESUMEN

The shape of a plant's root system influences its ability to reach essential nutrients in the soil and to acquire water during drought. Progress in engineering plant roots to optimize water and nutrient acquisition has been limited by our capacity to design and build genetic programs that alter root growth in a predictable manner. We developed a collection of synthetic transcriptional regulators for plants that can be compiled to create genetic circuits. These circuits control gene expression by performing Boolean logic operations and can be used to predictably alter root structure. This work demonstrates the potential of synthetic genetic circuits to control gene expression across tissues and reprogram plant growth.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes Sintéticos , Raíces de Plantas , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Suelo , Agua/metabolismo
10.
Nat Commun ; 12(1): 5438, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521831

RESUMEN

Cell homeostasis is perturbed when dramatic shifts in the external environment cause the physical-chemical properties inside the cell to change. Experimental approaches for dynamically monitoring these intracellular effects are currently lacking. Here, we leverage the environmental sensitivity and structural plasticity of intrinsically disordered protein regions (IDRs) to develop a FRET biosensor capable of monitoring rapid intracellular changes caused by osmotic stress. The biosensor, named SED1, utilizes the Arabidopsis intrinsically disordered AtLEA4-5 protein expressed in plants under water deficit. Computational modeling and in vitro studies reveal that SED1 is highly sensitive to macromolecular crowding. SED1 exhibits large and near-linear osmolarity-dependent changes in FRET inside living bacteria, yeast, plant, and human cells, demonstrating the broad utility of this tool for studying water-associated stress. This study demonstrates the remarkable ability of IDRs to sense the cellular environment across the tree of life and provides a blueprint for their use as environmentally-responsive molecular tools.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Técnicas Biosensibles , Proteínas Intrínsecamente Desordenadas/metabolismo , Chaperonas Moleculares/metabolismo , Presión Osmótica , Agua/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sitios de Unión , Línea Celular Tumoral , Escherichia coli/genética , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Expresión Génica , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Cinética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Concentración Osmolar , Osteoblastos/citología , Osteoblastos/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Termodinámica
11.
ISME Commun ; 1(1): 57, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37938636

RESUMEN

We designed two probiotic treatments to control chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd) on infected Panamanian golden frogs (Atelopus zeteki), a species that is thought to be extinct in the wild due to Bd. The first approach disrupted the existing skin microbe community with antibiotics then exposed the frogs to a core golden frog skin microbe (Diaphorobacter sp.) that we genetically modified to produce high titers of violacein, a known antifungal compound. One day following probiotic treatment, the engineered Diaphorobacter and the violacein-producing pathway could be detected on the frogs but the treatment failed to improve frog survival when exposed to Bd. The second approach exposed frogs to the genetically modified bacterium mixed into a consortium with six other known anti-Bd bacteria isolated from captive A. zeteki, with no preliminary antibiotic treatment. The consortium treatment increased the frequency and abundance of three probiotic isolates (Janthinobacterium, Chryseobacterium, and Stenotrophomonas) and these persisted on the skin 4 weeks after probiotic treatment. There was a temporary increase in the frequency and abundance of three other probiotics isolates (Masillia, Serratia, and Pseudomonas) and the engineered Diaphorobacter isolate, but they subsequently disappeared from the skin. This treatment also failed to reduce frog mortality upon exposure.

12.
Nat Microbiol ; 3(9): 1043-1053, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30127494

RESUMEN

Engineering microorganisms to promote human or plant health will require manipulation of robust bacteria that are capable of surviving in harsh, competitive environments. Genetic engineering of undomesticated bacteria can be limited by an inability to transfer DNA into the cell. Here we developed an approach based on the integrative and conjugative element from Bacillus subtilis (ICEBs1) to overcome this problem. A donor strain (XPORT) was built to transfer miniaturized integrative and conjugative elements (mini-ICEBs1) to undomesticated bacteria. The strain was engineered to enable inducible control over conjugation, to integrate delivered DNA into the chromosome of the recipient, to restrict spread of heterologous DNA through separation of the type IV secretion system from the transferred DNA, and to enable simple isolation of engineered bacteria through a D-alanine auxotrophy. Efficient DNA transfer (10-1 to 10-7 conjugation events per donor) is demonstrated using 35 Gram-positive strains isolated from humans (skin and gut) and soil. Mini-ICEBs1 was used to rapidly characterize the performance of an isopropyl-ß-D-thiogalactoside (IPTG)-inducible reporter across dozens of strains and to transfer nitrogen fixation to four Bacillus species. Finally, XPORT was introduced to soil to demonstrate DNA transfer under non-ideal conditions.


Asunto(s)
Bacillus subtilis/genética , Conjugación Genética/genética , ADN Bacteriano/genética , Técnicas de Transferencia de Gen , Ingeniería Genética/métodos , Secuencias Repetitivas Esparcidas/genética , ADN Bacteriano/metabolismo , Microbioma Gastrointestinal/genética , Fijación del Nitrógeno/genética , Piel/microbiología , Microbiología del Suelo
13.
Mol Cell Biol ; 30(10): 2449-59, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20308323

RESUMEN

tRNA nucleosides are extensively modified to ensure their proper function in translation. However, many of the enzymes responsible for tRNA modifications in mammals await identification. Here, we show that human AlkB homolog 8 (ABH8) catalyzes tRNA methylation to generate 5-methylcarboxymethyl uridine (mcm(5)U) at the wobble position of certain tRNAs, a critical anticodon loop modification linked to DNA damage survival. We find that ABH8 interacts specifically with tRNAs containing mcm(5)U and that purified ABH8 complexes methylate RNA in vitro. Significantly, ABH8 depletion in human cells reduces endogenous levels of mcm(5)U in RNA and increases cellular sensitivity to DNA-damaging agents. Moreover, DNA-damaging agents induce ABH8 expression in an ATM-dependent manner. These results expand the role of mammalian AlkB proteins beyond that of direct DNA repair and support a regulatory mechanism in the DNA damage response pathway involving modulation of tRNA modification.


Asunto(s)
Daño del ADN , Uridina/metabolismo , ARNt Metiltransferasas/metabolismo , Homólogo 8 de AlkB ARNt Metiltransferasa , Animales , Línea Celular , Humanos , Datos de Secuencia Molecular , Estructura Molecular , Conformación de Ácido Nucleico , Filogenia , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Uridina/química , ARNt Metiltransferasas/clasificación , ARNt Metiltransferasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA