Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Bioinformatics ; 34(16): 2732-2739, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29538618

RESUMEN

Motivation: PCR-based DNA enrichment followed by massively parallel sequencing is a straightforward and cost effective method to sequence genes up to high depth. The full potential of amplicon-based sequencing assays is currently not achieved as analysis methods do not take into account the source amplicons of the detected variants. Tracking the source amplicons has the potential to identify systematic biases, enhance variant calling and improve the designs of future assays. Results: We present Nimbus, a software suite for the analysis of amplicon-based sequencing data. Nimbus includes tools for data pre-processing, alignment, single nucleotide polymorphism (SNP), insertion and deletion calling, quality control and visualization. Nimbus can detect SNPs in its alignment seeds and reduces alignment issues by the usage of decoy amplicons. Tracking the amplicons throughout analysis allows easy and fast design optimization by amplicon performance comparison. It enables detection of probable false positive variants present in a single amplicon from real variants present in multiple amplicons and provides multiple sample visualization. Nimbus was tested using HaloPlex Exome datasets and outperforms other callers for low-frequency variants. The variants called by Nimbus were highly concordant between twin samples and SNP-arrays. The Nimbus suite provides an end-to-end solution for variant calling, design optimization and visualization of amplicon-derived next-generation sequencing datasets. Availability and implementation: https://github.com/erasmus-center-for-biomics/Nimbus. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Femenino , Humanos , Masculino , Alineación de Secuencia
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166991, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38128843

RESUMEN

Hirschsprung disease (HSCR) is a complex genetic disorder characterized by the absence of enteric nervous system (ENS) in the distal region of the intestine. Down Syndrome (DS) patients have a >50-fold higher risk of developing HSCR than the general population, suggesting that overexpression of human chromosome 21 (Hsa21) genes contribute to HSCR etiology. However, identification of responsible genes remains challenging. Here, we describe a genetic screening of potential candidate genes located on Hsa21, using the zebrafish. Candidate genes were located in the DS-HSCR susceptibility region, expressed in the human intestine, were known potential biomarkers for DS prenatal diagnosis, and were present in the zebrafish genome. With this approach, four genes were selected: RCAN1, ITSN1, ATP5PO and SUMO3. However, only overexpression of ATP5PO, coding for a component of the mitochondrial ATPase, led to significant reduction of ENS cells. Paradoxically, in vitro studies showed that overexpression of ATP5PO led to a reduction of ATP5PO protein levels. Impaired neuronal differentiation and reduced mitochondrial ATP production, were also detected in vitro, after overexpression of ATP5PO in a neuroblastoma cell line. Finally, epistasis was observed between ATP5PO and ret, the most important HSCR gene. Taken together, our results identify ATP5PO as the gene responsible for the increased risk of HSCR in DS patients in particular if RET variants are also present, and show that a balanced expression of ATP5PO is required for normal ENS development.


Asunto(s)
Síndrome de Down , Sistema Nervioso Entérico , Enfermedad de Hirschsprung , Animales , Humanos , Enfermedad de Hirschsprung/genética , Enfermedad de Hirschsprung/metabolismo , Síndrome de Down/genética , Síndrome de Down/metabolismo , Pez Cebra/genética , Sistema Nervioso Entérico/metabolismo , Biomarcadores/metabolismo
3.
J Mol Biol ; 307(5): 1363-79, 2001 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-11292348

RESUMEN

The purine salvage pathway of parasitic protozoa is currently considered as a target for drug development because these organisms cannot synthesize purines de novo. Insight into the structure and mechanism of the involved enzymes can aid in the development of potent inhibitors, leading to new curative drugs. Nucleoside hydrolases are key enzymes in the purine salvage pathway of Trypanosomatidae, and they are especially attractive because they have no equivalent in mammalian cells. We cloned, expressed and purified a nucleoside hydrolase from Trypanosoma vivax. The substrate activity profile establishes the enzyme to be a member of the inosine-adenosine-guanosine-preferring nucleoside hydrolases (IAG-NH). We solved the crystal structure of the enzyme at 1.6 A resolution using MAD techniques. The complex of the enzyme with the substrate analogue 3-deaza-adenosine is presented. These are the first structures of an IAG-NH reported in the literature. The T. vivax IAG-NH is a homodimer, with each subunit consisting of ten beta-strands, 12 alpha-helices and three small 3(10)-helices. Six of the eight strands of the central beta-sheet form a motif resembling the Rossmann fold. Superposition of the active sites of this IAG-NH and the inosine-uridine-preferring nucleoside hydrolase (IU-NH) of Crithidia fasciculata shows the molecular basis of the different substrate specificity distinguishing these two classes of nucleoside hydrolases. An "aromatic stacking network" in the active site of the IAG-NH, absent from the IU-NH, imposes the purine specificity. Asp10 is the proposed general base in the reaction mechanism, abstracting a proton from a nucleophilic water molecule. Asp40 (replaced by Asn39 in the IU-NH) is positioned appropriately to act as a general acid and to protonate the purine leaving group. The second general acid, needed for full enzymatic activity, is probably part of a flexible loop located in the vicinity of the active site.


Asunto(s)
N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/metabolismo , Trypanosoma vivax/enzimología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Clonación Molecular , Crithidia fasciculata/enzimología , Cristalografía por Rayos X , Dimerización , Diseño de Fármacos , Histidina/genética , Histidina/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , N-Glicosil Hidrolasas/antagonistas & inhibidores , N-Glicosil Hidrolasas/genética , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína , Proteínas Recombinantes de Fusión/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Relación Estructura-Actividad , Especificidad por Sustrato , Trypanosoma vivax/genética , Tubercidina/metabolismo , Agua/metabolismo
4.
Mol Syndromol ; 4(1-2): 20-6, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23653573

RESUMEN

Copy number variations (CNVs), either DNA gains or losses, have been found at common regions throughout the human genome. Most CNVs neither have a pathogenic significance nor result in disease-related phenotypes but, instead, reflect the normal population variance. However, larger CNVs, which often arise de novo, are frequently associated with human disease. A genetic contribution has long been suspected in VACTERL (Vertebral, Anal, Cardiac, TracheoEsophageal fistula, Renal and Limb anomalies) association. The anomalies observed in this association overlap with several monogenetic conditions associated with mutations in specific genes, e.g. Townes Brocks (SALL1), Feingold syndrome (MYCN) or Fanconi anemia. So far VACTERL association has typically been considered a diagnosis of exclusion. Identifying recurrent or de novo genomic variations in individuals with VACTERL association could make it easier to distinguish VACTERL association from other syndromes and could provide insight into disease mechanisms. Sporadically, de novo CNVs associated with VACTERL are described in literature. In addition to this literature review of genomic variation in published VACTERL association patients, we describe CNVs present in 68 VACTERL association patients collected in our institution. De novo variations (>30 kb) are absent in our VACTERL association cohort. However, we identified recurrent rare CNVs which, although inherited, could point to mechanisms or biological processes contributing to this constellation of developmental defects.

5.
J Chromatogr B Biomed Sci Appl ; 737(1-2): 167-78, 2000 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-10681053

RESUMEN

Arsenate reductase (ArsC) encoded by Staphylococcus aureus arsenic-resistance plasmid pI258 reduces intracellular As(V) (arsenate) to the more toxic As(III) (arsenite). In order to study the structure of ArsC and to unravel biochemical and physical properties of this redox enzyme, wild type enzyme and a number of cysteine mutants were overproduced soluble in Escherichia coli. In this paper we describe a novel purification method to obtain high production levels of highly pure enzyme. A reversed-phase method was developed to separate and analyze the many different forms of ArsC. The oxidation state and the methionine oxidized forms were determined by mass spectroscopy.


Asunto(s)
Adenosina Trifosfatasas/aislamiento & purificación , Bombas Iónicas , Complejos Multienzimáticos , Staphylococcus aureus/enzimología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , ATPasas Transportadoras de Arsenitos , Cromatografía Liquida , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Espectrometría de Masas , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA