Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34819376

RESUMEN

α-oxoacid dehydrogenase complexes are large, tripartite enzymatic machineries carrying out key reactions in central metabolism. Extremely conserved across the tree of life, they have been, so far, all considered to be structured around a high-molecular weight hollow core, consisting of up to 60 subunits of the acyltransferase component. We provide here evidence that Actinobacteria break the rule by possessing an acetyltranferase component reduced to its minimally active, trimeric unit, characterized by a unique C-terminal helix bearing an actinobacterial specific insertion that precludes larger protein oligomerization. This particular feature, together with the presence of an odhA gene coding for both the decarboxylase and the acyltransferase domains on the same polypetide, is spread over Actinobacteria and reflects the association of PDH and ODH into a single physical complex. Considering the central role of the pyruvate and 2-oxoglutarate nodes in central metabolism, our findings pave the way to both therapeutic and metabolic engineering applications.


Asunto(s)
Actinobacteria/metabolismo , Complejo Cetoglutarato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo , Bacterias/metabolismo , Fenómenos Bioquímicos , Biología Computacional , Cristalografía por Rayos X , Cinética , Conformación Molecular , Mycobacterium tuberculosis/metabolismo , Plásmidos/metabolismo , Ácido Pirúvico
2.
Int J Mol Sci ; 23(19)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36232607

RESUMEN

Glutamate dehydrogenase (GDH) plays a key role in the metabolism of glutamate, an important compound at a cross-road of carbon and nitrogen metabolism and a relevant neurotransmitter. Despite being one of the first discovered allosteric enzymes, GDH still poses challenges for structural characterization of its allosteric sites. Only the structures with ADP, and at low (3.5 Å) resolution, are available for mammalian GDH complexes with allosteric activators. Here, we aim at deciphering a structural basis for the GDH allosteric activation using bovine GDH as a model. For the first time, we report a mammalian GDH structure in a ternary complex with the activators leucine and ADP, co-crystallized with potassium ion, resolved to 2.45 Å. An improved 2.4-angstrom resolution of the GDH complex with ADP is also presented. The ternary complex with leucine and ADP differs from the binary complex with ADP by the conformation of GDH C-terminus, involved in the leucine binding and subunit interactions. The potassium site, identified in this work, may mediate interactions between the leucine and ADP binding sites. Our data provide novel insights into the mechanisms of GDH activation by leucine and ADP, linked to the enzyme regulation by (de)acetylation.


Asunto(s)
Glutamato Deshidrogenasa , Ácido Glutámico , Adenosina Difosfato/metabolismo , Regulación Alostérica , Animales , Carbono , Bovinos , Glutamato Deshidrogenasa/metabolismo , Ácido Glutámico/metabolismo , Leucina/metabolismo , Mamíferos/metabolismo , Nitrógeno , Potasio
3.
Inorg Chem ; 54(21): 10422-8, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26488236

RESUMEN

Manganous phosphates have been postulated to play an important role in cells as antioxidants. In situ Mn(II) electron-nuclear double resonance (ENDOR) spectroscopy has been used to measure their speciation in cells. The analyses of such ENDOR spectra and the quantification of cellular Mn(II) phosphates has been based on comparisons to in vitro model complexes and heuristic modeling. In order to put such analyses on a more physical and theoretical footing, the Mn(II)-(31)P hyperfine interactions of various Mn(II) phosphate complexes have been measured by 95 GHz ENDOR spectroscopy. The dipolar components of these interactions remained relatively constant as a function of pH, esterification, and phosphate chain length, while the isotropic contributions were significantly affected. Counterintuitively, although the manganese-phosphate bonds are weakened by protonation and esterification, they lead to larger isotropic values, indicating higher unpaired-electron spin densities at the phosphorus nuclei. By comparison, extending the phosphate chain with additional phosphate groups lowers the spin density. Density functional theory calculations of model complexes quantitatively reproduced the measured hyperfine couplings and provided detailed insights into how bonding in Mn(II) phosphate complexes modulates the electron-spin polarization and consequently their isotropic hyperfine couplings. These results show that various classes of phosphates can be identified by their ENDOR spectra and provide a theoretical framework for understanding the in situ (31)P ENDOR spectra of cellular Mn(II) complexes.


Asunto(s)
Compuestos Organometálicos/química , Espectroscopía de Resonancia por Spin del Electrón , Modelos Químicos
4.
Sci Rep ; 14(1): 2038, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263191

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, uses a surface expressed trimeric spike glycoprotein for cell entry. This trimer is the primary target for neutralizing antibodies making it a key candidate for vaccine development. During the global pandemic circulating variants of concern (VOC) caused several waves of infection, severe disease, and death. The reduced efficacy of the ancestral trimer-based vaccines against emerging VOC led to the need for booster vaccines. Here we present a detailed characterization of the Sanofi Beta trimer, utilizing cryo-EM for structural elucidation. We investigate the conformational dynamics and stabilizing features using orthogonal SPR, SEC, nanoDSF, and HDX-MS techniques to better understand how this antigen elicits superior broad neutralizing antibodies as a variant booster vaccine. This structural analysis confirms the Beta trimer preference for canonical quaternary structure with two RBD in the up position and the reversible equilibrium between the canonical spike and open trimer conformations. Moreover, this report provides a better understanding of structural differences between spike antigens contributing to differential vaccine efficacy.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Psicoterapia
5.
Nat Commun ; 14(1): 4851, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563123

RESUMEN

Actinobacteria possess unique ways to regulate the oxoglutarate metabolic node. Contrary to most organisms in which three enzymes compose the 2-oxoglutarate dehydrogenase complex (ODH), actinobacteria rely on a two-in-one protein (OdhA) in which both the oxidative decarboxylation and succinyl transferase steps are carried out by the same polypeptide. Here we describe high-resolution cryo-EM and crystallographic snapshots of representative enzymes from Mycobacterium smegmatis and Corynebacterium glutamicum, showing that OdhA is an 800-kDa homohexamer that assembles into a three-blade propeller shape. The obligate trimeric and dimeric states of the acyltransferase and dehydrogenase domains, respectively, are critical for maintaining the overall assembly, where both domains interact via subtle readjustments of their interfaces. Complexes obtained with substrate analogues, reaction products and allosteric regulators illustrate how these domains operate. Furthermore, we provide additional insights into the phosphorylation-dependent regulation of this enzymatic machinery by the signalling protein OdhI.


Asunto(s)
Corynebacterium glutamicum , Complejo Cetoglutarato Deshidrogenasa , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Microscopía por Crioelectrón , Fosforilación , Corynebacterium glutamicum/metabolismo
6.
J Biol Chem ; 286(34): 29671-80, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21737456

RESUMEN

HSP100 proteins are molecular chaperones involved in protein quality control. They assist in protein (un)folding, prevent aggregation, and are thought to participate in precursor translocation across membranes. Caseinolytic proteins ClpC and ClpD from plant chloroplasts belong to the HSP100 family. Their role has hitherto been investigated by means of physiological studies and reverse genetics. In the present work, we employed an in vitro approach to delve into the structural and functional characteristics of ClpC2 and ClpD from Arabidopsis thaliana (AtClpC2 and AtClpD). They were expressed in Escherichia coli and purified to near-homogeneity. The proteins were detected mainly as dimers in solution, and, upon addition of ATP, the formation of hexamers was observed. Both proteins exhibited basal ATPase activity (K(m), 1.42 mm, V(max), 0.62 nmol/(min × µg) for AtClpC2 and K(m) ∼19.80 mm, V(max) ∼0.19 nmol/(min × µg) for AtClpD). They were able to reactivate the activity of heat-denatured luciferase (∼40% for AtClpC2 and ∼20% for AtClpD). The Clp proteins tightly bound a fusion protein containing a model transit peptide. This interaction was detected by binding assays, where the chaperones were selectively trapped by the transit peptide-containing fusion, immobilized on glutathione-agarose beads. Association of HSP100 proteins to import complexes with a bound transit peptide-containing fusion was also observed in intact chloroplasts. The presented data are useful to understand protein quality control and protein import into chloroplasts in plants.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Cloroplastos/enzimología , Proteínas de Choque Térmico/metabolismo , Multimerización de Proteína/fisiología , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Proteínas de Choque Térmico/genética , Transporte de Proteínas/fisiología
7.
BMC Plant Biol ; 12: 57, 2012 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-22545953

RESUMEN

BACKGROUND: Clp/Hsp100 chaperones are involved in protein quality control. They act as independent units or in conjunction with a proteolytic core to degrade irreversibly damaged proteins. Clp chaperones from plant chloroplasts have been also implicated in the process of precursor import, along with Hsp70 chaperones. They are thought to pull the precursors in as the transit peptides enter the organelle. How Clp chaperones identify their substrates and engage in their processing is not known. This information may lie in the position, sequence or structure of the Clp recognition motifs. RESULTS: We tested the influence of the position of the transit peptide on the interaction with two chloroplastic Clp chaperones, ClpC2 and ClpD from Arabidopsis thaliana (AtClpC2 and AtClpD). The transit peptide of ferredoxin-NADP+ reductase was fused to either the N- or C-terminal end of glutathione S-transferase. Another fusion with the transit peptide interleaved between two folded proteins was used to probe if AtClpC2 and AtClpD could recognize tags located in the interior of a polypeptide. We also used a mutated transit peptide that is not targeted by Hsp70 chaperones (TP1234), yet it is imported at a normal rate. The fusions were immobilized on resins and the purified recombinant chaperones were added. After a washing protocol, the amount of bound chaperone was assessed. Both AtClpC2 and AtClpD interacted with the transit peptides when they were located at the N-terminal position of a protein, but not when they were allocated to the C-terminal end or at the interior of a polypeptide. CONCLUSIONS: AtClpC2 and AtClpD have a positional preference for interacting with a transit peptide. In particular, the localization of the signal sequence at the N-terminal end of a protein seems mandatory for interaction to take place. Our results have implications for the understanding of protein quality control and precursor import in chloroplasts.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Plantas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cloroplastos/química , Cloroplastos/genética , Proteínas de Choque Térmico/genética , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica , Transporte de Proteínas
8.
Commun Biol ; 4(1): 684, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083757

RESUMEN

Glutamate dehydrogenases (GDHs) are widespread metabolic enzymes that play key roles in nitrogen homeostasis. Large glutamate dehydrogenases composed of 180 kDa subunits (L-GDHs180) contain long N- and C-terminal segments flanking the catalytic core. Despite the relevance of L-GDHs180 in bacterial physiology, the lack of structural data for these enzymes has limited the progress of functional studies. Here we show that the mycobacterial L-GDH180 (mL-GDH180) adopts a quaternary structure that is radically different from that of related low molecular weight enzymes. Intersubunit contacts in mL-GDH180 involve a C-terminal domain that we propose as a new fold and a flexible N-terminal segment comprising ACT-like and PAS-type domains that could act as metabolic sensors for allosteric regulation. These findings uncover unique aspects of the structure-function relationship in the subfamily of L-GDHs.


Asunto(s)
Proteínas Bacterianas/química , Glutamato Deshidrogenasa/química , Mycobacterium smegmatis/enzimología , Proteínas Recombinantes/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Microscopía por Crioelectrón , Cristalografía por Rayos X , Glutamato Deshidrogenasa/metabolismo , Glutamato Deshidrogenasa/ultraestructura , Cinética , Modelos Moleculares , Mycobacterium smegmatis/genética , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura
9.
J Phys Chem Lett ; 7(6): 1072-6, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26938795

RESUMEN

A genetically encodable paramagnetic spin-label capable of self-assembly from naturally available components would offer a means for studying the in-cell structure and interactions of a protein by electron paramagnetic resonance (EPR). Here, we demonstrate pulse electron-electron double resonance (DEER) measurements on spin-labels consisting of Mn(II) ions coordinated to a sequence of histidines, so-called His-tags, that are ubiquitously added by genetic engineering to facilitate protein purification. Although the affinity of His-tags for Mn(II) was low (800 µM), Mn(II)-bound His-tags yielded readily detectable DEER time traces even at concentrations expected in cells. We were able to determine accurately the distance between two His-tag Mn(II) spin-labels at the ends of a rigid helical polyproline peptide of known structure, as well as at the ends of a completely cell-synthesized 3-helix bundle. This approach not only greatly simplifies the labeling procedure but also represents a first step towards using self-assembling metal spin-labels for in-cell distance measurements.


Asunto(s)
Histidina/química , Manganeso/química , Proteínas/química , Marcadores de Spin , Espectroscopía de Resonancia por Spin del Electrón , Simulación de Dinámica Molecular , Péptidos/química , Estructura Terciaria de Proteína
10.
J Phys Chem B ; 119(43): 13515-23, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25730710

RESUMEN

The ability to characterize the structure of metal centers beyond their primary ligands is important to understanding their chemistry. High-magnetic-field pulsed electron double resonance detected NMR (ELDOR-NMR) is shown to be a very sensitive approach to measuring the multinuclear NMR spectra of the nuclei surrounding Mn(II) ions. Resolved spectra of intact organisms with resonances arising from (55)Mn, (31)P, (1)H, (39)K, (35)Cl, (23)Na, and (14)N nuclei surrounding Mn(2+) centers were obtained. Naturally abundant cellular (13)C could be routinely measured as well. The amplitudes of the (14)N and (2)H ELDOR-NMR spectra were found to be linearly dependent on the number of nuclei in the ligand sphere. The evolution of the Mn(II) ELDOR-NMR spectra as a function of excitation time was found to be best described by a saturation phenomenon rather than a coherently driven process. Mn(II) ELDOR-NMR revealed details about not only the immediate ligands to the Mn(II) ions but also more distant nuclei, providing a view of their extended structures. This will be important for understanding the speciation and chemistry of the manganese complexes as well as other metals found in organisms.


Asunto(s)
Deinococcus/química , Escherichia coli/química , Manganeso/química , Resonancia Magnética Nuclear Biomolecular , Compuestos Organometálicos/química , Deinococcus/citología , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/citología , Modelos Moleculares , Estructura Molecular , Teoría Cuántica
11.
Plant Signal Behav ; 7(6): 672-4, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22580704

RESUMEN

In chloroplasts, Hsp70 and Hsp100 chaperones have been long suspected to be the motors that provide the necessary energy for the import of precursor proteins destined to the organelle. The chaperones associate with the import translocon and meet the transit peptides as they emerge through the channel. After decades of active research, recent findings demonstrated that Hsp100 chaperones recognize transit peptides both in vitro and in vivo. Moreover, Hsp70 also plays a part in precursor import. The updated model of protein translocation into chloroplasts now presents new questions about the role of the chaperones in the process.


Asunto(s)
Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Proteínas de Choque Térmico/metabolismo , Modelos Biológicos , Transporte de Proteínas , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA