Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Hepatology ; 80(5): 1120-1133, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38150294

RESUMEN

BACKGROUND AND AIMS: Patients with cirrhosis show alterations in primary hemostasis, yet prognostic implications of changes in platelet activation remain controversial, and assay validity is often limited by thrombocytopenia. We aimed to study the prognostic role of platelet activation in cirrhosis, focusing on bleeding/thromboembolic events, decompensation, and mortality. APPROACH AND RESULTS: We prospectively included 107 patients with cirrhosis undergoing a same-day hepatic venous pressure gradient (HVPG) and platelet activation measurement. Platelet activation was assessed using flow cytometry after protease-activated receptor (PAR)-1, PAR-4, or epinephrine stimulation. Over a follow-up of 25.3 (IQR: 15.7-31.2) months, first/further decompensation occurred in 29 patients and 17 died. More pronounced platelet activation was associated with an improved prognosis, even after adjusting for systemic inflammation, HVPG, and disease severity. Specifically, higher PAR-4-inducible platelet activation was independently linked to a lower decompensation risk [adjusted HR per 100 MFI (median fluorescence intensity): 0.95 (95% CI: 0.90-0.99); p =0.036] and higher PAR-1-inducible platelet activation was independently linked to longer survival [adjusted HR per 100 MFI: 0.93 (95% CI: 0.87-0.99); p =0.040]. Thromboembolic events occurred in eight patients (75% nontumoral portal vein thrombosis [PVT]). Higher epinephrine-inducible platelet activation was associated with an increased risk of thrombosis [HR per 10 MFI: 1.07 (95% CI: 1.02-1.12); p =0.007] and PVT [HR per 10 MFI: 1.08 (95% CI: 1.02-1.14); p =0.004]. In contrast, of the 11 major bleedings that occurred, 9 were portal hypertension related, and HVPG thus emerged as the primary risk factor. CONCLUSIONS: Preserved PAR-1- and PAR-4-inducible platelet activation was linked to a lower risk of decompensation and death. In contrast, higher epinephrine-inducible platelet activation was a risk factor for thromboembolism and PVT.


Asunto(s)
Cirrosis Hepática , Activación Plaquetaria , Humanos , Masculino , Femenino , Cirrosis Hepática/complicaciones , Cirrosis Hepática/mortalidad , Cirrosis Hepática/sangre , Persona de Mediana Edad , Estudios Prospectivos , Anciano , Pronóstico , Receptor PAR-1 , Receptores de Trombina , Hemorragia/mortalidad , Hemorragia/sangre , Hemorragia/etiología
2.
Hepatology ; 75(3): 610-622, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34716927

RESUMEN

BACKGROUND AND AIMS: Liver fibrosis is the static and main (70%-80%) component of portal hypertension (PH). We investigated dynamic components of PH by a three-dimensional analysis based on correlation of hepatic collagen proportionate area (CPA) with portal pressure (PP) in animals or HVPG in patients. APPROACH AND RESULTS: Different animal models (bile duct ligation: n = 31, carbon tetrachloride: n = 12, thioacetamide: n = 12, choline-deficient high-fat diet: n = 12) and patients with a confirmed single etiology of cholestatic (primary biliary cholangitis/primary sclerosing cholangitis: n = 16), alcohol-associated (n = 22), and metabolic (NASH: n = 19) liver disease underwent CPA quantification on liver specimens/biopsies. Based on CPA-to-PP/HVPG correlation, potential dynamic components were identified in subgroups of animals/patients with lower-than-expected and higher-than-expected PP/HVPG. Dynamic PH components were validated in a patient cohort (n = 245) using liver stiffness measurement (LSM) instead of CPA. CPA significantly correlated with PP in animal models (Rho = 0.531; p < 0.001) and HVPG in patients (Rho = 0.439; p < 0.001). Correlation of CPA with PP/HVPG varied across different animal models and etiologies in patients. In models, severity of hyperdynamic circulation and specific fibrosis pattern (portal fibrosis: p = 0.02; septa width: p = 0.03) were associated with PH severity. In patients, hyperdynamic circulation (p = 0.04), vascular dysfunction/angiogenesis (VWF-Ag: p = 0.03; soluble vascular endothelial growth factor receptor 1: p = 0.03), and bile acids (p = 0.04) were dynamic modulators of PH. The LSM-HVPG validation cohort confirmed these and also indicated IL-6 (p = 0.008) and hyaluronic acid (HA: p < 0.001) as dynamic PH components. CONCLUSIONS: The relative contribution of "static" fibrosis on PH severity varies by type of liver injury. Next to hyperdynamic circulation, increased bile acids, VWF-Ag, IL-6, and HA seem to indicate a pronounced dynamic component of PH in patients.


Asunto(s)
Colágeno , Hipertensión Portal , Cirrosis Hepática , Hígado , Presión Portal/fisiología , Animales , Biopsia/métodos , Depresores del Sistema Nervioso Central/farmacología , Colestasis/fisiopatología , Colágeno/análisis , Colágeno/metabolismo , Diagnóstico por Imagen de Elasticidad/métodos , Etanol/farmacología , Hemodinámica , Humanos , Hipertensión Portal/diagnóstico , Hipertensión Portal/etiología , Hipertensión Portal/fisiopatología , Hígado/diagnóstico por imagen , Hígado/metabolismo , Hígado/patología , Hígado/fisiopatología , Circulación Hepática , Cirrosis Hepática/complicaciones , Cirrosis Hepática/patología , Cirrosis Hepática/fisiopatología , Modelos Animales , Ratas
3.
Platelets ; 33(6): 879-886, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35294323

RESUMEN

Cirrhotic patients have an increased risk of bleeding and thromboembolic events, with platelets being involved as key players in both situations. The impact of peripheral versus central blood sampling on platelet activation remains unclear. In 33 cirrhotic patients, we thus analyzed platelet function in peripheral (P) and central (C) blood samples. Platelet surface expression of P-selectin, activated glycoprotein (GP) IIb/IIIa, and leukocyte-platelet aggregate formation were measured by flow cytometry in response to different agonists: thrombin receptor-activating peptide-6, adenosine diphosphate, collagen-related peptide (CrP), epinephrine, AYPGKF, Pam3CSK4, and lipopolysaccharide. Unstimulated platelet surface expression of P-selectin (p = .850) and activated GPIIb/IIIa (p = .625) were similar in peripheral and central blood samples. Stimulation with various agonists yielded similar results of platelet surface expression of P-selectin and activated GPIIb/IIIa in peripheral and central samples, except for CrP-inducible expression of activated GPIIb/IIIa (median fluorescence intensity, MFI in P: 7.61 [0.00-24.66] vs. C: 4.12 [0.00-19.04], p < .001). The formation of leukocyte-platelet aggregate was similar in central and peripheral blood samples, both unstimulated and after stimulation with all above-mentioned agonists. In conclusion, peripheral vs. central venous blood sampling does not influence the assessment of platelet activation by flow cytometry in cirrhosis.Abbreviations: ACLD: advanced chronic liver disease; ADP: adenosine diphosphate; ALD: alcoholic liver disease; AYPGKF: PAR-4 agonist AYPGKF; CrP: collagen related protein; EPI: epinephrine; FACS: fluorescence-activated cell sorting; GP: glycoprotein; HVPG: hepatic venous pressure gradient; IQR: interquartile range; LPS: lipopolysaccharide; LSM: liver stiffness measurement; MFI: median fluorescence intensity; NAFLD: nonalcoholic fatty liver disease; PAM: lipopeptide Pam3CSK4; PAR: protease-activated receptor; PBS: phosphate-buffered saline; PH: portal hypertension; TIPS: transjugular intrahepatic portosystemic stent shunt; TLR: toll-like receptor; TRAP-6: thrombin receptor-activator peptide-6; vWF: von Willebrand factor.


Asunto(s)
Selectina-P , Inhibidores de Agregación Plaquetaria , Adenosina Difosfato/farmacología , Plaquetas/metabolismo , Epinefrina/farmacología , Citometría de Flujo , Humanos , Lipopolisacáridos/metabolismo , Cirrosis Hepática/metabolismo , Selectina-P/metabolismo , Activación Plaquetaria , Agregación Plaquetaria , Inhibidores de Agregación Plaquetaria/farmacología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Receptores de Trombina/metabolismo
4.
Semin Liver Dis ; 39(4): 483-501, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31315135

RESUMEN

Portal hypertension is the main driver for severe complications in patients with liver cirrhosis. With improved understanding of molecular pathways that promote hepatic vascular remodeling, vasoconstriction, and sinusoidal capillarization potential vascular targets for the treatment of portal hypertension have been identified. Inhibition of vascular endothelial and platelet-derived growth factors-driven angiogenesis has been shown to reduce portal pressure and decrease hepatic inflammation. Angiopoietin/Tie signaling represents additional promising vascular targets in liver disease. The eNOS-NO-sGC-cGMP pathway modulates sinusoidal vasoconstriction and capillarization. Nuclear farnesoid X receptor (FXR) agonists decrease intrahepatic vascular resistance by inhibition of fibrogenesis and sinusoidal remodeling. Statins ameliorate endothelial dysfunction, decrease portal pressure, and reduce fibrogenesis. Anticoagulation with low-molecular heparin or anti-Xa inhibitors improved portal hypertension by deactivation of hepatic stellate cells and potentially via reduction of sinusoidal microthrombosis. This review summarizes important vascular targets for treatment of portal hypertension that have shown promising results in experimental studies.


Asunto(s)
Hipertensión Portal/terapia , Anticoagulantes/uso terapéutico , GMP Cíclico/metabolismo , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Hipertensión Portal/fisiopatología , Neovascularización Patológica/fisiopatología , Neovascularización Patológica/prevención & control , Óxido Nítrico/metabolismo , Receptores Citoplasmáticos y Nucleares/agonistas , Guanilil Ciclasa Soluble/metabolismo
5.
Dig Liver Dis ; 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39343656

RESUMEN

BACKGROUND: Cirrhosis is associated with a proinflammatory environment. AIMS: To analyse aetiology-specific inflammation patterns in compensated cirrhosis in animal models and patients. METHODS: Portal pressure (PP), fibrosis (collagen proportionate area [CPA]) and hepatic inflammation were measured in cirrhotic rat models (thioacetamide [TAA;n = 12]; choline-deficient high-fat diet [CDHFD;n = 12]; bile duct ligation [BDL;n = 16]). Compensated cirrhotic patients (alcohol-related liver disease [ALD;n = 67]; metabolic dysfunction-associated steatohepatitis [MASH;n = 50]; cholestatic liver disease [primary biliary cholangitis [PBC]/primary sclerosing cholangitis [PSC];n = 22]) undergoing hepatic venous pressure gradient (HVPG) measurement were included. RESULTS: In rats, hepatic proinflammatory gene expression was highest in CDHFD and lowest in TAA, despite comparable PP levels. Across all animal models, Tnfa/Il6 correlated positively with CPA, and Mcp1 with elevated PP. Mcp1 was also associated with increased CPA in TAA/CDHFD. Mcp1/Cxcl1 showed a model-independent positive correlation to transaminases. Il1b correlated positively with CPA/PP in BDL and with transaminases in CDHFD. In patients, CRP/IL-6 were lower in MASH compared to ALD or PBC/PSC, regardless of hepatic function. IgA/IgG were highest and complement factors lowest in ALD. More pronounced systemic inflammation was linked to higher HVPG primarily in ALD/MASH. CONCLUSION: Proinflammatory pathways are upregulated across all liver disease aetiologies, yet their association with fibrosis and portal hypertension can vary.

6.
iScience ; 27(3): 109301, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38469563

RESUMEN

Persistent liver injury triggers a fibrogenic program that causes pathologic remodeling of the hepatic microenvironment (i.e., liver fibrosis) and portal hypertension. The dynamics of gene regulation during liver disease progression and early regression remain understudied. Here, we generated hepatic transcriptome profiles in two well-established liver disease models at peak fibrosis and during spontaneous regression after the removal of the inducing agents. We linked the dynamics of key disease readouts, such as portal pressure, collagen area, and transaminase levels, to differentially expressed genes, enabling the identification of transcriptomic signatures of progressive vs. regressive liver fibrosis and portal hypertension. These candidate biomarkers (e.g., Tcf4, Mmp7, Trem2, Spp1, Scube1, Islr) were validated in RNA sequencing datasets of patients with cirrhosis and portal hypertension, and those cured from hepatitis C infection. Finally, deconvolution identified major cell types and suggested an association of macrophage and portal hepatocyte signatures with portal hypertension and fibrosis area.

7.
Cell Mol Gastroenterol Hepatol ; 16(5): 847-856, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37572734

RESUMEN

BACKGROUND & AIMS: Glucagon-like peptide (GLP)-2 may exert antifibrotic effects on hepatic stellate cells (HSCs). Thus, we aimed to test whether application of the GLP-2 analogue teduglutide has hepatoprotective and antifibrotic effects in the Mdr2/Abcb4-/- mouse model of sclerosing cholangitis displaying hepatic inflammation and fibrosis. METHODS: Mdr2-/- mice were injected daily for 4 weeks with teduglutide followed by gene expression profiling (bulk liver; isolated HSCs) and immunohistochemistry. Activated HSCs (LX2 cells) and immortalized human hepatocytes and human intestinal organoids were treated with GLP-2. mRNA profiling by reverse transcription polymerase chain reaction and electrophoretic mobility shift assay using cytosolic and nuclear protein extracts was performed. RESULTS: Hepatic inflammation, fibrosis, and reactive cholangiocyte phenotype were improved in GLP-2-treated Mdr2-/- mice. Primary HSCs isolated from Mdr2-/- mice and LX2 cells exposed to GLP-2 in vitro displayed significantly increased mRNA expression levels of NR4a1/Nur77 (P < .05). Electrophoretic mobility shift assay revealed an increased nuclear NR4a1 binding after GLP-2 treatment in LX2 cells. Moreover, GLP-2 alleviated the Tgfß-mediated reduction of NR4a1 nuclear binding activity. In vivo, GLP-2 treatment of Mdr2-/- mice resulted in increased intrahepatic levels of muricholic acids (accordingly Cyp2c70 mRNA expression was significantly increased), and in reduced mRNA levels of Cyp7a1 and FXR. Serum Fgf15 levels were increased in Mdr2-/- mice treated with GLP-2. Accordingly, GLP-2 treatment of human intestinal organoids activated their FXR-FGF19 signaling axis. CONCLUSIONS: GLP-2 treatment increased NR4a1/Nur77 activation in HSCs, subsequently attenuating their activation. GLP-2 promoted intestinal Fxr-Fgf15/19 signaling resulting in reduced Cyp7a1 and increased Cyp2c70 expression in the liver, contributing to hepatoprotective and antifibrotic effects of GLP-2 in the Mdr2-/- mouse model.


Asunto(s)
Células Estrelladas Hepáticas , Cirrosis Hepática , Ratones , Humanos , Animales , Células Estrelladas Hepáticas/metabolismo , Ratones Noqueados , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Modelos Animales de Enfermedad , ARN Mensajero/metabolismo , Inflamación/metabolismo
8.
Thromb Haemost ; 123(12): 1140-1150, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37517407

RESUMEN

BACKGROUND: Cirrhotic patients display an increased risk for both bleeding and thrombosis. We investigated platelet activation across Child-Pugh stages (CPSs) and portal hypertension (PH) severity. MATERIAL AND METHODS: A total of 110 cirrhotic patients were prospectively included. CPS and hepatic venous pressure gradient (HVPG) were determined. Platelet surface expression of P-selectin and activated glycoprotein (GP) IIb/IIIa were measured by flow cytometry before/after stimulation with protease-activated receptor (PAR)-1 (thrombin receptor activating peptide, TRAP) and PAR-4 (AYPGKF) agonists, epinephrine, and lipopolysaccharide (LPS). RESULTS: Platelet count was similar across CPS but lower with increasing PH severity. Expression of P-selectin and activated GPIIb/IIIa in response to TRAP and AYPGKF was significantly reduced in platelets of CPS-B/C versus CPS-A patients (all p < 0.05). Platelet P-selectin expression upon epinephrine and LPS stimulation was reduced in CPS-C patients, while activated GPIIb/IIIa in response to these agonists was lower in CPS-B/C (all p < 0.05). Regarding PH severity, P-selectin and activated GPIIb/IIIa in response to AYPGKF were lower in HVPG ≥20 mmHg patients (both p < 0.001 vs. HVPG < 10 mmHg). Similarly, activated GPIIb/IIIa was lower in HVPG ≥20 mmHg patients after TRAP stimulation (p < 0.01 vs. HVPG < 10 mmHg). The lower platelet surface expression of P-selectin and activated GPIIb/IIIa upon stimulation of thrombin receptors (PAR-1/PAR-4) in CPS-B/C and HVPG ≥20 mmHg patients was paralleled by reduced antithrombin-III levels in those patients (all p < 0.05). Overall, PAR-1- and PAR-4-mediated platelet activation correlated with antithrombin-III levels (p < 0.001). CONCLUSION: Platelet responsiveness decreases with increasing severity of liver cirrhosis and PH but is potentially counterbalanced by lower antithrombin-III levels.


Asunto(s)
Hipertensión Portal , Selectina-P , Humanos , Selectina-P/metabolismo , Estudios Prospectivos , Lipopolisacáridos/farmacología , Plaquetas/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Activación Plaquetaria , Receptor PAR-1/metabolismo , Anticoagulantes/farmacología , Cirrosis Hepática/complicaciones , Cirrosis Hepática/diagnóstico , Hipertensión Portal/diagnóstico , Hipertensión Portal/etiología , Epinefrina/farmacología , Antitrombinas/metabolismo , Agregación Plaquetaria
9.
Adv Med Sci ; 67(1): 154-162, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35272246

RESUMEN

PURPOSE: Portal hypertension (PH)-associated splenomegaly is caused by portal venous congestion and splanchnic hyperemia. This can trigger hypersplenism, which favors the development of cytopenia. We investigated the time-dependent impact of splenectomy on portal pressure and blood cell counts in animal models of non-cirrhotic and cirrhotic PH. MATERIALS AND METHODS: Ninety-six rats underwent either partial portal vein ligation (PPVL), bile duct ligation (BDL), or sham operation (SO), with subgroups undergoing additional splenectomy. Portal pressure, mean arterial pressure, heart rate, blood cell counts and hemoglobin concentrations were evaluated throughout 5 weeks following surgery. RESULTS: Following PPVL or BDL surgery, the animals presented a progressive rise in portal pressure, paralleled by decreased mean arterial pressure and accelerated heart rate. Splenectomy curbed the development of PH in both models (PPVL: 16.25 vs. 17.93 â€‹mmHg, p â€‹= â€‹0.083; BDL: 13.55 vs. 15.23 â€‹mmHg, p â€‹= â€‹0.028), increased mean arterial pressure (PPVL: +7%; BDL: +9%), and reduced heart rate (PPVL: -10%; BDL: -13%). Accordingly, splenectomized rats had lower von Willebrand factor plasma levels (PPVL: -22%; BDL: -25%). Splenectomy resulted in higher hemoglobin levels in PPVL (14.15 vs. 13.08 â€‹g/dL, p â€‹< â€‹0.001) and BDL (13.20 vs. 12.39 â€‹g/dL, p â€‹= â€‹0.097) animals, and significantly increased mean corpuscular hemoglobin concentrations (PPVL: +9%; BDL: +15%). Thrombocytopenia only developed in the PPVL model and was alleviated in the splenectomized subgroup. Conversely, BDL rats presented with thrombocytosis, which was not affected by splenectomy. CONCLUSIONS: Splenectomy improves both cirrhotic and non-cirrhotic PH, and ameliorates the hyperdynamic circulation. Hypersplenism related anemia and thrombocytopenia were only significantly improved in the non-cirrhotic PH model.


Asunto(s)
Anemia , Hipertensión Portal , Anemia/complicaciones , Animales , Modelos Animales de Enfermedad , Hipertensión Portal/complicaciones , Ligadura/efectos adversos , Cirrosis Hepática/complicaciones , Cirrosis Hepática/cirugía , Presión Portal , Ratas , Esplenectomía/efectos adversos
10.
Biochim Biophys Acta Mol Basis Dis ; 1867(12): 166235, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34339839

RESUMEN

Nuclear receptors are ligand-activated transcription factors that regulate gene expression of a variety of key molecular signals involved in liver fibrosis. The primary cellular driver of liver fibrogenesis is activated hepatic stellate cells. Different nuclear receptors regulate the hepatic expression of pro-inflammatory and pro-fibrogenic cytokines that promote the transformation of hepatic stellate cells into fibrogenic myofibroblasts. Importantly, nuclear receptors regulate gene expression circuits that promote hepatic fibrogenesis and/or allow liver fibrosis regression. In this review, we highlight the direct and indirect influence of nuclear receptors on liver fibrosis, with a focus on hepatic stellate cells, and discuss potential therapeutic effects of nuclear receptor modulation in regard to anti-fibrotic and anti-inflammatory effects. Further research on nuclear receptors-related signaling may lead to the clinical development of effective anti-fibrotic therapies for patients with liver disease.


Asunto(s)
Cirrosis Hepática/genética , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Regulación de la Expresión Génica/genética , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Ligandos , Hígado/patología , Cirrosis Hepática/patología , Miofibroblastos/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética
11.
Biomedicines ; 9(1)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435509

RESUMEN

BACKGROUND: The farnesoid X receptor (FXR) influences hepatic metabolism, inflammation and liver fibrosis as key components of non-alcoholic steatohepatitis (NASH). We studied the effects of the non-steroidal FXR agonist cilofexor (formerly GS-9674) on portal pressure and fibrosis in experimental NASH. METHODS: NASH was induced in Wistar rats using a choline-deficient high-fat diet plus intraperitoneal sodium nitrite injections. First, a dose-finding study was performed with 10 mg/kg and 30 mg/kg of cilofexor, focusing on histological readouts. Liver fibrosis was assessed by Picro-Sirius-Red, desmin staining and hepatic hydroxyproline content. Gene expression was determined by RT-PCR. In a subsequent hemodynamic study, rats received 30 mg/kg cilofexor with or without propranolol (25 mg/kg). Portal pressure, systemic hemodynamics and splanchnic blood flow were measured. RESULTS: Cilofexor dose-dependently induced FXR target genes shp, cyp7a1 and fgf15 in hepatic and ileal tissues, paralleled by a dose-dependent reduction in liver fibrosis area (Picro-Sirius-Red) of -41% (10 mg/kg) and -69% (30 mg/kg), respectively. The 30 mg/kg cilofexor dose significantly reduced hepatic hydroxyproline content (-41%), expression of col1a1 (-37%) and pdgfr-ß (-36%), as well as desmin area (-42%) in NASH rats. Importantly, cilofexor decreased portal pressure (11.9 ± 2.1 vs. 8.9 ± 2.2 mmHg; p = 0.020) without affecting splanchnic blood-flow or systemic hemodynamics. The addition of propranolol to cilofexor additionally reduced splanchnic inflow (-28%) but also mean arterial pressure (-25%) and heart rate (-37%). CONCLUSION: The non-steroidal FXR agonist cilofexor decreased portal hypertension and reduced liver fibrosis in NASH rats. While cilofexor seems to primarily decrease sinusoidal resistance in cirrhotic portal hypertension, the combination with propranolol additionally reduced mesenteric hyperperfusion.

12.
United European Gastroenterol J ; 8(10): 1174-1185, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32878579

RESUMEN

BACKGROUND: In cirrhosis, the nitric oxide-soluble guanylyl cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway is impaired, which contributes to increased intrahepatic vascular resistance (IHVR) and fibrogenesis. We investigated if sGC stimulation (riociguat (RIO)), sGC activation (cinaciguat (CINA)) or phosphodiesterase (PDE)-5 inhibition (tadalafil (TADA)) improves portal hypertension (PHT) and liver fibrosis. METHODS: Fifty male Sprague-Dawley rats underwent bile-duct ligation (BDL) or sham operation. RIO (0.5 mg/kg), CINA (1 mg/kg), TADA (1.5 mg/kg) or vehicle (VEH) was administered from weeks 2 to 4 after BDL. At week 4, invasive haemodynamic measurements were performed, and liver fibrosis was assessed by histology (chromotrope-aniline blue (CAB), Picro-Sirius red (PSR)) and hepatic hydroxyproline content. RESULTS: Cirrhotic bile duct-ligated rats presented with PHT (13.1 ± 1.0 mmHg) and increased IHVR (4.9 ± 0.5 mmHg⋅min/mL). Both RIO (10.0 ± 0.7 mmHg, p = 0.021) and TADA (10.3 ± 0.9 mmHg, p = 0.050) decreased portal pressure by reducing IHVR (RIO: -41%, p = 0.005; TADA: -21%, p = 0.199) while not impacting heart rate, mean arterial pressure and portosystemic shunting. Hepatic cGMP levels increased upon RIO (+239%, p = 0.006) and TADA (+32%, p = 0.073) therapy. In contrast, CINA dosed at 1 mg/kg caused weight loss, arterial hypotension and hyperlactataemia in bile duct-ligated rats. Liver fibrosis area was significantly decreased by RIO (CAB: -48%, p = 0.011; PSR: -27%, p = 0.121) and TADA (CAB: -21%, p = 0.342; PSR: -52%, p = 0.013) compared to VEH-treated bile duct-ligated rats. Hepatic hydroxyproline content was reduced by RIO (from 503 ± 20 to 350 ± 30 µg/g, p = 0.003) and TADA (282 ± 50 µg/g, p = 0.003), in line with a reduction of the hepatic stellate cell activation markers smooth-muscle actin and phosphorylated moesin. Liver transaminases decreased under RIO (AST: -36%; ALT: -32%) and TADA (AST: -24%; ALT: -27%) treatment. Hepatic interleukin 6 gene expression was reduced in the RIO group (-56%, p = 0.053). CONCLUSION: In a rodent model of biliary cirrhosis, the sGC stimulator RIO and the PDE-5 inhibitor TADA improved PHT. The decrease of sinusoidal vascular resistance was paralleled by a reduction in liver fibrosis and hepatic inflammation, while systemic haemodynamics were not affected.


Asunto(s)
Hipertensión Portal/tratamiento farmacológico , Cirrosis Hepática/tratamiento farmacológico , Inhibidores de Fosfodiesterasa 5/uso terapéutico , Guanilil Ciclasa Soluble/antagonistas & inhibidores , Animales , Benzoatos/farmacología , Benzoatos/uso terapéutico , Conductos Biliares/cirugía , Modelos Animales de Enfermedad , Humanos , Hipertensión Portal/diagnóstico , Hipertensión Portal/etiología , Hipertensión Portal/fisiopatología , Ligadura/efectos adversos , Cirrosis Hepática/etiología , Masculino , Inhibidores de Fosfodiesterasa 5/farmacología , Presión Portal/efectos de los fármacos , Presión Portal/fisiología , Sistema Porta/efectos de los fármacos , Sistema Porta/fisiopatología , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Guanilil Ciclasa Soluble/metabolismo , Tadalafilo/farmacología , Tadalafilo/uso terapéutico , Resistencia Vascular/efectos de los fármacos , Resistencia Vascular/fisiología
13.
J Vis Exp ; (138)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30124644

RESUMEN

This is a detailed protocol describing invasive hemodynamic measurements in cirrhotic rats for the characterization of portal hypertensive syndrome. Portal hypertension (PHT) due to cirrhosis is responsible for the most severe complications in patients with liver disease. The full picture of the portal hypertensive syndrome is characterized by increased portal pressure (PP) due to the increased intrahepatic vascular resistance (IHVR), hyperdynamic circulation, and increased splanchnic blood flow. Progressive splanchnic arterial vasodilation and increased cardiac output with elevated heart rate (HR) but low arterial pressure characterizes the portal hypertensive syndrome. Novel therapies are currently being developed that aim to decrease PP by either targeting IHVR or increased splanchnic blood flow - but side effects on systemic hemodynamics may occur. Thus, a detailed characterization of portal venous, splanchnic, and systemic hemodynamic parameters, including measurement of PP, portal venous blood flow (PVBF), mesenteric arterial blood flow, mean arterial pressure (MAP), and HR is needed for preclinical evaluation of the efficacy of novel treatments for PHT. Our video article provides the reader with a structured protocol for performing invasive hemodynamic measurements in cirrhotic rats. In particular, we describe the catheterization of the femoral artery and the portal vein via an ileocolic vein and the measurement of portal venous and splanchnic blood flow via perivascular Doppler-ultrasound flow probes. Representative results of different rat models of PHT are shown.


Asunto(s)
Hemodinámica/fisiología , Hipertensión Portal/etiología , Cirrosis Hepática/complicaciones , Animales , Hipertensión Portal/patología , Masculino , Ratas , Ratas Sprague-Dawley
14.
Sci Rep ; 8(1): 9372, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921982

RESUMEN

In cirrhotic patients, portal hypertension (PHT) deteriorates survival, yet treatment options are limited. A major contributor to increased intrahepatic vasoconstriction in PHT is dysfunctional nitric-oxide signaling. Soluble guanylate cyclase (sGC) is the receptor of nitric-oxide and can be stimulated by riociguat. Riociguat is approved for pulmonary hypertension but has not been studied in liver cirrhosis. In this study we assessed the effects of riociguat on PHT and liver fibrosis in cholestatic (bile duct ligation, BDL) and toxic (carbon-tetrachloride, CCl4) rat models. In cirrhotic livers sGC expression was upregulated. In BDL rats, riociguat reduced liver fibrosis and decreased portal pressure without affecting systemic hemodynamics. In an early BDL disease stage, riociguat decreased bile duct proliferation, improved sinusoidal vascular dysfunction and inhibited angiogenesis. In advanced BDL riociguat exhibited anti-inflammatory effects. In CCl4 rats the beneficial effects of riociguat treatment were less pronounced and confined to an early disease stage. Similarly, in patients with cholestatic cirrhosis and PHT nitrates (that induce sGC activity) decreased portal pressure more effectively than in patients with non-cholestatic etiology. We also found an improvement of transaminases in patients with pulmonary hypertension receiving riociguat. Our findings support the clinical development of sGC stimulators in patients with cirrhotic PHT.


Asunto(s)
Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/enzimología , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Guanilil Ciclasa Soluble/metabolismo , Animales , Hemodinámica/efectos de los fármacos , Humanos , Hipertensión Portal/tratamiento farmacológico , Hipertensión Portal/enzimología , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA