Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 184(11): 3022-3040.e28, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33961781

RESUMEN

Thousands of interactions assemble proteins into modules that impart spatial and functional organization to the cellular proteome. Through affinity-purification mass spectrometry, we have created two proteome-scale, cell-line-specific interaction networks. The first, BioPlex 3.0, results from affinity purification of 10,128 human proteins-half the proteome-in 293T cells and includes 118,162 interactions among 14,586 proteins. The second results from 5,522 immunoprecipitations in HCT116 cells. These networks model the interactome whose structure encodes protein function, localization, and complex membership. Comparison across cell lines validates thousands of interactions and reveals extensive customization. Whereas shared interactions reside in core complexes and involve essential proteins, cell-specific interactions link these complexes, "rewiring" subnetworks within each cell's interactome. Interactions covary among proteins of shared function as the proteome remodels to produce each cell's phenotype. Viewable interactively online through BioPlexExplorer, these networks define principles of proteome organization and enable unknown protein characterization.


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas/genética , Proteoma/genética , Biología Computacional/métodos , Células HCT116/metabolismo , Células HEK293/metabolismo , Humanos , Espectrometría de Masas/métodos , Mapas de Interacción de Proteínas/fisiología , Proteoma/metabolismo , Proteómica/métodos
2.
Cell ; 162(2): 425-440, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26186194

RESUMEN

Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% previously undocumented. BioPlex accurately depicts known complexes, attaining 80%-100% coverage for most CORUM complexes. The network readily subdivides into communities that correspond to complexes or clusters of functionally related proteins. More generally, network architecture reflects cellular localization, biological process, and molecular function, enabling functional characterization of thousands of proteins. Network structure also reveals associations among thousands of protein domains, suggesting a basis for examining structurally related proteins. Finally, BioPlex, in combination with other approaches, can be used to reveal interactions of biological or clinical significance. For example, mutations in the membrane protein VAPB implicated in familial amyotrophic lateral sclerosis perturb a defined community of interactors.


Asunto(s)
Mapas de Interacción de Proteínas , Proteómica/métodos , Esclerosis Amiotrófica Lateral/genética , Humanos , Espectrometría de Masas , Mapeo de Interacción de Proteínas , Proteínas/química , Proteínas/aislamiento & purificación , Proteínas/metabolismo
3.
Nature ; 545(7655): 505-509, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28514442

RESUMEN

The physiology of a cell can be viewed as the product of thousands of proteins acting in concert to shape the cellular response. Coordination is achieved in part through networks of protein-protein interactions that assemble functionally related proteins into complexes, organelles, and signal transduction pathways. Understanding the architecture of the human proteome has the potential to inform cellular, structural, and evolutionary mechanisms and is critical to elucidating how genome variation contributes to disease. Here we present BioPlex 2.0 (Biophysical Interactions of ORFeome-derived complexes), which uses robust affinity purification-mass spectrometry methodology to elucidate protein interaction networks and co-complexes nucleated by more than 25% of protein-coding genes from the human genome, and constitutes, to our knowledge, the largest such network so far. With more than 56,000 candidate interactions, BioPlex 2.0 contains more than 29,000 previously unknown co-associations and provides functional insights into hundreds of poorly characterized proteins while enhancing network-based analyses of domain associations, subcellular localization, and co-complex formation. Unsupervised Markov clustering of interacting proteins identified more than 1,300 protein communities representing diverse cellular activities. Genes essential for cell fitness are enriched within 53 communities representing central cellular functions. Moreover, we identified 442 communities associated with more than 2,000 disease annotations, placing numerous candidate disease genes into a cellular framework. BioPlex 2.0 exceeds previous experimentally derived interaction networks in depth and breadth, and will be a valuable resource for exploring the biology of incompletely characterized proteins and for elucidating larger-scale patterns of proteome organization.


Asunto(s)
Bases de Datos de Proteínas , Enfermedad , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Proteoma/metabolismo , Fenómenos Fisiológicos Celulares/genética , Genoma Humano , Humanos , Espacio Intracelular/metabolismo , Cadenas de Markov , Espectrometría de Masas , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Proteoma/análisis , Proteoma/química , Proteoma/genética
4.
J Am Chem Soc ; 131(28): 9628-9, 2009 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-19601679

RESUMEN

Many of the properties of bilayer membranes composed of simple single-chain amphiphiles seem to be well-suited for a potential role as primitive cell membranes. However, the spontaneous formation of membranes from such amphiphiles is a concentration-dependent process in which a significant critical aggregate concentration (cac) must be reached. Since most scenarios for the prebiotic synthesis of fatty acids and related amphiphiles would result in dilute solutions well below the cac, the identification of mechanisms that would lead to increased local amphiphile concentrations is an important aspect of defining reasonable conditions for the origin of cellular life. Narrow, vertically oriented channels within the mineral precipitates of hydrothermal vent towers have previously been proposed to act as natural Clusius-Dickel thermal diffusion columns, in which a strong transverse thermal gradient concentrates dilute molecules through the coupling of thermophoresis and convection. Here we experimentally demonstrate that a microcapillary acting as a thermal diffusion column can concentrate a solution of oleic acid. Upon concentration, self-assembly of large vesicles occurs in regions where the cac is exceeded. We detected vesicle formation by fluorescence microscopy of encapsulated dye cargoes, which simultaneously concentrated in our channels. Our findings suggest a novel means by which simple physical processes could have led to the spontaneous formation of cell-like structures from a dilute prebiotic reservoir.


Asunto(s)
Biomimética , Células , Membranas Artificiales , Difusión Térmica , Microscopía Fluorescente , Ácido Oléico/química , Silicatos/química , Temperatura
5.
Mol Metab ; 6(10): 1212-1225, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29031721

RESUMEN

OBJECTIVES: Understanding how loci identified by genome wide association studies (GWAS) contribute to pathogenesis requires new mechanistic insights. Variants within CDKAL1 are strongly linked to an increased risk of developing type 2 diabetes and obesity. Investigations in mouse models have focused on the function of Cdkal1 as a tRNALys modifier and downstream effects of Cdkal1 loss on pro-insulin translational fidelity in pancreatic ß-cells. However, Cdkal1 is broadly expressed in other metabolically relevant tissues, including adipose tissue. In addition, the Cdkal1 homolog Cdk5rap1 regulates mitochondrial protein translation and mitochondrial function in skeletal muscle. We tested whether adipocyte-specific Cdkal1 deletion alters systemic glucose homeostasis or adipose mitochondrial function independently of its effects on pro-insulin translation and insulin secretion. METHODS: We measured mRNA levels of type 2 diabetes GWAS genes, including Cdkal1, in adipose tissue from lean and obese mice. We then established a mouse model with adipocyte-specific Cdkal1 deletion. We examined the effects of adipose Cdkal1 deletion using indirect calorimetry on mice during a cold temperature challenge, as well as by measuring cellular and mitochondrial respiration in vitro. We also examined brown adipose tissue (BAT) mitochondrial morphology by electron microscopy. Utilizing co-immunoprecipitation followed by mass spectrometry, we performed interaction mapping to identify new CDKAL1 binding partners. Furthermore, we tested whether Cdkal1 loss in adipose tissue affects total protein levels or accurate Lys incorporation by tRNALys using quantitative mass spectrometry. RESULTS: We found that Cdkal1 mRNA levels are reduced in adipose tissue of obese mice. Using adipose-specific Cdkal1 KO mice (A-KO), we demonstrated that mitochondrial function is impaired in primary differentiated brown adipocytes and in isolated mitochondria from A-KO brown adipose tissue. A-KO mice displayed decreased energy expenditure during 4 °C cold challenge. Furthermore, mitochondrial morphology was highly abnormal in A-KO BAT. Surprisingly, we found that lysine codon representation was unchanged in Cdkal1 A-KO adipose tissue. We identified novel protein interactors of CDKAL1, including SLC25A4/ANT1, an inner mitochondrial membrane ADP/ATP translocator. ANT proteins can account for the UCP1-independent basal proton leak in BAT mitochondria. Cdkal1 A-KO mice had increased ANT1 protein levels in their white adipose tissue. CONCLUSIONS: Cdkal1 is necessary for normal mitochondrial morphology and function in adipose tissue. These results suggest that the type 2 diabetes susceptibility gene CDKAL1 has novel functions in regulating mitochondrial activity.


Asunto(s)
Mitocondrias/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Adiposidad , Animales , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Glucosa/metabolismo , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Obesidad/genética , Obesidad/metabolismo , ARNt Metiltransferasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA