RESUMEN
BACKGROUND: Among semi-aquatic species of the legume genus Aeschynomene, some have the property of being nodulated by photosynthetic Bradyrhizobium lacking the nodABC genes necessary for the synthesis of Nod factors. Knowledge of the specificities underlying this Nod-independent symbiosis has been gained from the model legume Aeschynomene evenia but our understanding remains limited due to the lack of comparative genetics with related taxa using a Nod factor-dependent process. To fill this gap, we combined different approaches to perform a thorough comparative analysis in the genus Aeschynomene. RESULTS: This study significantly broadened previous taxon sampling, including in allied genera, in order to construct a comprehensive phylogeny. In the phylogenetic tree, five main lineages were delineated, including a novel lineage, the Nod-independent clade and another one containing a polytomy that comprised several Aeschynomene groups and all the allied genera. This phylogeny was matched with data on chromosome number, genome size and low-copy nuclear gene sequences to reveal the diploid species and a polytomy containing mostly polyploid taxa. For these taxa, a single allopolyploid origin was inferred and the putative parental lineages were identified. Finally, nodulation tests with different Bradyrhizobium strains revealed new nodulation behaviours and the diploid species outside of the Nod-independent clade were compared for their experimental tractability and genetic diversity. CONCLUSIONS: The extended knowledge of the genetics and biology of the different lineages sheds new light of the evolutionary history of the genus Aeschynomene and they provide a solid framework to exploit efficiently the diversity encountered in Aeschynomene legumes. Notably, our backbone tree contains all the species that are diploid and it clarifies the genetic relationships between the Nod-independent clade and the Nod-dependent lineages. This study enabled the identification of A. americana and A. patula as the most suitable species to undertake a comparative genetic study of the Nod-independent and Nod-dependent symbioses.
Asunto(s)
Fabaceae/genética , Simbiosis/genética , Evolución Biológica , Bradyrhizobium , Fabaceae/metabolismo , Fabaceae/fisiología , Genómica , Fijación del Nitrógeno , Filogenia , Nodulación de la Raíz de la Planta/genética , PloidiasRESUMEN
The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis.
Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Fototransducción , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/efectos de la radiación , Cotiledón/crecimiento & desarrollo , Cotiledón/metabolismo , Cotiledón/efectos de la radiación , Metilación de ADN , Silenciador del Gen , Genes de Plantas , Heterocromatina/genética , Heterocromatina/efectos de la radiación , Péptidos y Proteínas de Señalización Intracelular , Fototransducción/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plantas Modificadas Genéticamente , ARN Polimerasa II/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/efectos de la radiación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Plant response to their environment stresses is a complex mechanism involving secondary metabolites. Stilbene phytoalexins, namely resveratrol, pterostilbene, piceids and viniferins play a key role in grapevine (Vitis vinifera) leaf defense. Despite their well-established qualities, conventional analyses such as HPLC-DAD or LC-MS lose valuable information on metabolite localization during the extraction process. To overcome this issue, a correlative analysis combining mass spectroscopy imaging (MSI) and fluorescence imaging was developed to localize in situ stilbenes on the same stressed grapevine leaves. High-resolution images of the stilbene fluorescence provided by macroscopy were supplemented by specific distributions and structural information concerning resveratrol, pterostilbene, and piceids obtained by MSI. The two imaging techniques led to consistent and complementary data on the stilbene spatial distribution for the two stresses addressed: UV-C irradiation and infection by Plasmopara viticola. Results emphasize that grapevine leaves react differently depending on the stress. A rather uniform synthesis of stilbenes is induced after UV-C irradiation, whereas a more localized synthesis of stilbenes in stomata guard cells and cell walls is induced by P. viticola infection. Finally, this combined imaging approach could be extended to map phytoalexins of various plant tissues with resolution approaching the cellular level.
Asunto(s)
Hojas de la Planta/química , Sesquiterpenos/análisis , Estilbenos/análisis , Vitis/química , Fluorescencia , Espectrometría de Masas/métodos , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Oomicetos , Hojas de la Planta/microbiología , Hojas de la Planta/efectos de la radiación , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Estilbenos/química , Estilbenos/metabolismo , Estrés Fisiológico/fisiología , Rayos Ultravioleta , Vitis/microbiología , Vitis/efectos de la radiación , FitoalexinasRESUMEN
The legume genus Aeschynomene is notable in the ability of certain semiaquatic species to develop nitrogen-fixing stem nodules. These species are distributed in two clades. In the first clade, all the species are characterized by the use of a unique Nod-independent symbiotic process. In the second clade, the species use a Nod-dependent symbiotic process and some of them display a profuse stem nodulation as exemplified in the African Aeschynomene afraspera. To facilitate the molecular analysis of the symbiotic characteristics of such legumes, we took an integrated molecular and cytogenetic approach to track occurrences of polyploidy events and to analyze their impact on the evolution of the African species of Aeschynomene. Our results revealed two rounds of polyploidy: a paleopolyploid event predating the African group and two neopolyploid speciations, along with significant chromosomal variations. Hence, we found that A. afraspera (8x) has inherited the contrasted genomic properties and the stem-nodulation habit of its parental lineages (4x). This study reveals a comprehensive picture of African Aeschynomene diversification. It notably evidences a history that is distinct from the diploid Nod-independent clade, providing clues for the identification of the specific determinants of the Nod-dependent and Nod-independent symbiotic processes, and for comparative analysis of stem nodulation.
Asunto(s)
Organismos Acuáticos/genética , Evolución Biológica , Fabaceae/genética , Poliploidía , Cruzamiento , Flores/anatomía & histología , Duplicación de Gen , Genoma de Planta , Hibridación Genética , Cariotipo , Filogenia , Tallos de la Planta/fisiología , Especificidad de la Especie , Factores de Tiempo , Transcriptoma/genéticaRESUMEN
N-terminal fatty acylations (N-myristoylation [MYR] and S-palmitoylation [PAL]) are crucial modifications affecting 2 to 4% of eukaryotic proteins. The role of these modifications is to target proteins to membranes. Predictive tools have revealed unexpected targets of these acylations in Arabidopsis thaliana and other plants. However, little is known about how N-terminal lipidation governs membrane compartmentalization of proteins in plants. We show here that h-type thioredoxins (h-TRXs) cluster in four evolutionary subgroups displaying strictly conserved N-terminal modifications. It was predicted that one subgroup undergoes only MYR and another undergoes both MYR and PAL. We used plant TRXs as a model protein family to explore the effect of MYR alone or MYR and PAL in the same family of proteins. We used a high-throughput biochemical strategy to assess MYR of specific TRXs. Moreover, various TRX-green fluorescent protein fusions revealed that MYR localized protein to the endomembrane system and that partitioning between this membrane compartment and the cytosol correlated with the catalytic efficiency of the N-myristoyltransferase acting at the N terminus of the TRXs. Generalization of these results was obtained using several randomly selected Arabidopsis proteins displaying a MYR site only. Finally, we demonstrated that a palmitoylatable Cys residue flanking the MYR site is crucial to localize proteins to micropatching zones of the plasma membrane.
Asunto(s)
Arabidopsis/metabolismo , Membrana Celular/metabolismo , Ácidos Grasos/metabolismo , Lípidos de la Membrana/metabolismo , Tiorredoxina h/metabolismo , Acilación , Secuencia de Aminoácidos , Arabidopsis/clasificación , Arabidopsis/genética , Sitios de Unión , Membrana Celular/genética , Cisteína/genética , Cisteína/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Activación Enzimática , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Fluorescentes Verdes/metabolismo , Filogenia , Transporte de Proteínas , Tiorredoxina h/genéticaRESUMEN
Cardiolipin (CL) is the signature phospholipid of the mitochondrial inner membrane. In animals and yeast (Saccharomyces cerevisiae), CL depletion affects the stability of respiratory supercomplexes and is thus crucial to the energy metabolism of obligate aerobes. In eukaryotes, the last step of CL synthesis is catalyzed by CARDIOLIPIN SYNTHASE (CLS), encoded by a single-copy gene. Here, we characterize a cls mutant in Arabidopsis thaliana, which is devoid of CL. In contrast to yeast cls, where development is little affected, Arabidopsis cls seedlings are slow developing under short-day conditions in vitro and die if they are transferred to long-day (LD) conditions. However, when transferred to soil under LD conditions under low light, cls plants can reach the flowering stage, but they are not fertile. The cls mitochondria display abnormal ultrastructure and reduced content of respiratory complex I/complex III supercomplexes. The marked accumulation of tricarboxylic acid cycle derivatives and amino acids demonstrates mitochondrial dysfunction. Mitochondrial and chloroplastic antioxidant transcripts are overexpressed in cls leaves, and cls protoplasts are more sensitive to programmed cell death effectors, UV light, and heat shock. Our results show that CLS is crucial for correct mitochondrial function and development in Arabidopsis under both optimal and stress conditions.
Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/enzimología , Proteínas de la Membrana/fisiología , Mitocondrias/ultraestructura , Transferasas (Grupos de Otros Fosfatos Sustitutos)/fisiología , Antioxidantes/metabolismo , Apoptosis , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Cardiolipinas/química , ADN Bacteriano , Luz , Proteínas de la Membrana/genética , Membranas Mitocondriales/química , Mutagénesis Insercional , Protoplastos/enzimología , Plantones/crecimiento & desarrollo , Estrés Fisiológico , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genéticaRESUMEN
Imaging or quantifying protein synthesis in cellulo through a well-resolved analysis of the cell cycle (also defining G1 subcompartments) is a methodological challenge. Click chemistry is the method of choice to reveal the thymidine analogue 5-ethynyl-2'-deoxyuridine (EdU) and track proliferating nuclei undergoing DNA synthesis. However, the click reaction quenches fluorescent proteins. Our challenge was to reconcile these two tools. A robust protocol based on a high-resolution cytometric cell cycle analysis in tobacco (Nicotiana tabacum) BY2 cells expressing fluorescent Golgi markers has been established. This was broadly applicable to tissues, cell clusters, and other eukaryotic material, and compatible with Scale clearing. EdU was then used with the photoconvertible protein sialyl transferase (ST)-Kaede as a Golgi marker in a photoconversion pulse-chase cytometric configuration resolving, in addition, subcompartments of G1. Quantitative restoration of protein fluorescence was achieved by introducing acidic EDTA washes to strip the copper from these proteins which were then imaged at neutral pH. The rate of synthesis of this Golgi membrane marker was low during early G1, but in the second half of G1 (30% of cycle duration) much of the synthesis occurred. Marker synthesis then persisted during S and G2. These insights into Golgi biology are discussed in terms of the cell's ability to adapt exocytosis to cell growth needs.
Asunto(s)
Ciclo Celular , Química Clic/métodos , Aparato de Golgi/metabolismo , Nicotiana/citología , Proteínas de Plantas/metabolismo , Arabidopsis , Proliferación Celular , Cobre/química , Desoxiuridina/análogos & derivados , Fluorescencia , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/metabolismo , Imagen Molecular/instrumentación , Imagen Molecular/métodos , Proteínas de Plantas/análisis , Plantas Modificadas Genéticamente , Protoplastos/metabolismo , Nicotiana/genética , Nicotiana/metabolismoRESUMEN
BACKGROUND AND AIMS: Allopolyploidy and intraspecific heteroploid crosses are associated, in certain groups, with changes in the mating system. The genus Sorbus represents an appropriate model to study the relationships between ploidy and reproductive mode variations. Diploid S. aria and tetraploid apomictic S. austriaca were screened for ploidy and mating system variations within pure and sympatric populations in order to gain insights into their putative causalities. METHODS: Flow cytometry was used to assess genome size and ploidy level among 380 S. aria s.l. and S. austriaca individuals from Bosnia and Herzegovina, with 303 single-seed flow cytometric seed screenings being performed to identify their mating system. Pollen viability and seed set were also determined. KEY RESULTS: Flow cytometry confirmed the presence of di-, tri- and tetraploid cytotype mixtures in mixed-ploidy populations of S. aria and S. austriaca. No ploidy variation was detected in single-species populations. Diploid S. aria mother plants always produced sexually originated seeds, whereas tetraploid S. austriaca as well as triploid S. aria were obligate apomicts. Tetraploid S. aria preserved sexuality in a low portion of plants. A tendency towards a balanced 2m : 1p parental genome contribution to the endosperm was shared by diploids and tetraploids, regardless of their sexual or asexual origin. In contrast, most triploids apparently tolerated endosperm imbalance. CONCLUSIONS: Coexistence of apomictic tetraploids and sexual diploids drives the production of novel polyploid cytotypes with predominantly apomictic reproductive modes. The data suggest that processes governing cytotype diversity and mating system variation in Sorbus from Bosnia and Herzegovina are probably parallel to those in other diversity hotspots of this genus. The results represent a solid contribution to knowledge of the reproduction of Sorbus and will inform future investigations of the molecular and genetic mechanisms involved in triggering and regulating cytotype diversity and alteration of reproductive modes.
Asunto(s)
Apomixis/genética , Tamaño del Genoma , Ploidias , Sorbus/genética , Sorbus/fisiología , Bosnia y Herzegovina , Núcleo Celular/genética , ADN de Plantas/genética , Endospermo/genética , Citometría de Flujo , Geografía , Polen/fisiología , Reproducción/genética , Semillas/fisiologíaRESUMEN
Fleshy fruit species such as tomato are important because of their nutritional and economic value. Several stages of fruit development such as ovary formation, fruit set, and fruit maturation have already been the subject of many developmental studies. However, fruit growth per se has been much less addressed. Fruit growth like all plant organs depends upon the developmental processes of cell division and cell expansion. The activity of cell divisions sets the number of cells that will compose the fruit; the cell expansion activity then determines its final size. Among the various mechanisms that may influence the determination of cell size, endopolyploidy by the means of endoreduplication, i.e. genome amplification in the absence of mitosis, appears to be of great importance in fleshy fruits. In tomato fruit, endoreduplication is associated with DNA-dependent cell expansion: cell size can reach spectacular levels such as hundreds of times its initial size (e.g. >0.5 mm in diameter), with as much as a 256-fold increase in nuclear DNA content. Using tomato fruit development as a model, recent investigations combining the use of flow cytometry, cellular imaging and molecular analyses have provided new data in favor of the long-standing karyoplasmic ratio theory, stating that cells tend to adjust their cytoplasmic volume to the nuclear DNA content. By establishing a highly structured cellular system where multiple physiological functions are integrated, endoreduplication acts as a morphogenetic factor supporting cell growth during tomato fruit development. In the context of plant breeding, deciphering the mechanisms controlling fruit growth, in particular those connecting the process of nuclear endoreduplication with modulation of gene expression, the regulation of cell size and final fruit size and composition, is necessary to understand better the establishment of fleshy fruit quality traits.
Asunto(s)
Núcleo Celular/genética , Endorreduplicación , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Solanum lycopersicum/genética , División Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Tamaño de la Célula , Cromatina/metabolismo , Citoplasma/metabolismo , Citoplasma/ultraestructura , Biología Evolutiva , Citometría de Flujo , Frutas/metabolismo , Frutas/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Solanum lycopersicum/citología , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , PoliploidíaRESUMEN
⢠The semi-aquatic legumes belonging to the genus Aeschynomene constitute a premium system for investigating the origin and evolution of unusual symbiotic features such as stem nodulation and the presence of a Nod-independent infection process. This latter apparently arose in a single Aeschynomene lineage. But how this unique Nod-independent group then radiated is not yet known. ⢠We have investigated the role of polyploidy in Aeschynomene speciation via a case study of the pantropical A. indica and then extended the analysis to the other Nod-independent species. For this, we combined SSR genotyping, genome characterization through flow cytometry, chromosome counting, FISH and GISH experiments, molecular phylogenies using ITS and single nuclear gene sequences, and artificial hybridizations. ⢠These analyses demonstrate the existence of an A. indica polyploid species complex comprising A. evenia (C. Wright) (2n = 2x = 20), A. indica L. s.s. (2n = 4x = 40) and a new hexaploid form (2n = 6x = 60). This latter contains the two genomes present in the tetraploid (A. evenia and A. scabra) and another unidentified genome. Two other species, A. pratensis and A. virginica, are also shown to be of allopolyploid origin. ⢠This work reveals multiple hybridization/polyploidization events, thus highlighting a prominent role of allopolyploidy in the radiation of the Nod-independent Aeschynomene.
Asunto(s)
Fabaceae/genética , Genes de Plantas/genética , Especiación Genética , Poliploidía , Secuencia de Bases , Núcleo Celular/genética , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , ADN Intergénico/genética , Diploidia , Ecotipo , Genoma de Planta/genética , Genotipo , Hibridación Fluorescente in Situ , Repeticiones de Microsatélite/genética , Mitosis/genética , Filogenia , Especificidad de la EspecieRESUMEN
A 15-day survey of autofluorescence has been conducted upon infection by downy mildew [Plasmopara viticola (Berk. & M.A. Curtis) Berl. & de Toni] of leaves of a susceptible grapevine genotype. Different autofluorescence signals were followed from the cellular to the whole-leaf level by using four types of devices for fluorosensing: a macroscope, a spectrofluorimeter, a portable field optical sensor (the Multiplex 3), and a field fluorescence sensor prototype with 335 nm excitation. It was shown for the first time, by the three different techniques and at three different scales, that the stilbene-dependent violet-blue autofluorescence (VBF) had a transitory behaviour, increasing to a maximum 6 days post-inoculation (DPI) and then decreasing to a constant lower level, nevertheless significantly higher than in the control leaf. This behaviour could be sensed from both sides of the leaf. On the abaxial side, VBF could discriminate the presence of infection from 1 DPI, and on the adaxial side from 3 DPI. There was a constant increase in blue-excited green fluorescence starting from 8 DPI, concomitant with a decrease in leaf chlorophyll content sensed by one reflectance and two fluorescence indices available on the Multiplex 3 sensor. These results show that a pre-symptomatic and symptomatic sensing of downy mildew is possible by autofluorescence-based sensors, and this is potentially applicable in the field.
Asunto(s)
Imagen Óptica/métodos , Peronospora/fisiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Vitis/microbiología , Cinética , Peronospora/efectos de la radiación , Hojas de la Planta/efectos de la radiación , Espectrometría de Fluorescencia , Rayos Ultravioleta , Vitis/efectos de la radiaciónRESUMEN
Endopolyploidy, i.e. amplification of the genome in the absence of mitosis, occurs in many plant species and happens along with organ and cell differentiation. Deciphering the functional roles of endopolyploidy is hampered by the fact that polyploid tissues generally comprise cells with various ploidy levels. In some fleshy fruits (amongst them tomato fruit) the ploidy levels present at the end of development range from 2C to 256C in the same tissue. To investigate the temporal and spatial distribution of endopolyploidy it is necessary to address the DNA content of individual nuclei in situ. Conventional methods such as fluorometry or densitometry can be used for some tissues displaying favorable characteristics, e.g. small cells, small nuclei, organization in a monolayer, but high levels of varying polyploidy are usually associated with large sizes of nuclei and cells, in a complex three dimensional (3-D) organization of the tissues. The conventional methods are inadequate for such tissue, becoming semi-quantitative and imprecise. We report here the development of a new method based on fluorescent in situ bacterial artificial chromosome hybridizations that allows the in situ determination of the DNA ploidy level of individual nuclei. This method relies on the counting of hybridization signals and not on intensity measurements and is expected to provide an alternative method for mapping endopolyploidy patterns in mature, 3-D organized plant tissues as illustrated by the analysis of ploidy level and cell size in pericarp from mature green tomato fruit.
Asunto(s)
Núcleo Celular/genética , Frutas/genética , Hibridación Fluorescente in Situ/métodos , Ploidias , Solanum lycopersicum/genética , División Celular , Aumento de la Célula , Tamaño de la Célula , Cromosomas Artificiales Bacterianos , Frutas/citología , Frutas/crecimiento & desarrollo , Solanum lycopersicum/citología , Solanum lycopersicum/crecimiento & desarrollo , Plastidios/genéticaRESUMEN
Research on the nitrogen-fixing symbiosis has been focused, thus far, on two model legumes, Medicago truncatula and Lotus japonicus, which use a sophisticated infection process involving infection thread formation. However, in 25% of the legumes, the bacterial entry occurs more simply in an intercellular fashion. Among them, some Aeschynomene spp. are nodulated by photosynthetic Bradyrhizobium spp. that do not produce Nod factors. This interaction is believed to represent a living testimony of the ancestral state of the rhizobium-legume symbiosis. To decipher the mechanisms of this Nod-independent process, we propose Aeschynomene evenia as a model legume because it presents all the characteristics required for genetic and molecular analysis. It is a short-perennial and autogamous species, with a diploid and relatively small genome (2n=20; 460 Mb/1C). A. evenia 'IRFL6945' is nodulated by the well-characterized photosynthetic Bradyrhizobium sp. strain ORS278 and is efficiently transformed by Agrobacterium rhizogenes. Aeschynomene evenia is genetically homozygous but polymorphic accessions were found. A manual hybridization procedure has been set up, allowing directed crosses. Therefore, it should be relatively straightforward to unravel the molecular determinants of the Nod-independent process in A. evenia. This should shed new light on the evolution of rhizobium-legume symbiosis and could have important agronomic implications.
Asunto(s)
Bradyrhizobium/genética , Fabaceae/genética , Genoma de Planta/genética , Simbiosis/genética , Agrobacterium , Bradyrhizobium/fisiología , ADN de Plantas/análisis , ADN de Plantas/genética , Fabaceae/anatomía & histología , Fabaceae/microbiología , Fabaceae/fisiología , Flores/anatomía & histología , Marcadores Genéticos , Fijación del Nitrógeno/genética , Fenotipo , Filogenia , Hojas de la Planta/anatomía & histología , Nodulación de la Raíz de la Planta , Raíces de Plantas/anatomía & histología , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Tallos de la Planta/anatomía & histología , Polinización , Polimorfismo Genético , Plantones/genética , Transformación GenéticaRESUMEN
Accurate localization of phytoalexins is a key for better understanding their role. This work aims to localize stilbenes, the main phytoalexins of grapevine. The cellular localization of stilbene fluorescence induced by Plasmopara viticola, the agent of downy mildew, was determined in grapevine leaves of very susceptible, susceptible, and partially resistant genotypes during infection. Laser scanning confocal microscopy and microspectrofluorimetry were used to acquire UV-excited autofluorescence three-dimensional images and spectra of grapevine leaves 5-6 days after inoculation. This noninvasive technique of investigation in vivo was completed with in vitro spectrofluorimetric studies on pure stilbenes as their fluorescence is largely affected by the physicochemical environment in various leaf compartments. Viscosity was the major physicochemical factor influencing stilbene fluorescence intensity, modifying fluorescence yield by more than two orders of magnitude. Striking differences in the localization of stilbene fluorescence induced by P. viticola were observed between the different genotypes. All inoculated genotypes displayed stilbene fluorescence in cell walls of guard cells and periclinal cell walls of epidermal cells. Higher fluorescence intensity was observed in guard-cell walls than in any other compartment due to increased local viscosity. In addition stilbene fluorescence was found in epidermal cell vacuoles of the susceptible genotype and in the infected spongy parenchyma of the partially resistant genotype. The very susceptible genotype was devoid of fluorescence both in the epidermal vacuoles and the mesophyll. This strongly suggests that the resistance of grapevine leaves to P. viticola is correlated with the pattern of localization of induced stilbenes in host tissues.
Asunto(s)
Oomicetos/fisiología , Enfermedades de las Plantas/parasitología , Estilbenos/metabolismo , Vitis/metabolismo , Vitis/parasitología , Transporte Biológico , Fluorescencia , Enfermedades de las Plantas/genética , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/parasitología , Estilbenos/química , Vitis/química , Vitis/genéticaRESUMEN
Plant organs originate from meristems where stem cells are maintained to produce continuously daughter cells that are the source of different cell types. The cell cycle switch gene CCS52A, a substrate specific activator of the anaphase promoting complex/cyclosome (APC/C), controls the mitotic arrest and the transition of mitotic cycles to endoreduplication (ER) cycles as part of cell differentiation. Arabidopsis, unlike other organisms, contains 2 CCS52A isoforms. Here, we show that both of them are active and regulate meristem maintenance in the root tip, although through different mechanisms. The CCS52A1 activity in the elongation zone of the root stimulates ER and mitotic exit, and contributes to the border delineation between dividing and expanding cells. In contrast, CCS52A2 acts directly in the distal region of the root meristem to control identity of the quiescent center (QC) cells and stem cell maintenance. Cell proliferation assays in roots suggest that this control involves CCS52A2 mediated repression of mitotic activity in the QC cells. The data indicate that the CCS52A genes favor a low mitotic state in different cell types of the root tip that is required for meristem maintenance, and reveal a previously undescribed mechanism for APC/C mediated control in plant development.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Ciclo Celular/metabolismo , Meristema/fisiología , Mitosis/fisiología , Raíces de Plantas/fisiología , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proliferación Celular , Citometría de Flujo , Vectores Genéticos/genética , Hibridación in Situ , Meristema/genética , Raíces de Plantas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Complejos de Ubiquitina-Proteína Ligasa/genéticaRESUMEN
Photoactivatable and photoconvertible fluorescent proteins capable of pronounced light-induced spectral changes are a powerful addition to the fluorescent protein toolbox of the cell biologist. They permit specific tracking of one subcellular structure (organelle or cell subdomain) within a differentially labelled population. They also enable pulse-chase analysis of protein traffic. The Kaede gene codes for a tetrameric protein found in the stony coral Trachyphyllia geoffroyi, which emits green fluorescence that irreversibly shifts to red following radiation with UV or violet light. We report here the use of Kaede to explore the plant secretory pathway. Kaede versions of the Golgi marker sialyl-transferase (ST-Kaede) and of the vacuolar pathway marker cardosin A (cardA-Kaede) were engineered. Several optical devices enabling photoconversion and observation of Kaede using these two constructs were assessed to optimize Kaede-based imaging protocols. Photoconverted ST-Kaede red-labelled organelles can be followed within neighbouring populations of non-converted green Golgi stacks, by their gradual development of orange/yellow coloration from de novo synthesis of Golgi proteins (green). Results highlight some aspects on the dynamics of the plant Golgi. For plant bio-imaging, the photoconvertible Kaede offers a powerful tool to track the dynamic behaviour of designated subpopulations of Golgi within living cells, while visualizing the de novo formation of proteins and structures, such as a Golgi stack.
Asunto(s)
Membranas Intracelulares/metabolismo , Proteínas Luminiscentes/metabolismo , Simulación de Dinámica Molecular , Proteínas Recombinantes de Fusión/metabolismo , Animales , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Brefeldino A/farmacología , Células Cultivadas , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Rayos Láser , Proteínas Luminiscentes/genética , Microscopía Confocal/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/efectos de la radiación , Proteínas Recombinantes de Fusión/genética , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Nicotiana/citologíaRESUMEN
BACKGROUND: The angiosperms, or flowering plants, diversified in the Cretaceous to dominate almost all terrestrial environments. Molecular phylogenetic studies indicate that the orders Amborellales, Nymphaeales and Austrobaileyales, collectively termed the ANA grade, diverged as separate lineages from a remaining angiosperm clade at a very early stage in flowering plant evolution. By comparing these early diverging lineages, it is possible to infer the possible morphology and ecology of the last common ancestor of the extant angiosperms, and this analysis can now be extended to try to deduce the developmental mechanisms that were present in early flowering plants. However, not all species in the ANA grade form convenient molecular-genetic models. SCOPE: The present study reviews the genus Cabomba (Nymphaeales), which shows a range of features that make it potentially useful as a genetic model. We focus on characters that have probably been conserved since the last common ancestor of the extant flowering plants. To facilitate the use of Cabomba as a molecular model, we describe methods for its cultivation to flowering in the laboratory, a novel Cabomba flower expressed sequence tag database, a well-adapted in situ hybridization protocol and a measurement of the nuclear genome size of C. caroliniana. We discuss the features required for species to become tractable models, and discuss the relative merits of Cabomba and other ANA-grade angiosperms in molecular-genetic studies aimed at understanding the origin of the flowering plants.
Asunto(s)
Evolución Biológica , Modelos Biológicos , Nymphaeaceae/genética , Flores/genética , Genoma de Planta/genética , Nymphaeaceae/crecimiento & desarrollo , Nymphaeaceae/ultraestructura , FilogeniaRESUMEN
PREMISE OF THE STUDY: Abnormal mitotic behavior with somatic aneuploidy and partial endoreplication were previously reported for the first time in the plant kingdom in Vanilla planifolia. Because vanilla plants are vegetatively propagated, such abnormalities have been transmitted. This study aimed to determine whether mitotic abnormalities also occur in Vanilla hybrid or are suppressed by sexual reproduction. METHODS: Twenty-eight accessions of Vanilla ×tahitensis, one V. planifolia, and hybrid V. planifolia × V. ×tahitensis were analyzed by chromosome counts, cytometry, and fluorescent in situ hybridization of 18S-5.8S-26S rDNA. KEY RESULTS: In a single root meristem of V. ×tahitensis, chromosome number varied from 22 to 31 in diploids (mean 2C = 5.23 pg), 31 to 41 in triploids (2C = 7.82 pg) and 43 to 60 in tetraploids (2C = 10.27 pg). Morphological diversity is apparently related to ploidy changes. Aneuploidy and partial (asymmetrical) endoreduplication were observed in root meristems of both V. ×tahitensis and the hybrid V. planifolia × V. ×tahitensis, but pollen grains had the euploid chromosome number (n = 15 in diploids). CONCLUSIONS: Genome irregularities may be transmitted not only during vegetative propagation but also by sexual reproduction in Vanilla. However, there must be a complex regulation of genome size and organization between the aneuploidy in somatic tissues and subsequently euploid gametic tissue. This is a novel example of polysomaty with developmentally regulated partial endoreplication.
Asunto(s)
Cruzamientos Genéticos , Análisis Citogenético/métodos , Variación Genética , Tamaño del Genoma/genética , Genoma de Planta/genética , Vanilla/genética , Composición de Base/genética , Núcleo Celular/genética , Cromosomas de las Plantas/genética , ADN de Plantas/genética , ADN Ribosómico/genética , Haploidia , Heterocromatina/genética , Hibridación Fluorescente in Situ , Metafase/genética , Polen/fisiología , Polinesia , Supervivencia TisularRESUMEN
Cotoneaster integerrimus represents a multiploid and facultative apomictic system of widely distributed mountain populations. We used flow cytometry to determine genome size, ploidy level, and reproduction mode variation of the Balkan populations, supplemented by analysis of nuclear microsatellites in order to address: (i) geographic distribution and variation of cytotypes among the populations; (ii) variation of reproduction mode and the frequency of sexuality; (iii) pathways of endosperm formation among the sampled polyploids and their endosperm balance requirements; (iv) genotypic diversity and geographic distribution of clonal lineages of polyploids. The prevalence of apomictic tetraploid cytotype followed by sexual diploids and extremely rare triploids was demonstrated. This prevalence of tetraploids affected the populations' structure composed from clonal genotypes with varying proportions. The co-occurrence of diploids and tetraploids generated higher cytotype, reproductive mode, and genotypic diversity, but mixed-ploidy sites were extremely rare. The endosperm imbalance facilitates the development and the occurrence of intermediate triploids in mixed-ploidy populations, but also different tetraploid lineages elsewhere with unbalanced endosperm. All these results showed that the South European populations of C. integerrimus have higher levels of cytotype and reproductive diversity compared to the Central European ones. Therefore, the South European populations can be considered as a potential reservoir of regional and global diversity for this species.
RESUMEN
Rotavirus nonstructural protein NSP3 interacts specifically with the 3' end of viral mRNAs, with the eukaryotic translation initiation factor eIF4G, and with RoXaN, a cellular protein of yet-unknown function. By evicting cytoplasmic poly(A) binding protein (PABP-C1) from translation initiation complexes, NSP3 shuts off the translation of cellular polyadenylated mRNAs. We show here that PABP-C1 evicted from eIF4G by NSP3 accumulates in the nucleus of rotavirus-infected cells. Through modeling of the NSP3-RoXaN complex, we have identified mutations in NSP3 predicted to interrupt its interaction with RoXaN without disturbing the NSP3 interaction with eIF4G. Using these NSP3 mutants and a deletion mutant unable to associate with eIF4G, we show that the nuclear localization of PABP-C1 not only is dependent on the capacity of NSP3 to interact with eIF4G but also requires the interaction of NSP3 with a specific region in RoXaN, the leucine- and aspartic acid-rich (LD) domain. Furthermore, we show that the RoXaN LD domain functions as a nuclear export signal and that RoXaN tethers PABP-C1 with RNA. This work identifies RoXaN as a cellular partner of NSP3 involved in the nucleocytoplasmic localization of PABP-C1.