Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 161(4): 845-57, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25957688

RESUMEN

Macromolecular machines, such as the ribosome, undergo large-scale conformational changes during their functional cycles. Although their mode of action is often compared to that of mechanical machines, a crucial difference is that, at the molecular dimension, thermodynamic effects dominate functional cycles, with proteins fluctuating stochastically between functional states defined by energetic minima on an energy landscape. Here, we have used cryo-electron microscopy to image ex-vivo-derived human polysomes as a source of actively translating ribosomes. Multiparticle refinement and 3D variability analysis allowed us to visualize a variety of native translation intermediates. Significantly populated states include not only elongation cycle intermediates in pre- and post-translocational states, but also eEF1A-containing decoding and termination/recycling complexes. Focusing on the post-translocational state, we extended this assessment to the single-residue level, uncovering striking details of ribosome-ligand interactions and identifying both static and functionally important dynamic elements.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas/química , Ribosomas/ultraestructura , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , ARN de Transferencia/química , Alineación de Secuencia , Termodinámica
2.
Cell ; 158(1): 121-31, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24995983

RESUMEN

The extent to which bacterial ribosomes and the significantly larger eukaryotic ribosomes share the same mechanisms of ribosomal elongation is unknown. Here, we present subnanometer resolution cryoelectron microscopy maps of the mammalian 80S ribosome in the posttranslocational state and in complex with the eukaryotic eEF1A⋅Val-tRNA⋅GMPPNP ternary complex, revealing significant differences in the elongation mechanism between bacteria and mammals. Surprisingly, and in contrast to bacterial ribosomes, a rotation of the small subunit around its long axis and orthogonal to the well-known intersubunit rotation distinguishes the posttranslocational state from the classical pretranslocational state ribosome. We term this motion "subunit rolling." Correspondingly, a mammalian decoding complex visualized in substates before and after codon recognition reveals structural distinctions from the bacterial system. These findings suggest how codon recognition leads to GTPase activation in the mammalian system and demonstrate that in mammalia subunit rolling occurs during tRNA selection.


Asunto(s)
Mamíferos/metabolismo , Ribosomas/química , Secuencia de Aminoácidos , Animales , Anticodón/metabolismo , Codón/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Datos de Secuencia Molecular , Extensión de la Cadena Peptídica de Translación , ARN de Transferencia/metabolismo , Conejos , Saccharomyces cerevisiae/metabolismo , Tetrahymena thermophila/metabolismo
3.
Mol Cell ; 44(2): 214-24, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-22017870

RESUMEN

Although the structural core of the ribosome is conserved in all kingdoms of life, eukaryotic ribosomes are significantly larger and more complex than their bacterial counterparts. The extent to which these differences influence the molecular mechanism of translation remains elusive. Multiparticle cryo-electron microscopy and single-molecule FRET investigations of the mammalian pretranslocation complex reveal spontaneous, large-scale conformational changes, including an intersubunit rotation of the ribosomal subunits. Through structurally related processes, tRNA substrates oscillate between classical and at least two distinct hybrid configurations facilitated by localized changes in their L-shaped fold. Hybrid states are favored within the mammalian complex. However, classical tRNA positions can be restored by tRNA binding to the E site or by the eukaryotic-specific antibiotic and translocation inhibitor cycloheximide. These findings reveal critical distinctions in the structural and energetic features of bacterial and mammalian ribosomes, providing a mechanistic basis for divergent translation regulation strategies and species-specific antibiotic action.


Asunto(s)
Aminoacil-ARN de Transferencia/química , Ribosomas/química , Animales , Antibacterianos/química , Sitios de Unión , Microscopía por Crioelectrón , Cicloheximida/química , Transferencia Resonante de Energía de Fluorescencia , Modelos Moleculares , Conformación de Ácido Nucleico , Aminoacil-ARN de Transferencia/metabolismo , Conejos , Ribosomas/metabolismo
4.
Nucleic Acids Res ; 36(14): 4736-44, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18632761

RESUMEN

It is generally believed that basic features of ribosomal functions are universally valid, but a systematic test still stands out for higher eukaryotic 80S ribosomes. Here we report: (i) differences in tRNA and mRNA binding capabilities of eukaryotic and bacterial ribosomes and their subunits. Eukaryotic 40S subunits bind mRNA exclusively in the presence of cognate tRNA, whereas bacterial 30S do bind mRNA already in the absence of tRNA. 80S ribosomes bind mRNA efficiently in the absence of tRNA. In contrast, bacterial 70S interact with mRNA more productively in the presence rather than in the absence of tRNA. (ii) States of initiation (P(i)), pre-translocation (PRE) and post-translocation (POST) of the ribosome were checked and no significant functional differences to the prokaryotic counterpart were observed including the reciprocal linkage between A and E sites. (iii) Eukaryotic ribosomes bind tetracycline with an affinity 15 times lower than that of bacterial ribosomes (K(d) 30 microM and 1-2 microM, respectively). The drug does not effect enzymatic A-site occupation of 80S ribosomes in contrast to non-enzymatic tRNA binding to the A-site. Both observations explain the relative resistance of eukaryotic ribosomes to this antibiotic.


Asunto(s)
Biosíntesis de Proteínas , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ribosomas/metabolismo , Regulación Alostérica , Animales , Antibacterianos/farmacología , Bacterias/genética , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Conejos , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Ribosomas/química , Ribosomas/efectos de los fármacos , Tetraciclina/farmacología
5.
Cell Rep ; 25(10): 2676-2688.e7, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30517857

RESUMEN

Translocation moves the tRNA2⋅mRNA module directionally through the ribosome during the elongation phase of protein synthesis. Although translocation is known to entail large conformational changes within both the ribosome and tRNA substrates, the orchestrated events that ensure the speed and fidelity of this critical aspect of the protein synthesis mechanism have not been fully elucidated. Here, we present three high-resolution structures of intermediates of translocation on the mammalian ribosome where, in contrast to bacteria, ribosomal complexes containing the translocase eEF2 and the complete tRNA2⋅mRNA module are trapped by the non-hydrolyzable GTP analog GMPPNP. Consistent with the observed structures, single-molecule imaging revealed that GTP hydrolysis principally facilitates rate-limiting, final steps of translocation, which are required for factor dissociation and which are differentially regulated in bacterial and mammalian systems by the rates of deacyl-tRNA dissociation from the E site.


Asunto(s)
Guanosina Trifosfato/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Animales , Bacterias/metabolismo , Guanosina Trifosfato/química , Humanos , Hidrólisis , Sitios Internos de Entrada al Ribosoma , Mamíferos/metabolismo , Modelos Moleculares , Factor 2 de Elongación Peptídica/química , Factor 2 de Elongación Peptídica/metabolismo , Dominios Proteicos , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia/química , Ribosomas/química
6.
Eur J Biochem ; 269(19): 4811-8, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12354112

RESUMEN

Multimolecular complexes involving the eukaryotic elongation factor 1A (eEF1A) have been suggested to play an important role in the channeling (vectorial transfer) of tRNA during protein synthesis [Negrutskii, B.S. & El'skaya, A.V. (1998) Prog. Nucleic Acids Res. Mol. Biol. 60, 47-78]. Recently we have demonstrated that besides performing its canonical function of forming a ternary complex with GTP and aminoacyl-tRNA, the mammalian eEF1A can produce a noncanonical ternary complex with GDP and uncharged tRNA [Petrushenko, Z.M., Negrutskii, B.S., Ladokhin, A.S., Budkevich, T.V., Shalak, V.F. & El'skaya, A.V. (1997) FEBS Lett. 407, 13-17]. The [eEF1A.GDP.tRNA] complex has been hypothesized to interact with aminoacyl-tRNA synthetase (ARS) resulting in a quaternary complex where uncharged tRNA is transferred to the enzyme for aminoacylation. Here we present the data on association of the [eEF1A.GDP.tRNA] complex with phenylalanyl-tRNA synthetase (PheRS), e.g. the formation of the above quaternary complex detected by the gel-retardation and surface plasmon resonance techniques. To estimate the stability of the novel ternary and quaternary complexes of eEF1A the fluorescence method and BIAcore analysis were used. The dissociation constants for the [eEF1A.GDP.tRNA] and [eEF1A.GDP.tRNAPhe.PheRS] complexes were found to be 20 nm and 9 nm, respectively. We also revealed a direct interaction of PheRS with eEF1A in the absence of tRNAPhe (Kd = 21 nm). However, the addition of tRNAPhe accelerated eEF1A.GDP binding to the enzyme. A possible role of these stable novel ternary and quaternary complexes of eEF1A.GDP with tRNA and ARS in the channeled elongation cycle is discussed.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Factor 1 de Elongación Peptídica/química , Factor 1 de Elongación Peptídica/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Animales , Estabilidad de Medicamentos , Técnicas In Vitro , Cinética , Sustancias Macromoleculares , Modelos Biológicos , Extensión de la Cadena Peptídica de Translación , Fenilalanina-ARNt Ligasa/química , Fenilalanina-ARNt Ligasa/metabolismo , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/metabolismo , Conejos , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA