RESUMEN
Understanding the factors influencing species range limits is increasingly crucial in anticipating migrations due to human-caused climate change. In the boreal biome, ongoing climate change and the associated increases in the rate, size, and severity of disturbances may alter the distributions of boreal tree species. Notably, Interior Alaska lacks native pine, a biogeographical anomaly that carries implications for ecosystem structure and function. The current range of lodgepole pine (Pinus contorta var. latifolia) in the adjacent Yukon Territory may expand into Interior Alaska, particularly with human assistance. Evaluating the potential for pine expansion in Alaska requires testing constraints on range limits such as dispersal limitations, environmental tolerance limits, and positive or negative biotic interactions. In this study, we used field experiments with pine seeds and transplanted seedlings, complemented by model simulations, to assess the abiotic and biotic factors influencing lodgepole pine seedling establishment and growth after fire in Interior Alaska. We found that pine could successfully recruit, survive, grow, and reproduce across our broadly distributed network of experimental sites. Our results show that both mammalian herbivory and competition from native tree species are unlikely to constrain pine growth and that environmental conditions commonly found in Interior Alaska fall well within the tolerance limits for pine. If dispersal constraints are released, lodgepole pine could have a geographically expansive range in Alaska, and once established, its growth is sufficient to support pine-dominated stands. Given the impacts of lodgepole pine on ecosystem processes such as increases in timber production, carbon sequestration, landscape flammability, and reduced forage quality, natural or human-assisted migration of this species is likely to substantially alter responses of Alaskan forest ecosystems to climate change.
Asunto(s)
Pinus , Pinus/fisiología , Alaska , Cambio Climático , Modelos Biológicos , Plantones , Demografía , Animales , EcosistemaRESUMEN
Intensifying wildfire activity and climate change can drive rapid forest compositional shifts. In boreal North America, black spruce shapes forest flammability and depends on fire for regeneration. This relationship has helped black spruce maintain its dominance through much of the Holocene. However, with climate change and more frequent and severe fires, shifts away from black spruce dominance to broadleaf or pine species are emerging, with implications for ecosystem functions including carbon sequestration, water and energy fluxes, and wildlife habitat. Here, we predict that such reductions in black spruce after fire may already be widespread given current trends in climate and fire. To test this, we synthesize data from 1,538 field sites across boreal North America to evaluate compositional changes in tree species following 58 recent fires (1989 to 2014). While black spruce was resilient following most fires (62%), loss of resilience was common, and spruce regeneration failed completely in 18% of 1,140 black spruce sites. In contrast, postfire regeneration never failed in forests dominated by jack pine, which also possesses an aerial seed bank, or broad-leaved trees. More complete combustion of the soil organic layer, which often occurs in better-drained landscape positions and in dryer duff, promoted compositional changes throughout boreal North America. Forests in western North America, however, were more vulnerable to change due to greater long-term climate moisture deficits. While we find considerable remaining resilience in black spruce forests, predicted increases in climate moisture deficits and fire activity will erode this resilience, pushing the system toward a tipping point that has not been crossed in several thousand years.
Asunto(s)
Cambio Climático , Picea , Taiga , Incendios Forestales , América del NorteRESUMEN
When investigating relationships between species' niches and distributions, niches can be divided demographically, resulting in unique niches for different life stages. This approach can identify changing substrate requirements throughout a species' life cycle. Using non-metric multidimensional scaling, we quantified microsite conditions associated with successful recruitment in the tundra landscape and successful seed production amongst adult trees of black spruce (Picea mariana) at subarctic treeline in Yukon, Canada to assess how life stage-specific requirements may impact the distribution of this widespread boreal tree species. Treeline ecotones in this region showed high heterogeneity in tundra microsites available for establishment. Black spruce exhibited changing microsite associations from germination to reproductive maturity, which were mainly driven by changes in plant community and soil moisture. These associations limit the microsites where individuals can establish and reproduce to a subset available within the heterogeneous landscape. Overall, we suggest that (1) substrates suitable for early recruitment are limited at the range edge; and (2) reproductive adults have a narrow niche, limiting successful seed production in adults and forming sink populations where suitable conditions are limited. Our multivariate assessment of microsite suitability can provide valuable insights into the spatial distribution of a species throughout its life cycle and identify life stage-specific constraints to range expansion.
Asunto(s)
Picea , Humanos , Plantones , Germinación , Árboles , DemografíaRESUMEN
We present new data and analyses revealing fundamental flaws in a critique of two recent meta-analyses of local-scale temporal biodiversity change. First, the conclusion that short-term time series lead to biased estimates of long-term change was based on two errors in the simulations used to support it. Second, the conclusion of negative relationships between temporal biodiversity change and study duration was entirely dependent on unrealistic model assumptions, the use of a subset of data, and inclusion of one outlier data point in one study. Third, the finding of a decline in local biodiversity, after eliminating post-disturbance studies, is not robust to alternative analyses on the original data set, and is absent in a larger, updated data set. Finally, the undebatable point, noted in both original papers, that studies in the ecological literature are geographically biased, was used to cast doubt on the conclusion that, outside of areas converted to croplands or asphalt, the distribution of biodiversity trends is centered approximately on zero. Future studies may modify conclusions, but at present, alternative conclusions based on the geographic-bias argument rely on speculation. In sum, the critique raises points of uncertainty typical of all ecological studies, but does not provide an evidence-based alternative interpretation.
Asunto(s)
Biodiversidad , Ecología , IncertidumbreRESUMEN
The enemy release hypothesis is frequently invoked to explain invasion by nonnative species, but studies focusing on the influence of enemies on natural plant range expansion due to climate change remain scarce. We combined multiple approaches to study the influence of plant-enemy interactions on the upper elevational range limit of sugar maple (Acer saccharum) in southeastern Québec, Canada, where a previous study had demonstrated intense seed predation just beyond the range limit. Consistent with the hypothesis of release from natural enemies at the range limit, data from both natural patterns of regeneration and from seed and seedling transplant experiments showed higher seedling densities at the range edge than in the core of the species' distribution. A growth chamber experiment manipulating soil origin and temperature indicated that this so-called "happy edge" was not likely caused by temperature (i.e., the possibility that climate warming has made high elevation temperatures optimal for sugar maple) or by abiotic soil factors that vary along the elevational gradient. Finally, an insect-herbivore-exclusion experiment showed that insect herbivory was a major cause of seedling mortality in the core of sugar maple's distribution, whereas seedlings transplanted at or beyond the range edge experienced minimal herbivory (i.e., enemy release). Insect herbivory did not completely explain the high levels of seedling mortality in the core of the species' distribution, suggesting that seedlings at or beyond the range edge may also experience release from pathogens. In sum, while some effects of enemies are magnified beyond range edges (e.g., seed predation), others are dampened at and beyond the range edge (e.g., insect herbivory), such that understanding the net outcome of different biotic interactions within, at and beyond the edge of distribution is critical to predicting species' responses to global change.
Asunto(s)
Acer/fisiología , Plantones/crecimiento & desarrollo , Altitud , Cambio Climático , Especies Introducidas , Dinámica Poblacional , Factores de TiempoRESUMEN
Global biodiversity is in decline. This is of concern for aesthetic and ethical reasons, but possibly also for practical reasons, as suggested by experimental studies, mostly with plants, showing that biodiversity reductions in small study plots can lead to compromised ecosystem function. However, inferring that ecosystem functions will decline due to biodiversity loss in the real world rests on the untested assumption that such loss is actually occurring at these small scales in nature. Using a global database of 168 published studies and >16,000 nonexperimental, local-scale vegetation plots, we show that mean temporal change in species diversity over periods of 5-261 y is not different from zero, with increases at least as likely as declines over time. Sites influenced primarily by plant species' invasions showed a tendency for declines in species richness, whereas sites undergoing postdisturbance succession showed increases in richness over time. Other distinctions among studies had little influence on temporal richness trends. Although maximizing diversity is likely important for maintaining ecosystem function in intensely managed systems such as restored grasslands or tree plantations, the clear lack of any general tendency for plant biodiversity to decline at small scales in nature directly contradicts the key assumption linking experimental results to ecosystem function as a motivation for biodiversity conservation in nature. How often real world changes in the diversity and composition of plant communities at the local scale cause ecosystem function to deteriorate, or actually to improve, remains unknown and is in critical need of further study.
Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/estadística & datos numéricos , Ecosistema , Plantas/genética , Historia del Siglo XX , Historia del Siglo XXIRESUMEN
Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., "thermophilization" of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that "climatic lags" may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12-67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass--e.g., for bioenergy--may open forest canopies and accelerate thermophilization of temperate forest biodiversity.
Asunto(s)
Adaptación Biológica/fisiología , Biota/fisiología , Calentamiento Global , Microclima , Árboles/fisiología , Europa (Continente) , América del Norte , Dinámica Poblacional , Estaciones del Año , Especificidad de la Especie , TemperaturaRESUMEN
Disturbance plays a key role in driving ecological responses by creating opportunities for new ecological communities to assemble and by directly influencing the outcomes of assembly. Legacy effects (such as seed banks) and environmental filters can both influence community assembly, but their effects are impossible to separate with observational data. Here, we used seeding experiments in sites covering a broad range of postdisturbance conditions to tease apart the effects of seed availability, environmental factors, and disturbance characteristics on early community assembly after fire. We added seed of four common boreal trees to experimental plots in 55 replicate sites in recently burned areas of black spruce forest in northwestern North America. Seed addition treatments increased the probability of occurrence for all species, indicating a widespread potential for seed limitation to affect patterns of recruitment after fire. Small-seeded. species (aspen and birch) were most sensitive to environmental factors such as soil moisture and organic layer depth, suggesting a role for niche-based environmental filtering in community assembly. Fire characteristics related to severity and frequency were also important drivers of seedling regeneration, indicating the potential for disturbance to mediate environmental filters and legacy effects on seed availability. Because effects of seed availability are typically impossible to disentangle from environmental constraints on recruitment in observational studies, legacy effects contingent on vegetation history may be misinterpreted as being driven by strong environmental filters. Results from the seeding experiments suggest that vegetation legacies affecting seed availability play a pivotal role in shaping patterns of community assembly after fire in these low-diversity boreal forests.
Asunto(s)
Incendios , Taiga , Árboles/fisiología , Alaska , Monitoreo del Ambiente , Dinámica Poblacional , Plantones , Semillas , Suelo , Factores de Tiempo , Árboles/clasificación , El YukónRESUMEN
We are limited in our ability to predict climate-change-induced range shifts by our inadequate understanding of how non-climatic factors contribute to determining range limits along putatively climatic gradients. Here, we present a unique combination of observations and experiments demonstrating that seed predation and soil properties strongly limit regeneration beyond the upper elevational range limit of sugar maple, a tree species of major economic importance. Most strikingly, regeneration beyond the range limit occurred almost exclusively when seeds were experimentally protected from predators. Regeneration from seed was depressed on soil from beyond the range edge when this soil was transplanted to sites within the range, with indirect evidence suggesting that fungal pathogens play a role. Non-climatic factors are clearly in need of careful attention when attempting to predict the biotic consequences of climate change. At minimum, we can expect non-climatic factors to create substantial time lags between the creation of more favourable climatic conditions and range expansion.
Asunto(s)
Acer/crecimiento & desarrollo , Cambio Climático , Germinación/fisiología , Acer/microbiología , Altitud , Ecosistema , Geografía , Semillas , SueloRESUMEN
Passive Acoustic Monitoring (PAM) is emerging as a solution for monitoring species and environmental change over large spatial and temporal scales. However, drawing rigorous conclusions based on acoustic recordings is challenging, as there is no consensus over which approaches are best suited for characterizing marine acoustic environments. Here, we describe the application of multiple machine-learning techniques to the analysis of two PAM datasets. We combine pre-trained acoustic classification models (VGGish, NOAA and Google Humpback Whale Detector), dimensionality reduction (UMAP), and balanced random forest algorithms to demonstrate how machine-learned acoustic features capture different aspects of the marine acoustic environment. The UMAP dimensions derived from VGGish acoustic features exhibited good performance in separating marine mammal vocalizations according to species and locations. RF models trained on the acoustic features performed well for labeled sounds in the 8 kHz range; however, low- and high-frequency sounds could not be classified using this approach. The workflow presented here shows how acoustic feature extraction, visualization, and analysis allow establishing a link between ecologically relevant information and PAM recordings at multiple scales, ranging from large-scale changes in the environment (i.e., changes in wind speed) to the identification of marine mammal species.
RESUMEN
Predicting the future ecological impact of global change drivers requires understanding how these same drivers have acted in the past to produce the plant populations and communities we see today. Historical ecological data sources have made contributions of central importance to global change biology, but remain outside the toolkit of most ecologists. Here we review the strengths and weaknesses of four unconventional sources of historical ecological data: land survey records, "legacy" vegetation data, historical maps and photographs, and herbarium specimens. We discuss recent contributions made using these data sources to understanding the impacts of habitat disturbance and climate change on plant populations and communities, and the duration of extinction-colonization time lags in response to landscape change. Historical data frequently support inferences made using conventional ecological studies (e.g., increases in warm-adapted species as temperature rises), but there are cases when the addition of different data sources leads to different conclusions (e.g., temporal vegetation change not as predicted by chronosequence studies). The explicit combination of historical and contemporary data sources is an especially powerful approach for unraveling long-term consequences of multiple drivers of global change. Despite the limitations of historical data, which include spotty and potentially biased spatial and temporal coverage, they often represent the only means of characterizing ecological phenomena in the past and have proven indispensable for characterizing the nature, magnitude, and generality of global change impacts on plant populations and communities.
Asunto(s)
Cambio Climático , Ecosistema , Monitoreo del Ambiente , Plantas/clasificación , Extinción Biológica , Mapas como Asunto , Fenómenos Fisiológicos de las Plantas , Dinámica Poblacional , Factores de TiempoRESUMEN
Understanding the movement of species' ranges is a classic ecological problem that takes on urgency in this era of global change. Historically treated as a purely ecological process, range expansion is now understood to involve eco-evolutionary feedbacks due to spatial genetic structure that emerges as populations spread. We synthesize empirical and theoretical work on the eco-evolutionary dynamics of range expansion, with emphasis on bridging directional, deterministic processes that favor evolved increases in dispersal and demographic traits with stochastic processes that lead to the random fixation of alleles and traits. We develop a framework for understanding the joint influence of these processes in changing the mean and variance of expansion speed and its underlying traits. Our synthesis of recent laboratory experiments supports the consistent role of evolution in accelerating expansion speed on average, and highlights unexpected diversity in how evolution can influence variability in speed: results not well predicted by current theory. We discuss and evaluate support for three classes of modifiers of eco-evolutionary range dynamics (landscape context, trait genetics, and biotic interactions), identify emerging themes, and suggest new directions for future work in a field that stands to increase in relevance as populations move in response to global change.
Asunto(s)
Evolución Biológica , Fenotipo , Dinámica Poblacional , Procesos EstocásticosRESUMEN
The 4th regular meeting of the Canadian Society of Ecology and Evolution was held in conjunction with the 52nd Annual Conference of the Genetics Society of Canada at Dalhousie University, Halifax, from 14 to 17 May 2009.
Asunto(s)
Evolución Biológica , Ecología/tendencias , Genética/tendencias , Canadá , Cambio Climático , Conservación de los Recursos Naturales , Explotaciones PesquerasRESUMEN
Treeline responses to climate change ultimately depend on successful seedling recruitment, which requires dispersal of viable seeds and establishment of individual propagules in novel environments. In this study, we evaluated the effects of several abiotic and biotic drivers of early tree seedling recruitment across an alpine treeline ecotone. In two consecutive years, we sowed seeds of low- and high-elevation provenances of Larix decidua (European larch) and Picea abies (Norway spruce) below, at, and above the current treeline into intact vegetation and into open microsites with artificially removed surface vegetation, as well as into plots protected from seed predators and herbivores. Seedling emergence and early establishment in treatment and in control plots were monitored over two years. Tree seedling emergence occurred at and several hundred metres above the current treeline when viable seeds and suitable microsites for germination were available. However, dense vegetation cover at lower elevations and winter mortality at higher elevations particularly limited early recruitment. Post-dispersal predation, species, and provenance also affected emergence and early establishment. This study demonstrates the importance of understanding multiple abiotic and biotic drivers of early seedling recruitment that should be incorporated into predictions of treeline dynamics under climate change.