RESUMEN
The transformation of two-dimensional (2D) covalent-organic frameworks (COFs) into three-dimensions (3D) is synthetically challenging, and it is typically addressed through interlayer cross-linking of alkene or alkyne bonds. Here, we report the first example of the chemical reconstruction of a 2D COF to a 3D COF with a complete lattice rearrangement facilitated by base-triggered boron hybridization. This chemical reconstruction involves the conversion of trigonal boronate ester linkages to tetrahedral anionic spiroborate linkages. This transformation reticulates the coplanar, closely stacked square cobalt(II) phthalocyanine (PcCo) units into a 3D perpendicular arrangement. As a result, the pore size of COFs expands from 2.45 nm for the initial 2D square lattice (sql) to 3.02 nm in the 3D noninterpenetrated network (nbo). Mechanistic studies reveal a base-catalyzed boronate ester protodeboronation pathway for the formation of the spiroborate structure.
RESUMEN
Despite the widespread use of Scanning Transmission Electron Microscopy (STEM) for observing the structure of materials at the atomic scale, a detailed understanding of some relevant electron beam damage mechanisms is limited. Recent reports suggest that certain types of damage can be modelled as a diffusion process and that the accumulation effects of this process must be kept low in order to reduce damage. We therefore develop an explicit mathematical formulation of spatiotemporal diffusion processes in STEM that take into account both instrument and sample parameters. Furthermore, our framework can aid the design of Diffusion Controlled Sampling (DCS) strategies using optimally selected probe positions in STEM, that constrain the cumulative diffusion distribution. Numerical simulations highlight the variability of the cumulative diffusion distribution for different experimental STEM configurations. These analytical and numerical frameworks can subsequently be used for careful design of 2- and 4-dimensional STEM experiments where beam damage is minimised.
RESUMEN
Here we show that compressive sensing allows 4-dimensional (4-D) STEM data to be obtained and accurately reconstructed with both high-speed and reduced electron fluence. The methodology needed to achieve these results compared to conventional 4-D approaches requires only that a random subset of probe locations is acquired from the typical regular scanning grid, which immediately generates both higher speed and the lower fluence experimentally. We also consider downsampling of the detector, showing that oversampling is inherent within convergent beam electron diffraction (CBED) patterns and that detector downsampling does not reduce precision but allows faster experimental data acquisition. Analysis of an experimental atomic resolution yttrium silicide dataset shows that it is possible to recover over 25 dB peak signal-to-noise ratio in the recovered phase using 0.3% of the total data. Lay abstract: Four-dimensional scanning transmission electron microscopy (4-D STEM) is a powerful technique for characterizing complex nanoscale structures. In this method, a convergent beam electron diffraction pattern (CBED) is acquired at each probe location during the scan of the sample. This means that a 2-dimensional signal is acquired at each 2-D probe location, equating to a 4-D dataset. Despite the recent development of fast direct electron detectors, some capable of 100kHz frame rates, the limiting factor for 4-D STEM is acquisition times in the majority of cases, where cameras will typically operate on the order of 2kHz. This means that a raster scan containing 256^2 probe locations can take on the order of 30s, approximately 100-1000 times longer than a conventional STEM imaging technique using monolithic radial detectors. As a result, 4-D STEM acquisitions can be subject to adverse effects such as drift, beam damage, and sample contamination. Recent advances in computational imaging techniques for STEM have allowed for faster acquisition speeds by way of acquiring only a random subset of probe locations from the field of view. By doing this, the acquisition time is significantly reduced, in some cases by a factor of 10-100 times. The acquired data is then processed to fill-in or inpaint the missing data, taking advantage of the inherently low-complex signals which can be linearly combined to recover the information. In this work, similar methods are demonstrated for the acquisition of 4-D STEM data, where only a random subset of CBED patterns are acquired over the raster scan. We simulate the compressive sensing acquisition method for 4-D STEM and present our findings for a variety of analysis techniques such as ptychography and differential phase contrast. Our results show that acquisition times can be significantly reduced on the order of 100-300 times, therefore improving existing frame rates, as well as further reducing the electron fluence beyond just using a faster camera.
RESUMEN
Traditional image acquisition for cryo focused ion-beam scanning electron microscopy (FIB-SEM) tomography often sees thousands of images being captured over a period of many hours, with immense data sets being produced. When imaging beam sensitive materials, these images are often compromised by additional constraints related to beam damage and the devitrification of the material during imaging, which renders data acquisition both costly and unreliable. Subsampling and inpainting are proposed as solutions for both of these aspects, allowing fast and low-dose imaging to take place in the Focused ion-beam scanning electron microscopy FIB-SEM without an appreciable loss in image quality. In this work, experimental data are presented which validate subsampling and inpainting as a useful tool for convenient and reliable data acquisition in a FIB-SEM, with new methods of handling three-dimensional data being employed in the context of dictionary learning and inpainting algorithms using a newly developed microscope control software and data recovery algorithm.
RESUMEN
We report the inaugural experimental investigation of covalent organic frameworks (COFs) to address the formidable challenge of SO2 detection. Specifically, an imine-functionalized COF (SonoCOF-9) demonstrated a modest and reversible SO2 sorption of 3.5 mmol g-1 at 1 bar and 298 K. At 0.1 bar (and 298 K), the total SO2 uptake reached 0.91 mmol g-1 with excellent reversibility for at least 50 adsorption-desorption cycles. An isosteric enthalpy of adsorption (ΔHads) for SO2 equaled -42.3 kJ mol-1, indicating a relatively strong interaction of SO2 molecules with the COF material. Also, molecular dynamics simulations and Møller-Plesset perturbation theory calculations showed the interaction of SO2 with π density of the rings and lone pairs of the N atoms of SonoCOF-9. The combination of experimental data and theoretical calculations corroborated the potential use of this COF for the selective detection and sensing of SO2 at the sub-ppm level (0.0064 ppm of SO2).
RESUMEN
Magnesium batteries attract interest as alternative energy-storage devices because of elemental abundance and potential for high energy density. Development is limited by the absence of suitable cathodes, associated with poor diffusion kinetics resulting from strong interactions between Mg2+ and the host structure. V2PS10 is reported as a positive electrode material for rechargeable magnesium batteries. Cyclable capacity of 100â mAh g-1 is achieved with fast Mg2+ diffusion of 7.2 × ${\times }$ 10-11-4 × ${\times }$ 10-14â cm2 s-1. The fast insertion mechanism results from combined cationic redox on the V site and anionic redox on the (S2)2- site; enabled by reversible cleavage of S-S bonds, identified by X-ray photoelectron and X-ray absorption spectroscopy. Detailed structural characterisation with maximum entropy method analysis, supported by density functional theory and projected density of states analysis, reveals that the sulphur species involved in anion redox are not connected to the transition metal centres, spatially separating the two redox processes. This facilitates fast and reversible Mg insertion in which the nature of the redox process depends on the cation insertion site, creating a synergy between the occupancy of specific Mg sites and the location of the electrons transferred.
RESUMEN
Scanning transmission electron microscopy images can be complex to interpret on the atomic scale as the contrast is sensitive to multiple factors such as sample thickness, composition, defects and aberrations. Simulations are commonly used to validate or interpret real experimental images, but they come at a cost of either long computation times or specialist hardware such as graphics processing units. Recent works in compressive sensing for experimental STEM images have shown that it is possible to significantly reduce the amount of acquired signal and still recover the full image without significant loss of image quality, and therefore it is proposed here that similar methods can be applied to STEM simulations. In this paper, we demonstrate a method that can significantly increase the efficiency of STEM simulations through a targeted sampling strategy, along with a new approach to independently subsample each frozen phonon layer. We show the effectiveness of this method by simulating a SrTiO3 grain boundary and monolayer 2H-MoS2 containing a sulphur vacancy using the abTEM software. We also show how this method is not limited to only traditional multislice methods, but also increases the speed of the PRISM simulation method. Furthermore, we discuss the possibility for STEM simulations to seed the acquisition of real data, to potentially lead the way to self-driving (correcting) STEM.
RESUMEN
Electrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities of COF-based electrodes requires materials with increased conductivity and a higher concentration of redox-active groups. Here, we designed a series of pyrene-4,5,9,10-tetraone COF (PT-COF) and carbon nanotube (CNT) composites (denoted as PT-COFX, where X = 10, 30, and 50 wt % of CNT) to address these challenges. Among the composites, PT-COF50 achieved a capacity of up to 280 mAh g-1 as normalized to the active COF material at a current density of 200 mA g-1, which is the highest capacity reported for a COF-based composite cathode electrode to date. Furthermore, PT-COF50 exhibited excellent rate performance, delivering a capacity of 229 mAh g-1 at 5000 mA g-1 (18.5C). Using operando Raman microscopy the reversible transformation of the redox-active carbonyl groups of PT-COF was determined, which rationalizes an overall 4 e-/4 Li+ redox process per pyrene-4,5,9,10-tetraone unit, accounting for its superior performance as a Li-ion battery electrode.
RESUMEN
A high-throughput sonochemical synthesis and testing strategy was developed to discover covalent organic frameworks (COFs) for photocatalysis. In total, 76 conjugated polymers were synthesized, including 60 crystalline COFs of which 18 were previously unreported. These COFs were then screened for photocatalytic hydrogen peroxide (H2O2) production using water and oxygen. One of these COFs, sonoCOF-F2, was found to be an excellent photocatalyst for photocatalytic H2O2 production even in the absence of sacrificial donors. However, after long-term photocatalytic tests (96 h), the imine sonoCOF-F2 transformed into an amide-linked COF with reduced crystallinity and loss of electronic conjugation, decreasing the photocatalytic activity. When benzyl alcohol was introduced to form a two-phase catalytic system, the photostability of sonoCOF-F2 was greatly enhanced, leading to stable H2O2 production for at least 1 week.
RESUMEN
Polymer photocatalysts have received growing attention in recent years for photocatalytic hydrogen production from water. Most studies report hydrogen production with sacrificial electron donors, which is unsuitable for large-scale hydrogen energy production. Here we show that the palladium/iridium oxide-loaded homopolymer of dibenzo[b,d]thiophene sulfone (P10) facilitates overall water splitting to produce stoichiometric amounts of H2 and O2 for an extended period (>60â hours) after the system stabilized. These results demonstrate that conjugated polymers can act as single component photocatalytic systems for overall water splitting when loaded with suitable co-catalysts, albeit currently with low activities. Transient spectroscopy shows that the IrO2 co-catalyst plays an important role in the generation of the charge separated state required for water splitting, with evidence for fast hole transfer to the co-catalyst.
RESUMEN
The synthesis of three-dimensional (3D) covalent organic frameworks (COFs) requires high-connectivity polyhedral building blocks or the controlled alignment of building blocks. Here, we use the latter strategy to assemble square-planar cobalt(II) phthalocyanine (PcCo) units into the nbo topology by using tetrahedral spiroborate (SPB) linkages that were chosen to provide the necessary 90° dihedral angles between neighboring PcCo units. This yields a porous 3D COF, SPB-COF-DBA, with a noninterpenetrated nbo topology. SPB-COF-DBA shows high crystallinity and long-range order, with 11 resolved diffraction peaks in the experimental powder X-ray diffraction (PXRD) pattern. This well-ordered crystal lattice can also be imaged by using high-resolution transmission electron microscopy (HR-TEM). SPB-COF-DBA has cubic pores and exhibits permanent porosity with a Brunauer-Emmett-Teller (BET) surface area of 1726 m2 g-1.
RESUMEN
When high-energy electrons from a scanning transmission electron microscope (STEM) are incident on a liquid, the vast majority of the chemical reactions that are observed are induced by the radiolysis breakdown of the liquid molecules. In the study of liquids, the radiolysis products of pure water are well known, and their rate of formation for a given flux of high-energy electrons has been studied intensively over the last few years for uniform TEM illumination. In this paper, we demonstrate that the temporal and spatial distribution of the electron illumination can significantly affect the final density of radiolysis products in water and even change the type of reaction taking place. We simulate the complex array of possible spatial/temporal distributions of electrons that are accessible experimentally by controlling the size, the scan rate and the hopping distance of the electron probe in STEM mode and then compare the results to the uniformly illuminated TEM mode of imaging. By distributing the electron dose both spatially and temporally in the STEM through a randomised "spot-scan" mode of imaging, the diffusion overlap of the radiolysis products can be reduced, and the resulting reactions can be more readily controlled. This control allows the resolution of the images to be separated from the speed of the induced reaction (which is based on beam current alone) and this facet of the experiment will allow a wide range of chemical reactions to be uniquely tailored and observed in all liquid cell STEM experiments.
RESUMEN
Mononuclear and dinuclear copper species were synthesized at the nodes of an NU-1000 metal-organic framework (MOF) via cation exchange and subsequent oxidation at 200 °C in oxygen. Copper-exchanged MOFs are active for selectively converting methane to methanol at 150-200 °C. At 150 °C and 1 bar methane, approximately a third of the copper centers are involved in converting methane to methanol. Methanol productivity increased by 3-4-fold and selectivity increased from 70% to 90% by increasing the methane pressure from 1 to 40 bar. Density functional theory showed that reaction pathways on various copper sites are able to convert methane to methanol, the copper oxyl sites with much lower free energies of activation. Combining studies of the stoichiometric activity with characterization by in situ X-ray absorption spectroscopy and density functional theory, we conclude that dehydrated dinuclear copper oxyl sites formed after activation at 200 °C are responsible for the activity.
RESUMEN
Electrodeposition is widely used to fabricate tunable nanostructured materials in applications ranging from biosensing to energy conversion. A model based on 3D island growth is widely accepted in the explanation of the initial stages of nucleation and growth in electrodeposition. However, there are regions in the electrodeposition parameter space where this model becomes inapplicable. We use liquid cell transmission electron microscopy along with post situ scanning electron microscopy to investigate electrodeposition in this parameter space, focusing on the effect of the supporting electrolyte, and to shed light on the nucleation and growth of palladium. Using a collection of electron microscopy images and current time transients recorded during electrodeposition, we discover that electrochemical aggregative growth, rather than 3D island growth, best describes the electrodeposition process. We then use this model to explain the change in the morphology of palladium electrodeposits from spherical to open clusters with nonspherical morphology when HCl is added to the electrolyte solution. The enhanced understanding of the early stages of palladium nucleation and growth and the role of electrolyte in this process provides a systematic route toward the electrochemical fabrication of nanostructured materials.
RESUMEN
A novel pathway of increasing the surface density of catalytically active oxygen radical sites on a MoVTeNb oxide (M1 phase) catalyst during alkane oxidative dehydrogenation is reported. The novel sites form when a fraction of Te4+ is reduced and emitted from the M1 crystals under catalytic operating conditions, without compromising structural integrity of the catalyst framework. Density functional theory calculations show this Te reduction induces multiple inter-related electron transfers, and the associated cooperative effects lead to the formation of O- radicals. The in situ observations identify complex dynamic changes in the catalyst on an atomistic level, highlighting a new way to tailor structure and dynamics for highly active catalysts.