Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 35(8): e21761, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34245616

RESUMEN

Uremic cardiomyopathy is a common complication in chronic kidney disease (CKD) patients, accounting for a high mortality rate. Several mechanisms have been proposed to link CKD and cardiac alterations; however, the early cardiac modifications that occur in CKD that may trigger cardiac remodeling and dysfunction remain largely unexplored. Here, in a mouse model of CKD induced by 5/6 nephrectomy, we first analyzed the early transcriptional and inflammatory changes that occur in the heart. Five days after 5/6 nephrectomy, RNA-sequencing showed the upregulation of 54 genes in the cardiac tissue of CKD mice and the enrichment of biological processes related to immune system processes. Increased cardiac infiltration of T-CD4+ lymphocytes, myeloid cells, and macrophages during early CKD was observed. Next, since CC chemokine ligand-8 (CCL8) was one of the most upregulated genes in the heart of mice with early CKD, we investigated the effect of acute and transient CCL8 inhibition on uremic cardiomyopathy severity. An increase in CCL8 protein levels was confirmed in the heart of early CKD mice. CCL8 inhibition attenuated the early infiltration of T-CD4+ lymphocytes and macrophages to the cardiac tissue, leading to a protection against chronic cardiac fibrotic remodeling, inflammation and cardiac dysfunction induced by CKD. Altogether, our data show the occurrence of transcriptional and inflammatory changes in the heart during the early phases of CKD and identify CCL8 as a key contributor to the early cardiac inflammatory state that triggers further cardiac remodeling and dysfunction in uremic cardiomyopathy.


Asunto(s)
Cardiomiopatías/metabolismo , Quimiocina CCL8/biosíntesis , Miocardio/metabolismo , Insuficiencia Renal Crónica/metabolismo , Regulación hacia Arriba , Uremia/metabolismo , Animales , Cardiomiopatías/patología , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Miocardio/patología , Insuficiencia Renal Crónica/patología , Uremia/patología
2.
Biochem Cell Biol ; 97(2): 187-192, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30332552

RESUMEN

In the kidney, the accumulation of heavy metals such as Cd2+ produces mitochondrial dysfunctions, i.e., uncoupling of the oxidative phosphorylation, inhibition of the electron transport through the respiratory chain, and collapse of the transmembrane electrical gradient. This derangement may be due to the fact that Cd2+ induces the transition of membrane permeability from selective to nonselective via the opening of a transmembrane pore. In fact, Cd2+ produces this injury through the stimulation of oxygen-derived radical generation, inducing oxidative stress. Several molecules have been used to avoid or even reverse Cd2+-induced mitochondrial injury, for instance, cyclosporin A, resveratrol, dithiocarbamates, and even EDTA. The aim of this study was to explore the possibility that the antioxidant tamoxifen could protect mitochondria from the deleterious effects of Cd2+. Our results indicate that the addition of 1 µmol/L Cd2+ to mitochondria collapsed the transmembrane electrical gradient, induced the release of cytochrome c, and increased both the generation of H2O2 and the oxidative damage to mitochondrial DNA (among other measured parameters). Of interest, these mitochondrial dysfunctions were ameliorated after the addition of tamoxifen.


Asunto(s)
Cadmio/toxicidad , Peróxido de Hidrógeno/metabolismo , Riñón/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Riñón/patología , Mitocondrias/patología , Oxidación-Reducción/efectos de los fármacos
3.
Int J Mol Sci ; 20(15)2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31357412

RESUMEN

Obesity is considered to significantly increase the risk of the development of a vast range of metabolic diseases. However, adipogenesis is a complex physiological process, necessary to sequester lipids effectively to avoid lipotoxicity in other tissues, like the liver, heart, muscle, essential for maintaining metabolic homeostasis and has a crucial role as a component of the innate immune system, far beyond than only being an inert mass of energy storage. In pathophysiological conditions, adipogenesis promotes a pro-inflammatory state, angiogenesis and the release of adipokines, which become dangerous to health. It results in a hypoxic state, causing oxidative stress and the synthesis and release of harmful free fatty acids. In this review, we try to explain the mechanisms occurring at the breaking point, at which adipogenesis leads to an uncontrolled lipotoxicity. This review highlights the types of adipose tissue and their functions, their way of storing lipids until a critical point, which is associated with hypoxia, inflammation, insulin resistance as well as lipodystrophy and adipogenesis modulation by Krüppel-like factors and miRNAs.


Asunto(s)
Adipogénesis , Tejido Adiposo/metabolismo , Adipocitos/metabolismo , Adipogénesis/fisiología , Tejido Adiposo/citología , Tejido Adiposo/inmunología , Animales , Susceptibilidad a Enfermedades , Metabolismo Energético , Humanos , Lipogénesis , Paniculitis/etiología , Paniculitis/metabolismo , Paniculitis/patología
4.
Liver Transpl ; 24(8): 1070-1083, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29679463

RESUMEN

Cytidine-5'-diphosphocholine (CDP-choline) participates as an intermediary in the synthesis of phosphatidylcholine, an essential component of cellular membranes. Citicoline treatment has shown beneficial effects in cerebral ischemia, but its potential to diminish reperfusion damage in liver has not been explored. In this work, we evaluated the hepatoprotective effect of citicoline and its possible association with inflammatory/oxidative stress and mitochondrial function because they are the main cellular features of reperfusion damage. Ischemia/reperfusion (I/R) in rat livers was performed with the Pringle's maneuver, clamping the 3 elements of the pedicle (hepatic artery, portal vein, and biliary tract) for 30 minutes and then removing the clamp to allow hepatic reperfusion for 60 minutes. The I/R + citicoline group received the compound before I/R. Liver injury was evaluated by measuring aspartate aminotransferase and alanine aminotransferase as well as lactic acid levels in serum; proinflammatory cytokines, proresolving lipid mediators, and nuclear factor kappa B content were determined as indicators of the inflammatory response. Antioxidant effects were evaluated by measuring markers of oxidative stress and antioxidant molecules. Oxygen consumption and the activities of the respiratory chain were used to monitor mitochondrial function. CDP-choline reduced aspartate aminotransferase (AST), alanine aminotransferase (ALT), as well as lactic acid levels in blood samples from reperfused rats. Diminution in tumor necrosis factor alpha (TNF-α) and increase in the proresolving lipid mediator resolvin D1 were also observed in the I/R+citicoline group, in comparison with the I/R group. Oxidative/nitroxidative stress in hepatic mitochondria concurred with deregulation of oxidative phosphorylation, which was associated with the loss of complex III and complex IV activities. In conclusion, CDP-choline attenuates liver damage caused by ischemia and reperfusion by reducing oxidative stress and maintaining mitochondrial function. Liver Transplantation XX XX-XX 2018 AASLD.


Asunto(s)
Citidina Difosfato Colina/farmacología , Trasplante de Hígado/efectos adversos , Mitocondrias/efectos de los fármacos , Sustancias Protectoras/farmacología , Daño por Reperfusión/prevención & control , Animales , Citidina Difosfato Colina/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Hígado/citología , Hígado/efectos de los fármacos , Hígado/patología , Hígado/cirugía , Pruebas de Función Hepática , Masculino , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/uso terapéutico , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/etiología , Daño por Reperfusión/patología
5.
Biochem Cell Biol ; 95(2): 310-317, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28177775

RESUMEN

For malaria transmission, Plasmodium parasites must develop in the mosquito vector. Oxidative stress in the insect midgut, triggered by environmental changes (e.g., pH and temperature), influences the cellular signaling involved in differentiation from gametocytes to mobile ookinetes for the purpose of parasite survival. Oxidative stress activates the homeostatic response to stress characterized by the phosphorylation eIF2α, the attenuation of protein synthesis, and the transcription of genes participating in the unfolded protein response and antioxidant processes, forming a part of an integrated stress response (ISR). We hypothesized that ISR operates during the differentiation of gametocytes to ookinetes to assure Plasmodium survival. Using in-vitro conditions resembling the mosquito midgut conditions, we cultured Plasmodium berghei gametocytes to ookinetes and evaluated the redox balance by detecting reactive oxygen species and superoxide dismutase activity. Additionally, we evaluated the phosphorylation of eIF2α, the attenuation of the global protein synthesis, and the gene expression of cellular stress markers (e.g., endoplasmic reticulum chaperones and antioxidant molecules, measured by reverse-transcription quantitative polymerase chain reaction), finding that these processes were all taking place, probably to improve survival during the differentiation of Plasmodium berghei ookinetes.


Asunto(s)
Eritrocitos/parasitología , Factor 2 Eucariótico de Iniciación/genética , Estadios del Ciclo de Vida/genética , Plasmodium berghei/genética , Proteínas Protozoarias/genética , Especies Reactivas de Oxígeno/metabolismo , Animales , Diferenciación Celular , Chaperón BiP del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Interacciones Huésped-Parásitos , Malaria/parasitología , Ratones , Ratones Endogámicos BALB C , Modelos Biológicos , Estrés Oxidativo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Fosforilación , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/metabolismo , Cultivo Primario de Células , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Proteínas Protozoarias/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Respuesta de Proteína Desplegada
6.
Biochem Cell Biol ; 95(5): 556-562, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28595020

RESUMEN

In this work, we studied the protective effects of tamoxifen (TAM) on disulfiram (Dis)-induced mitochondrial membrane insult. The results indicate that TAM circumvents the inner membrane leakiness manifested as Ca2+ release, mitochondrial swelling, and collapse of the transmembrane electric gradient. Furthermore, it was found that TAM prevents inactivation of the mitochondrial enzyme aconitase and detachment of cytochrome c from the inner membrane. Interestingly, TAM also inhibited Dis-promoted generation of hydrogen peroxide. Given that TAM is an antioxidant molecule, it is plausible that its protection may be due to the inhibition of Dis-induced oxidative stress.


Asunto(s)
Disulfiram/efectos adversos , Membranas Mitocondriales/efectos de los fármacos , Tamoxifeno/farmacología , Animales , Calcio/metabolismo , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/patología , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar
7.
Basic Res Cardiol ; 112(2): 15, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28160133

RESUMEN

The demonstration that caveolin-3 overexpression reduces myocardial ischemia/reperfusion injury and our own finding that multiprotein signaling complexes increase in mitochondria in association with caveolin-3 levels, led us to investigate the contribution of caveolae-driven extracellular signal-regulated kinases 1/2 (ERK1/2) on maintaining the function of cardiac mitochondrial subpopulations from reperfused hearts subjected to postconditioning (PostC). Rat hearts were isolated and subjected to ischemia/reperfusion and to PostC. Enhanced cardiac function, reduced infarct size and preserved ultrastructure of cardiomyocytes were associated with increased formation of caveolar structures, augmented levels of caveolin-3 and mitochondrial ERK1/2 activation in PostC hearts in both subsarcolemmal (SSM) and interfibrillar (IFM) subpopulations. Disruption of caveolae with methyl-ß-cyclodextrin abolished cardioprotection in PostC hearts and diminished pho-ERK1/2 gold-labeling in both mitochondrial subpopulations in correlation with suppression of resistance to permeability transition pore opening. Also, differences between the mitochondrial subpopulations in the setting of PostC were evaluated. Caveolae disruption with methyl-ß-cyclodextrin abolished the cardioprotective effect of postconditioning by inhibiting the interaction of ERK1/2 with mitochondria and promoted decline in mitochondrial function. SSM, which are particularly sensitive to reperfusion damage, take advantage of their location in cardiomyocyte boundary and benefit from the cardioprotective signaling driven by caveolae, avoiding injury propagation.


Asunto(s)
Caveolas/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Animales , Modelos Animales de Enfermedad , Immunoblotting , Poscondicionamiento Isquémico , Masculino , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Ratas Wistar
8.
Cell Biol Int ; 41(12): 1356-1366, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28884894

RESUMEN

Heavy metal ions are known to produce harmful alterations on kidney function. Specifically, the accumulation of Hg2+ in kidney tissue may induce renal failure. In this work, the protective effect of CDP-choline against the deleterious effects induced by Hg2+ on renal function was studied. CDP-choline administered ip at a dose of 125 mg/kg body weight prevented the damage induced by Hg2+ administration at a dose of 3 mg/kg body weight. The findings indicate that CDP-choline guards mitochondria against Hg2+ -toxicity by preserving their ability to retain matrix content, such as accumulated Ca2+ . This nucleotide also protected mitochondria from Hg2+ -induced loss of the transmembrane electric gradient and from the generation of hydrogen peroxide and membrane TBARS. In addition, CDP-choline avoided the oxidative damage of mtDNA and inhibited the release of the interleukins IL-1 and IL6, recognized as markers of acute inflammatory reaction. After the administration of Hg2+ and CDP, CDP-choline maintained nearly normal levels of renal function and creatinine clearance, as well as blood urea nitrogen (BUN) and serum creatinine.


Asunto(s)
Citidina Difosfato Colina/farmacología , Riñón/efectos de los fármacos , Mercurio/toxicidad , Mitocondrias/efectos de los fármacos , Animales , Creatina/metabolismo , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Riñón/metabolismo , Riñón/patología , Pruebas de Función Renal , Masculino , Potenciales de la Membrana/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Oxidación-Reducción , Ratas , Ratas Wistar , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
9.
Cell Biol Int ; 40(12): 1349-1356, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27730705

RESUMEN

In this work, we studied the effect of tamoxifen and cyclosporin A on mitochondrial permeability transition caused by addition of the thiol-oxidizing pair Cu2+ -orthophenanthroline. The findings indicate that tamoxifen and cyclosporin A circumvent the oxidative membrane damage manifested by matrix Ca2+ release, mitochondrial swelling, and transmembrane electrical gradient collapse. Furthermore, it was found that tamoxifen and cyclosporin A prevent the generation of TBARs promoted by Cu2+ -orthophenanthroline, as well as the inactivation of the mitochondrial enzyme aconitase and disruption of mDNA. Electrophoretic analysis was unable to demonstrate a cross-linking reaction between membrane proteins. Yet, it was found that Cu2+ -orthophenanthroline induced the generation of reactive oxygen species. It is thus plausible that membrane leakiness is due to an oxidative stress injury.


Asunto(s)
Cobre/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Compuestos Organometálicos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Fenantrolinas/toxicidad , Tamoxifeno/farmacología , Western Blotting , Calcio/metabolismo , Ciclosporina/farmacología , ADN Mitocondrial/metabolismo , Electroforesis en Gel de Poliacrilamida , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/patología , Sustancias Protectoras/farmacología , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
10.
Biochem Cell Biol ; 93(3): 185-91, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25589288

RESUMEN

Hyperthyroidism represents an increased risk factor for cardiovascular morbidity, especially when the heart is subjected to an ischemia/reperfusion process. The aim of this study was to explore the possible protective effect of the nucleotide citicoline on the susceptibility of hyperthyroid rat hearts to undergo reperfusion-induced damage, which is associated with mitochondrial dysfunction. Hence, we analyzed the protective effect of citicoline on the electrical behavior and on the mitochondrial function in rat hearts. Hyperthyroidism was established after a daily i.p. injection of triiodothyronine (at 2 mg/kg of body weight) during 5 days. Thereafter, citicoline was administered i.p. (at 125 mg/kg of body weight) for 5 days. In hyperthyroid rat hearts, citicoline protected against reperfusion-induced ventricular arrhythmias. Moreover, citicoline maintained the accumulation of mitochondrial Ca(2+), allowing mitochondria to reach a high transmembrane electric gradient that protected against the release of cytochrome c. It also preserved the activity of the enzyme aconitase that inhibited the release of cytokines. The protection also included the inhibition of oxidative stress-induced mDNA disruption. We conclude that citicoline protects against the reperfusion damage that is found in the hyperthyroid myocardium. This effect might be due to its inhibitory action on the permeability transition in mitochondria.


Asunto(s)
Cardiotónicos/farmacología , Citidina Difosfato Colina/farmacología , Corazón/efectos de los fármacos , Hipertiroidismo/fisiopatología , Mitocondrias Cardíacas/efectos de los fármacos , Aconitato Hidratasa/metabolismo , Animales , Calcio/metabolismo , ADN Mitocondrial/metabolismo , Hipertiroidismo/inducido químicamente , Hipertiroidismo/complicaciones , Mitocondrias Cardíacas/metabolismo , Reperfusión Miocárdica , Daño por Reperfusión Miocárdica/prevención & control , Ratas , Superóxido Dismutasa/metabolismo , Triyodotironina/efectos adversos
11.
Cardiovasc Drugs Ther ; 29(2): 111-20, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25779825

RESUMEN

PURPOSE: The pathogenic mechanisms leading to cardiovascular disorders in patients with chronic kidney disease have not been clearly established, although increased oxidative stress has been pointed out as a potential cause. Therefore, as cardiovascular events are still the first cause of death in patients with chronic kidney disease and traditional drugs or therapies rarely have effects on cardiac complications, we sought to determine the effect of curcumin in treating cardiac dysfunction in rats with established chronic renal disease. METHODS AND RESULTS: Treatment consisted in daily administration of curcumin (120 mg/kg/day) dissolved in 0.05% carboxymethylcellulose via oral gavages during 30 days, beginning from day 30 after 5/6 nephrectomy (5/6Nx). Cardiac function, markers of oxidative stress, activation of PI3K/Akt/GSK3ß and MEK1/2-ERK1/2 pathway, metalloproteinase-II (MMP-2) content, overall gelatinolytic activity, ROS production and mitochondrial integrity were evaluated after 1-month treatment. Curcumin restored systolic blood pressure, diminished interventricular and rear wall thickening, decreased left ventricle dimension at end-systole (LVSd) and restored ejection fraction in nephrectomized rats. Also, it diminished metalloproteinase-II levels and overall gelatinase activity, decreased oxidative stress and inhibited the mitochondrial permeability transition pore opening. CONCLUSION: Our findings suggest that curcumin might have therapeutic potential in treatment of heart disease in patients with established CKD by attenuating oxidative stress-related events as cardiac remodeling, mitochondrial dysfunction and cell death.


Asunto(s)
Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Curcumina/farmacología , Curcumina/uso terapéutico , Corazón/efectos de los fármacos , Insuficiencia Renal Crónica/tratamiento farmacológico , Animales , Presión Sanguínea/efectos de los fármacos , Gelatinasas/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Poro de Transición de la Permeabilidad Mitocondrial , Miocardio/metabolismo , Nefrectomía , Estrés Oxidativo/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Insuficiencia Renal Crónica/metabolismo , Transducción de Señal/efectos de los fármacos , Volumen Sistólico/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
12.
Cell Biol Int ; 38(3): 287-95, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23765583

RESUMEN

Chemical modification of primary amino groups of mitochondrial membrane proteins by the fluorescent probe fluorescamine induces non-specific membrane permeabilisation. Titration of the lysine ϵ-amino group promoted efflux of accumulated Ca(2+), collapse of transmembrane potential and mitochondrial swelling. Ca(2+) release was inhibited by cyclosporin A. Considering the latter, we assumed that fluorescamine induces permeability transition. Carboxyatractyloside also inhibited the reaction. Using a polyclonal antibody for adenine nucleotide translocase, Western blot analysis showed that the carrier appeared labelled with the fluorescent probe. The results point out the importance of the ϵ-amino group of lysine residues, located in the adenine nucleotide carrier, on the modulation of membrane permeability, since its blockage suffices to promote opening of the non-specific nanopore.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Fluorescamina/farmacología , Lisina/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Translocasas Mitocondriales de ADP y ATP/metabolismo , Animales , Atractilósido/análogos & derivados , Atractilósido/metabolismo , Calcio/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Transporte Iónico/efectos de los fármacos , Transporte Iónico/fisiología , Masculino , Potenciales de la Membrana/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Translocasas Mitocondriales de ADP y ATP/efectos de los fármacos , Dilatación Mitocondrial/efectos de los fármacos , Dilatación Mitocondrial/fisiología , Ratas , Ratas Wistar
13.
Arch Med Res ; 55(3): 102983, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492326

RESUMEN

Maternal obesity predisposes offspring (F1) to cardiovascular disease. To evaluate basal heart function and ischemia-reperfusion (IR) responses in F1 males and females of obese mothers, female Wistar rats (F0) were fed chow or an obesogenic (MO) diet from weaning through pregnancy and lactation. Non-sibling F1 males and females were weaned to chow at postnatal day (PND) 21 and euthanized at PND 550. Offspring of MO mothers (MOF1) rarely survive beyond PND 650. Hearts were immediately isolated from euthanized F1s and subjected to 30 min ischemia with 20 min reperfusion. Retroperitoneal fat, serum triglycerides, glucose, insulin, and insulin resistance were measured. Baseline left ventricular developed pressure (LVDP) was lower in male and female MOF1 than in controls. After global ischemia, LVDP in control (C) male and female F1 recovered 78 and 83%, respectively, while recovery in MO male and female F1 was significantly lower at 28 and 52%, respectively. Following the IR challenge, MO hearts showed a higher functional susceptibility to reperfusion injury, resulting in lower cardiac reserve than controls in both sexes. Female hearts were more resistant to IR. Retroperitoneal fat was increased in male MOF1 vs. CF1. Circulating triglycerides and insulin resistance were increased in male and female MOF1 vs. CF1. These data show that MO programming reduces F1 cardiac reserve associated with age-related insulin resistance in a sex-specific manner.


Asunto(s)
Resistencia a la Insulina , Efectos Tardíos de la Exposición Prenatal , Humanos , Ratas , Femenino , Embarazo , Masculino , Animales , Anciano , Resistencia a la Insulina/fisiología , Ratas Wistar , Obesidad , Insulina , Triglicéridos , Dieta Alta en Grasa , Isquemia , Reperfusión
14.
Exp Physiol ; 97(10): 1119-30, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22562812

RESUMEN

Oxidant stress, among other effectors, is implicated in the sequel of myocardial reperfusion injury. It is generally accepted that maintaining the balance between oxidant and antioxidant signalling within the cell provides protection against reperfusion damage. The cardioprotective strategy of postconditioning (PC) reduces reperfusion injury through complex mechanisms; however, the contribution of the antioxidant system has not been fully investigated. In this study, isolated rat hearts were subjected to PC after 30 min global ischaemia, and then to 5 min (IR5) or 60 min of reperfusion (IR60). Postconditioning significantly increased the left ventricular developed pressure and the double product (heart rate × left ventricular developed pressure) for both early (PC5) and prolonged reperfusion (PC60, PC before 60 min of reperfusion). Necrotic tissue diminished to 10.8% in PC60 hearts, compared with 49% of infarct size measured in IR60 hearts (P < 0.05 versus IR60). Also, protein carbonylation and malondialdehyde levels decreased and were correlated with a significant augmentation in CuZn superoxide dismutase activity (P < 0.05, PC60 versus IR60) and increased glutathione redox state (GSH:GSSG ratio; P < 0.05, PC60 versus IR60). Diethylthiocarbamate, a non-selective superoxide dismutase inhibitor, significantly diminished the protection afforded by PC when administered throughout the protocol. However, administration of this inhibitor only during reperfusion had no effect on PC-induced cardioprotection. These results indicate that non-enzymatic antioxidants account for the protective effect of PC, modifying the oxidant stress caused by ischaemic reperfusion in rats. The contribution of CuZn superoxide dismutase activity in the observed cardioprotective effect is less clear, and could be relevant if acting in concert with other PC-activated mechanisms.


Asunto(s)
Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Oxidantes/metabolismo , Estrés Oxidativo/fisiología , Animales , Antioxidantes/metabolismo , Catálisis , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Corazón/fisiología , Ventrículos Cardíacos/metabolismo , Peroxidación de Lípido/fisiología , Masculino , Miocardio/metabolismo , Miocardio/patología , Necrosis/metabolismo , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Función Ventricular Izquierda
15.
Antioxidants (Basel) ; 11(3)2022 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35326157

RESUMEN

The transcription factor Nrf2 is a master regulator of multiple cytoprotective genes that maintain redox homeostasis and exert anti-inflammatory functions. The Nrf2-Keap1 signaling pathway is a paramount target of many cardioprotective strategies, because redox homeostasis is essential in cardiovascular health. Nrf2 gene variations, including single nucleotide polymorphisms (SNPs), are correlated with cardiometabolic diseases and drug responses. SNPs of Nrf2, KEAP1, and other related genes can impair the transcriptional activation or the activity of the resulting protein, exerting differential susceptibility to cardiometabolic disease progression and prevalence. Further understanding of the implications of Nrf2 polymorphisms on basic cellular processes involved in cardiometabolic diseases progression and prevalence will be helpful to establish more accurate protective strategies. This review provides insight into the association between the polymorphisms of Nrf2-related genes with cardiometabolic diseases. We also briefly describe that SNPs of Nrf2-related genes are potential modifiers of the pharmacokinetics that contribute to the inter-individual variability.

16.
J Bioenerg Biomembr ; 43(6): 757-64, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22108703

RESUMEN

Permeability transition was examined in heart mitochondria isolated from neonate rats. We found that these mitochondria were more susceptible to Ca(2+)-induced membrane leakiness than mitochondria from adult rats. In K(+) containing medium, at 25 °C, mitochondria were unable to accumulate Ca(2+). Conversely, in Na(+) containing medium, mitochondria accumulated effectively Ca(2+). At 15 °C mitochondria accumulated Ca(2+) regardless of the presence of K(+). Kinetics of Ca(2+) accumulation showed a similar Vmax as that of adult mitochondria. Lipid milieu of inner membrane contained more unsaturated fatty acids than adult mitochondria. Aconitase inhibition and high thiobarbituric acid-reactive substances (TBARS) indicate that oxidative stress caused mitochondrial damage. In addition, proteomics analysis showed that there is a considerable diminution of succinate dehydrogenase C and subunit 4 of cytochrome oxidase in neonate mitochondria. Our proposal is that dysfunction of the respiratory chain makes neonate mitochondria more susceptible to damage by oxidative stress.


Asunto(s)
Calcio/farmacología , Mitocondrias Cardíacas/metabolismo , Membranas Mitocondriales/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Transporte de Electrón/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Potasio/metabolismo , Ratas
17.
Antioxidants (Basel) ; 10(5)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066806

RESUMEN

Post-translational modifications based on redox reactions "switch on-off" the biological activity of different downstream targets, modifying a myriad of processes and providing an efficient mechanism for signaling regulation in physiological and pathological conditions. Such modifications depend on the generation of redox components, such as reactive oxygen species and nitric oxide. Therefore, as the oxidative or nitrosative milieu prevailing in the reperfused heart is determinant for protective signaling, in this review we defined the impact of redox-based post-translational modifications resulting from either oxidative/nitrosative signaling or oxidative/nitrosative stress that occurs during reperfusion damage. The role that cardioprotective conditioning strategies have had to establish that such changes occur at different subcellular levels, particularly in mitochondria, is also presented. Another section is devoted to the possible mechanism of signal delivering of modified proteins. Finally, we discuss the possible efficacy of redox-based therapeutic strategies against reperfusion damage.

18.
Life (Basel) ; 11(11)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34832998

RESUMEN

Mitochondria are the central target of ischemic preconditioning and postconditioning cardioprotective strategies, which consist of either the application of brief intermittent ischemia/reperfusion (I/R) cycles or the administration of pharmacological agents. Such strategies reduce cardiac I/R injury by activating protective signaling pathways that prevent the exacerbated production of reactive oxygen/nitrogen species, inhibit opening of mitochondrial permeability transition pore and reduce apoptosis, maintaining normal mitochondrial function. Cardioprotection also involves the activation of mitochondrial quality control (MQC) processes, which replace defective mitochondria or eliminate mitochondrial debris, preserving the structure and function of the network of these organelles, and consequently ensuring homeostasis and survival of cardiomyocytes. Such processes include mitochondrial biogenesis, fission, fusion, mitophagy and mitochondrial-controlled cell death. This review updates recent advances in MQC mechanisms that are activated in the protection conferred by different cardiac conditioning interventions. Furthermore, the role of extracellular vesicles in mitochondrial protection and turnover of these organelles will be discussed. It is concluded that modulation of MQC mechanisms and recognition of mitochondrial targets could provide a potential and selective therapeutic approach for I/R-induced mitochondrial dysfunction.

19.
Life Sci ; 277: 119599, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33989666

RESUMEN

The cellular damage caused by redox imbalance is involved in the pathogenesis of many cardiovascular diseases. Besides, redox imbalance is related to the alteration of protein acetylation processes, causing not only chromatin remodeling but also disturbances in so many processes where protein acetylation is involved, such as metabolism and signal transduction. The modulation of acetylases and deacetylases enzymes aids in maintaining the redox homeostasis, avoiding the deleterious cellular effects associated with the dysregulation of protein acetylation. Of note, regulation of protein acetylation has shown protective effects to ameliorate cardiovascular diseases. For instance, HDAC inhibition has been related to inducing cardiac protective effects and it is an interesting approach to the management of cardiovascular diseases. On the other hand, the upregulation of SIRT protein activity has also been implicated in the relief of cardiovascular diseases. This review focuses on the major protein acetylation modulators described, involving pharmacological and bioactive compounds targeting deacetylase and acetylase enzymes contributing to heart protection through redox homeostasis.


Asunto(s)
Acetilación/efectos de los fármacos , Enfermedades Cardiovasculares/enzimología , Corazón/fisiología , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Homeostasis/efectos de los fármacos , Humanos , Miocardio/metabolismo , Oxidación-Reducción , Sustancias Protectoras/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos
20.
Life Sci ; 287: 120091, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34717910

RESUMEN

BACKGROUND: Cold temperatures can aggravate pulmonary diseases and promote pulmonary arterial hypertension (PAH); however, the underlying mechanism has not been fully explored. AIM: To explore the effect of chronic cold exposure on the production of inflammatory cytokines and microRNAs (miRNAs) in a monocrotaline (MCT)-induced PAH model. METHODS: Male Sprague Dawley rats were divided into a Control (23.5 ± 2 °C), Cold (5.0 ± 1 °C for ten days), MCT (60 mg/kg body weight i.p.), and MCT + Cold (ten days of cold exposure after 3 weeks of MCT injection). Hemodynamic parameters, right ventricle (RV) hypertrophy, and pulmonary arterial medial wall thickness were determined. IL-1ß, IL-6, and TNF-α levels were determined using western blotting. miR-21-5p and -3p, miR-146a-5p and -3p, and miR-155-5p and -3p and plasma extracellular vesicles (EVs) and mRNA expression of Cd68, Cd163, Bmpr2, Smad5, Tgfbr2, and Smad3 were determined using RT-qPCR. RESULTS: The MCT + Cold group had aggravated RV hypertrophy hemodynamic parameters, and pulmonary arterial medial wall thickness. In lungs of the MCT + Cold, group the protein levels of TNF-α, IL-1ß, and IL-6 were higher than those in the MCT group. The mRNA expression of Cd68 and Cd163 were higher in the MCT + Cold group. miR-146a-5p and miR-155-5p levels were higher in the plasma EVs and lungs of the MCT + Cold group. Cold exposure promoted a greater decrease in miR-21-5p, Bmpr2, Smad5, Tgfbr2, and Smad3 mRNA expression in lungs of the MCT + Cold group. CONCLUSION: Cold exposure aggravates MCT-induced PAH with an increase in inflammatory marker and miRNA levels in the plasma EVs and lungs.


Asunto(s)
Frío/efectos adversos , Citocinas/biosíntesis , MicroARNs/biosíntesis , Hipertensión Arterial Pulmonar/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Animales , Interleucina-1beta/biosíntesis , Interleucina-6/biosíntesis , Pulmón/metabolismo , Pulmón/patología , Masculino , Hipertensión Arterial Pulmonar/patología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA