Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Plant J ; 113(5): 934-953, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36582182

RESUMEN

Seed longevity, the capacity to remain alive during dry storage, is pivotal to germination performance and is essential for preserving genetic diversity. It is acquired during late maturation concomitantly with seed degreening and the de-differentiation of chloroplasts into colorless, non-photosynthetic plastids, called eoplasts. As chlorophyll retention leads to poor seed performance upon sowing, these processes are important for seed vigor. However, how these processes are regulated and connected to the acquisition of seed longevity remains poorly understood. Here, we show that such a role is at least provided by ABSCISIC ACID INSENSITIVE 4 (ABI4) in the legume Medicago truncatula. Mature seeds of Mtabi4 mutants contained more chlorophyll than wild-type seeds and exhibited a 75% reduction in longevity and reduced dormancy. MtABI4 was necessary to stimulate eoplast formation, as evidenced by the significant delay in the dismantlement of photosystem II during the maturation of mutant seeds. Mtabi4 seeds also exhibited transcriptional deregulation of genes associated with retrograde signaling and transcriptional control of plastid-encoded genes. Longevity was restored when Mtabi4 seeds developed in darkness, suggesting that the shutdown of photosynthesis during maturation, rather than chlorophyll degradation per se, is a requisite for the acquisition of longevity. Indeed, the shelf life of stay green mutant seeds that retained chlorophyll was not affected. Thus, ABI4 plays a role in coordinating the dismantlement of chloroplasts during seed development to avoid damage that compromises the acquisition of seed longevity. Analysis of Mtabi4 Mtabi5 double mutants showed synergistic effects on chlorophyll retention and longevity, suggesting that they act via parallel pathways.


Asunto(s)
Ácido Abscísico , Medicago truncatula , Ácido Abscísico/metabolismo , Medicago truncatula/fisiología , Factores de Transcripción/metabolismo , Semillas/metabolismo , Germinación/genética , Regulación de la Expresión Génica de las Plantas
2.
J Exp Bot ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758708

RESUMEN

To ensure their vital role in disseminating the species, dormant seeds have developed adaptive strategies to protect themselves against pathogens and predators. This is orchestrated through the synthesis of an array of constitutive defenses that are put in place in a developmentally regulated manner, which are the focus of this review. We summarize the defense activity and the nature of the molecules coming from the exudate of imbibing seeds that leak into its vicinity, also referred to as the spermosphere. As a second layer of protection, the dual role of the seed coat will be discussed; as a physical barrier and a multi-layered reservoir of defense compounds that are synthesized during seed development. Since imbibed dormant seeds can persist in the soil for extended times, we address the question if during this period, a constitutively regulated defense program is switched on to provide further protection, using the well-defined pathogenesis-related (PR) protein family. In addition, we review the hormonal and signaling pathways that might be involved in the interplay between dormancy and defense and point out questions that need further attention.

3.
Physiol Plant ; 176(1): e14130, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38842416

RESUMEN

In order to capture the drought impacts on seed quality acquisition in Brassica napus and its potential interaction with early biotic stress, seeds of the 'Express' genotype of oilseed rape were characterized from late embryogenesis to full maturity from plants submitted to reduced watering (WS) with or without pre-occurring inoculation by the telluric pathogen Plasmodiophora brassicae (Pb + WS or Pb, respectively), and compared to control conditions (C). Drought as a single constraint led to significantly lower accumulation of lipids, higher protein content and reduced longevity of the WS-treated seeds. In contrast, when water shortage was preceded by clubroot infection, these phenotypic differences were completely abolished despite the upregulation of the drought sensor RD20. A weighted gene co-expression network of seed development in oilseed rape was generated using 72 transcriptomes from developing seeds from the four treatments and identified 33 modules. Module 29 was highly enriched in heat shock proteins and chaperones that showed a stronger upregulation in Pb + WS compared to the WS condition, pointing to a possible priming effect by the early P. brassicae infection on seed quality acquisition. Module 13 was enriched with genes encoding 12S and 2S seed storage proteins, with the latter being strongly upregulated under WS conditions. Cis-element promotor enrichment identified PEI1/TZF6, FUS3 and bZIP68 as putative regulators significantly upregulated upon WS compared to Pb + WS. Our results provide a temporal co-expression atlas of seed development in oilseed rape and will serve as a resource to characterize the plant response towards combinations of biotic and abiotic stresses.


Asunto(s)
Brassica napus , Sequías , Regulación de la Expresión Génica de las Plantas , Semillas , Estrés Fisiológico , Brassica napus/genética , Brassica napus/fisiología , Semillas/genética , Semillas/crecimiento & desarrollo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plasmodiophorida/fisiología , Transcriptoma/genética
4.
Plant Cell ; 32(6): 2020-2042, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32303662

RESUMEN

Plants produce a vast array of defense compounds to protect themselves from pathogen attack or herbivore predation. Saponins are a specific class of defense compounds comprising bioactive glycosides with a steroidal or triterpenoid aglycone backbone. The model legume Medicago truncatula synthesizes two types of saponins, hemolytic saponins and nonhemolytic soyasaponins, which accumulate as specific blends in different plant organs. Here, we report the identification of the seed-specific transcription factor TRITERPENE SAPONIN ACTIVATION REGULATOR3 (TSAR3), which controls hemolytic saponin biosynthesis in developing M. truncatula seeds. Analysis of genes that are coexpressed with TSAR3 in transcriptome data sets from developing M. truncatula seeds led to the identification of CYP88A13, a cytochrome P450 that catalyzes the C-16α hydroxylation of medicagenic acid toward zanhic acid, the final oxidation step of the hemolytic saponin biosynthesis branch in M. truncatula In addition, two uridine diphosphate glycosyltransferases, UGT73F18 and UGT73F19, which glucosylate hemolytic sapogenins at the C-3 position, were identified. The genes encoding the identified biosynthetic enzymes are present in clusters of duplicated genes in the M. truncatula genome. This appears to be a common theme among saponin biosynthesis genes, especially glycosyltransferases, and may be the driving force of the metabolic evolution of saponins.


Asunto(s)
Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Triterpenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Proteínas de Plantas/genética
5.
Plant J ; 106(5): 1298-1311, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33733554

RESUMEN

As the frequency of extreme environmental events is expected to increase with climate change, identifying candidate genes for stabilizing the protein composition of legume seeds or optimizing this in a given environment is increasingly important. To elucidate the genetic determinants of seed protein plasticity, major seed proteins from 200 ecotypes of Medicago truncatula grown in four contrasting environments were quantified after one-dimensional electrophoresis. The plasticity index of these proteins was recorded for each genotype as the slope of Finlay and Wilkinson's regression and then used for genome-wide association studies (GWASs), enabling the identification of candidate genes for determining this plasticity. This list was enriched in genes related to transcription, DNA repair and signal transduction, with many of them being stress responsive. Other over-represented genes were related to sulfur and aspartate family pathways leading to the synthesis of the nutritionally essential amino acids methionine and lysine. By placing these genes in metabolic pathways, and using a M. truncatula mutant impaired in regenerating methionine from S-methylmethionine, we discovered that methionine recycling pathways are major contributors to globulin composition establishment and plasticity. These data provide a unique resource of genes that can be targeted to mitigate negative impacts of environmental stresses on seed protein composition.


Asunto(s)
Medicago truncatula/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Estudio de Asociación del Genoma Completo , Genotipo , Globulinas/genética , Globulinas/metabolismo , Medicago truncatula/fisiología , Metionina/metabolismo , Mutación , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Almacenamiento de Semillas/genética , Semillas/genética , Semillas/fisiología , Estrés Fisiológico , Vitamina U/metabolismo
6.
BMC Plant Biol ; 21(1): 124, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33648457

RESUMEN

BACKGROUND: During maturation seeds acquire several physiological traits to enable them to survive drying and disseminate the species. Few studies have addressed the regulatory networks controlling acquisition of these traits at the tissue level particularly in endospermic seeds such as tomato, which matures in a fully hydrated environment and does not undergo maturation drying. Using temporal RNA-seq analyses of the different seed tissues during maturation, gene network and trait-based correlations were used to explore the transcriptome signatures associated with desiccation tolerance, longevity, germination under water stress and dormancy. RESULTS: During maturation, 15,173 differentially expressed genes were detected, forming a gene network representing 21 expression modules, with 3 being specific to seed coat and embryo and 5 to the endosperm. A gene-trait significance measure identified a common gene module between endosperm and embryo associated with desiccation tolerance and conserved with non-endospermic seeds. In addition to genes involved in protection such LEA and HSP and ABA response, the module included antioxidant and repair genes. Dormancy was released concomitantly with the increase in longevity throughout fruit ripening until 14 days after the red fruit stage. This was paralleled by an increase in SlDOG1-2 and PROCERA transcripts. The progressive increase in seed vigour was captured by three gene modules, one in common between embryo and endosperm and two tissue-specific. The common module was enriched with genes associated with mRNA processing in chloroplast and mitochondria (including penta- and tetratricopeptide repeat-containing proteins) and post-transcriptional regulation, as well several flowering genes. The embryo-specific module contained homologues of ABI4 and CHOTTO1 as hub genes associated with seed vigour, whereas the endosperm-specific module revealed a diverse set of processes that were related to genome stability, defence against pathogens and ABA/GA response genes. CONCLUSION: The spatio-temporal co-expression atlas of tomato seed maturation will serve as a valuable resource for the in-depth understanding of the dynamics of gene expression associated with the acquisition of seed vigour at the tissue level.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Semillas/genética , Solanum lycopersicum/genética , Aclimatación/genética , Sequías , Endospermo/genética , Endospermo/crecimiento & desarrollo , Estudios de Asociación Genética , Solanum lycopersicum/embriología , Solanum lycopersicum/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Transcriptoma
7.
Biochem J ; 477(2): 305-323, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31967650

RESUMEN

Seed longevity is a central pivot of the preservation of biodiversity, being of main importance to face the challenges linked to global climate change and population growth. This complex, quantitative seed quality trait is acquired on the mother plant during the second part of seed development. Understanding what factors contribute to lifespan is one of the oldest and most challenging questions in plant biology. One of these challenges is to recognize that longevity depends on the storage conditions that are experimentally used because they determine the type and rate of deleterious conditions that lead to cell death and loss of viability. In this review, we will briefly review the different storage methods that accelerate the deteriorative reactions during storage and argue that a minimum amount of information is necessary to interpret the longevity data. Next, we will give an update on recent discoveries on the hormonal factors regulating longevity, both from the ABA signaling pathway but also other hormonal pathways. In addition, we will review the effect of both maternal and abiotic factors that influence longevity. In the last section of this review, we discuss the problems in unraveling cause-effect relationship between the time of death during storage and deteriorative reactions leading to seed ageing. We focus on the three major types of cellular damage, namely membrane permeability, lipid peroxidation and RNA integrity for which germination data on seed stored in dedicated seed banks for long period times are now available.


Asunto(s)
Germinación/genética , Longevidad/genética , Desarrollo de la Planta/genética , Semillas/genética , Peroxidación de Lípido/genética , Plantas/genética , ARN/genética , Semillas/crecimiento & desarrollo , Transducción de Señal
8.
New Phytol ; 225(1): 284-296, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31461534

RESUMEN

Seed longevity, the maintenance of viability during dry storage, is a crucial factor to preserve plant genetic resources and seed vigor. Inference of a temporal gene-regulatory network of seed maturation identified auxin signaling as a putative mechanism to induce longevity-related genes. Using auxin-response sensors and tryptophan-dependent auxin biosynthesis mutants of Arabidopsis thaliana L., the role of auxin signaling in longevity was studied during seed maturation. DII and DR5 sensors demonstrated that, concomitant with the acquisition of longevity, auxin signaling input and output increased and underwent a spatiotemporal redistribution, spreading throughout the embryo. Longevity of seeds of single auxin biosynthesis mutants with altered auxin signaling activity was affected in a dose-response manner depending on the level of auxin activity. Longevity-associated genes with promoters enriched in auxin response elements and the master regulator ABSCISIC ACID INSENSITIVE3 were induced by auxin in developing embryos and deregulated in auxin biosynthesis mutants. The beneficial effect of exogenous auxin during seed maturation on seed longevity was abolished in abi3-1 mutants. These data suggest a role for auxin signaling activity in the acquisition of longevity during seed maturation.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Semillas/crecimiento & desarrollo , Transducción de Señal , Ácido Abscísico/metabolismo , Arabidopsis/embriología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Semillas/embriología , Semillas/genética , Factores de Transcripción/metabolismo
9.
Plant Cell Environ ; 43(10): 2508-2522, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32683703

RESUMEN

During the later stages of seed maturation, two key adaptive traits are acquired that contribute to seed lifespan and dispersal, longevity and dormancy. The seed-specific heat shock transcription factor A9 is an important hub gene in the transcriptional network of late seed maturation. Here, we demonstrate that HSFA9 plays a role in thermotolerance rather than in ex situ seed conservation. Storage of hsfa9 seeds of Medicago truncatula and Arabidopsis had comparable lifespan at moderate storage relative humidity (RH), whereas at high RH, hsfa9 seeds lost their viability much faster than wild type seeds. Furthermore, we show that in M. truncatula, Mthsfa9 seeds acquired more dormancy during late maturation than wild type. Transient expression of MtHSFA9 in hairy roots and transcriptome analysis of Mthsfa9 Tnt1 insertion mutants identified a deregulation of genes involved in ABA biosynthesis, catabolism and signalling. Consistent with these results, Mthsfa9 seeds exhibited increased ABA levels and higher sensitivity to ABA. These data suggest that in legumes, HSFA9 acts as a negative regulator of the depth of seed dormancy during seed development via the modulation of hormonal balance.


Asunto(s)
Ácido Abscísico/metabolismo , Factores de Transcripción del Choque Térmico/fisiología , Medicago truncatula/metabolismo , Latencia en las Plantas , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/fisiología , Transducción de Señal , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción del Choque Térmico/metabolismo , Medicago truncatula/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Técnicas del Sistema de Dos Híbridos
10.
Plant Cell ; 28(11): 2735-2754, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27956585

RESUMEN

The preservation of our genetic resources and production of high-quality seeds depends on their ability to remain viable and vigorous during storage. In a quantitative trait locus analysis on seed longevity in Medicago truncatula, we identified the bZIP transcription factor ABSCISIC ACID INSENSITIVE5 (ABI5). Characterization of Mt-abi5 insertion mutant seeds revealed that both the acquisition of longevity and dormancy were severely impaired. Using transcriptomes of developing Mt-abi5 seeds, we created a gene coexpression network and revealed ABI5 as a regulator of gene modules with functions related to raffinose family oligosaccharide (RFO) metabolism, late embryogenesis abundant (LEA) proteins, and photosynthesis-associated nuclear genes (PhANGs). Lower RFO contents in Mt-abi5 seeds were linked to the regulation of SEED IMBIBITION PROTEIN1 Proteomic analysis confirmed that a set of LEA polypeptides was reduced in mature Mt-abi5 seeds, whereas the absence of repression of PhANG in mature Mt-abi5 seeds was accompanied by chlorophyll and carotenoid retention. This resulted in a stress response in Mt-abi5 seeds, evident from an increase in α-tocopherol and upregulation of genes related to programmed cell death and protein folding. Characterization of abi5 mutants in a second legume species, pea (Pisum sativum), confirmed a role for ABI5 in the regulation of longevity, seed degreening, and RFO accumulation, identifying ABI5 as a prominent regulator of late seed maturation in legumes.


Asunto(s)
Medicago truncatula/metabolismo , Medicago truncatula/fisiología , Pisum sativum/metabolismo , Pisum sativum/fisiología , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Semillas/fisiología , Factores de Transcripción/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Medicago truncatula/genética , Pisum sativum/genética , Proteínas de Plantas/genética , Semillas/genética , Factores de Transcripción/genética
11.
Plant Cell ; 27(10): 2692-708, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26410298

RESUMEN

Seed longevity, the maintenance of viability during storage, is a crucial factor for preservation of genetic resources and ensuring proper seedling establishment and high crop yield. We used a systems biology approach to identify key genes regulating the acquisition of longevity during seed maturation of Medicago truncatula. Using 104 transcriptomes from seed developmental time courses obtained in five growth environments, we generated a robust, stable coexpression network (MatNet), thereby capturing the conserved backbone of maturation. Using a trait-based gene significance measure, a coexpression module related to the acquisition of longevity was inferred from MatNet. Comparative analysis of the maturation processes in M. truncatula and Arabidopsis thaliana seeds and mining Arabidopsis interaction databases revealed conserved connectivity for 87% of longevity module nodes between both species. Arabidopsis mutant screening for longevity and maturation phenotypes demonstrated high predictive power of the longevity cross-species network. Overrepresentation analysis of the network nodes indicated biological functions related to defense, light, and auxin. Characterization of defense-related wrky3 and nf-x1-like1 (nfxl1) transcription factor mutants demonstrated that these genes regulate some of the network nodes and exhibit impaired acquisition of longevity during maturation. These data suggest that seed longevity evolved by co-opting existing genetic pathways regulating the activation of defense against pathogens.


Asunto(s)
Arabidopsis/genética , Medicago truncatula/genética , Proteínas de Plantas/genética , Semillas/genética , Transcriptoma , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Evolución Biológica , Ambiente , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Germinación , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/fisiología , Mutación , Fenotipo , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/fisiología , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
New Phytol ; 214(4): 1597-1613, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28322451

RESUMEN

Improving nutritional seed quality is an important challenge in grain legume breeding. However, the genes controlling the differential accumulation of globulins, which are major contributors to seed nutritional value in legumes, remain largely unknown. We combined a search for protein quantity loci with genome-wide association studies on the abundance of 7S and 11S globulins in seeds of the model legume species Medicago truncatula. Identified genomic regions and genes carrying polymorphisms linked to globulin variations were then cross-compared with pea (Pisum sativum), leading to the identification of candidate genes for the regulation of globulin abundance in this crop. Key candidates identified include genes involved in transcription, chromatin remodeling, post-translational modifications, transport and targeting of proteins to storage vacuoles. Inference of a gene coexpression network of 12 candidate transcription factors and globulin genes revealed the transcription factor ABA-insensitive 5 (ABI5) as a highly connected hub. Characterization of loss-of-function abi5 mutants in pea uncovered a role for ABI5 in controlling the relative abundance of vicilin, a sulfur-poor 7S globulin, in pea seeds. This demonstrates the feasibility of using genome-wide association studies in M. truncatula to reveal genes that can be modulated to improve seed nutritional value.


Asunto(s)
Globulinas/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Semillas/metabolismo , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Globulinas/genética , Mutación , Pisum sativum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transporte de Proteínas , Proteómica/métodos , Proteínas de Almacenamiento de Semillas/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
J Exp Bot ; 68(4): 827-841, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28391329

RESUMEN

Besides the deposition of storage reserves, seed maturation is characterized by the acquisition of functional traits including germination, desiccation tolerance, dormancy, and longevity. After seed filling, seed longevity increases up to 30-fold, concomitant with desiccation that brings the embryo to a quiescent state. The period that we define as late maturation phase can represent 10-78% of total seed development time, yet it remains overlooked. Its importance is underscored by the fact that in the seed production chain, the stage of maturity at harvest is the primary factor that influences seed longevity and seedling establishment. This review describes the major events and regulatory pathways underlying the acquisition of seed longevity, focusing on key indicators of maturity such as chlorophyll degradation, accumulation of raffinose family oligosaccharides, late embryogenesis abundant proteins, and heat shock proteins. We discuss how these markers are correlated with or contribute to seed longevity, and highlight questions that merit further attention. We present evidence suggesting that molecular players involved in biotic defence also have a regulatory role in seed longevity. We also explore how the concept of plasticity can help understand the acquisition of longevity.


Asunto(s)
Semillas/crecimiento & desarrollo , Deshidratación , Oligosacáridos/fisiología , Proteínas de Plantas/fisiología , Semillas/fisiología
14.
Planta ; 242(2): 369-78, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26142353

RESUMEN

MAIN CONCLUSION: A special issue reviews the recent progress made in our understanding of desiccation tolerance across various plant and animal kingdoms. It has been known for a long time that seeds can survive near absolute protoplasmic dehydration through air drying and complete germination upon rehydration because of their desiccation tolerance. This property is present both in prokaryotes and eukaryotes across all life kingdoms. These dry organisms suspend their metabolism when dry, are extremely tolerant to acute environmental stresses and are relatively stable during long periods of desiccation. Studies aiming at understanding the mechanisms of survival in the dry state have emerged during the past 40 years, moving from in vitro to genomic models and comparative genomics, and from a view that tolerance is an all-or-nothing phenomenon to a quantitative trait. With the prospect of global climate change, understanding the mechanisms of desiccation tolerance appears to be a promising avenue as a prelude to engineering crops for improved drought tolerance. Understanding desiccation is also useful for seed banks that rely on dehydration tolerance to preserve plant genetic resources in the form of these propagules. Articles in this special issue explore the recent progress in our understanding of desiccation tolerance, including the evolutionary mechanisms that have been adopted across various plant (algae, lichens, seeds, resurrection plants) and animal model systems (Caenorhabditis elegans, brine shrimp). We propose that the term desiccation biology defines the discipline dedicated to understand the desiccation tolerance in living organisms as well as the limits and time constraints thereof.


Asunto(s)
Desecación , Plantas/metabolismo , Adaptación Fisiológica , Evolución Biológica
15.
Planta ; 242(2): 435-49, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25809152

RESUMEN

MAIN CONCLUSION: During re-establishment of desiccation tolerance (DT), early events promote initial protection and growth arrest, while late events promote stress adaptation and contribute to survival in the dry state. Mature seeds of Arabidopsis thaliana are desiccation tolerant, but they lose desiccation tolerance (DT) while progressing to germination. Yet, there is a small developmental window during which DT can be rescued by treatment with abscisic acid (ABA). To gain temporal resolution and identify relevant genes in this process, data from a time series of microarrays were used to build a gene co-expression network. The network has two regions, namely early response (ER) and late response (LR). Genes in the ER region are related to biological processes, such as dormancy, acquisition of DT and drought, amplification of signals, growth arrest and induction of protection mechanisms (such as LEA proteins). Genes in the LR region lead to inhibition of photosynthesis and primary metabolism, promote adaptation to stress conditions and contribute to seed longevity. Phenotyping of 12 hubs in relation to re-establishment of DT with T-DNA insertion lines indicated a significant increase in the ability to re-establish DT compared with the wild-type in the lines cbsx4, at3g53040 and at4g25580, suggesting the operation of redundant and compensatory mechanisms. Moreover, we show that re-establishment of DT by polyethylene glycol and ABA occurs through partially overlapping mechanisms. Our data confirm that co-expression network analysis is a valid approach to examine data from time series of transcriptome analysis, as it provides promising insights into biologically relevant relations that help to generate new information about the roles of certain genes for DT.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/genética , Arabidopsis/fisiología , Desecación , Redes Reguladoras de Genes , Germinación/genética , Semillas/genética , Ácido Abscísico/farmacología , Adaptación Fisiológica/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/embriología , ADN Bacteriano/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Redes Reguladoras de Genes/efectos de los fármacos , Germinación/efectos de los fármacos , Mutagénesis Insercional/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Análisis de Componente Principal , Semillas/efectos de los fármacos
16.
J Exp Bot ; 66(13): 3737-52, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25922487

RESUMEN

Plant pathogenic bacteria disseminate and survive mainly in association with seeds. This study addresses whether seeds are passive carriers or engage a molecular dialogue with pathogens during their development. We developed two pathosystems using Medicago truncatula with Xanthomonas alfalfae subsp. alfalfae (Xaa), the natural Medicago sp. pathogen and Xanthomonas campestris pv. campestris (Xcc), a Brassicaceae pathogen. Three days after flower inoculation, the transcriptome of Xcc-infected pods showed activation of an innate immune response that was strongly limited in Xcc mutated in the type three secretion system, demonstrating an incompatible interaction of Xcc with the reproductive structures. In contrast, the presence of Xaa did not result in an activation of defence genes. Transcriptome profiling during development of infected seeds exhibited time-dependent and differential responses to Xcc and Xaa. Gene network analysis revealed that the transcriptome of Xcc-infected seeds was mainly affected during seed filling whereas that of Xaa-infected seeds responded during late maturation. The Xcc-infected seed transcriptome exhibited an activation of defence response and a repression of targeted seed maturation pathways. Fifty-one percent of putative ABSCISIC ACID INSENSITIVE3 targets were deregulated by Xcc, including oleosin, cupin, legumin and chlorophyll degradation genes. At maturity, these seeds displayed decreased weight and increased chlorophyll content. In contrast, these traits were not affected by Xaa infection. These findings demonstrate the existence of a complex molecular dialogue between xanthomonads and developing seeds and provides insights into a previously unexplored trade-off between seed development and pathogen defence.


Asunto(s)
Interacciones Huésped-Patógeno , Medicago truncatula/embriología , Medicago truncatula/microbiología , Semillas/embriología , Semillas/microbiología , Clorofila/metabolismo , Epigénesis Genética , Flores/microbiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Redes Reguladoras de Genes , Genes de Plantas , Interacciones Huésped-Patógeno/genética , Medicago truncatula/genética , Tamaño de los Órganos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proantocianidinas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducción , Semillas/genética , Estrés Fisiológico , Factores de Tiempo , Transcriptoma/genética , Xanthomonas
17.
Plant J ; 76(6): 982-96, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24118112

RESUMEN

Reductions in sulfur dioxide emissions and the use of sulfur-free mineral fertilizers are decreasing soil sulfur levels and threaten the adequate fertilization of most crops. To provide knowledge regarding legume adaptation to sulfur restriction, we subjected Medicago truncatula, a model legume species, to sulfur deficiency at various developmental stages, and compared the yield, nutrient allocation and seed traits. This comparative analysis revealed that sulfur deficiency at the mid-vegetative stage decreased yield and altered the allocation of nitrogen and carbon to seeds, leading to reduced levels of major oligosaccharides in mature seeds, whose germination was dramatically affected. In contrast, during the reproductive period, sulfur deficiency had little influence on yield and nutrient allocation, but the seeds germinated slowly and were characterized by low levels of a biotinylated protein, a putative indicator of germination vigor that has not been previously related to sulfur nutrition. Significantly, plants deprived of sulfur at an intermediary stage (flowering) adapted well by remobilizing nutrients from source organs to seeds, ensuring adequate quantities of carbon and nitrogen in seeds. This efficient remobilization of photosynthates may be explained by vacuolar sulfate efflux to maintain leaf metabolism throughout reproductive growth, as suggested by transcript and metabolite profiling. The seeds from these plants, deprived of sulfur at the floral transition, contained normal levels of major oligosaccharides but their germination was delayed, consistent with low levels of sucrose and the glycolytic enzymes required to restart seed metabolism during imbibition. Overall, our findings provide an integrative view of the legume response to sulfur deficiency.


Asunto(s)
Adaptación Fisiológica , Medicago truncatula/fisiología , Semillas/fisiología , Azufre/deficiencia , Transporte Biológico , Biomasa , Metabolismo de los Hidratos de Carbono , Carbono/metabolismo , Clorofila/metabolismo , Medicago truncatula/genética , Medicago truncatula/crecimiento & desarrollo , Modelos Biológicos , Nitrógeno/metabolismo , Oligosacáridos/metabolismo , Especificidad de Órganos , Oxidación-Reducción , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , ARN Mensajero/genética , Rafinosa/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Sulfatos/metabolismo , Azufre/metabolismo
18.
Plant Physiol ; 163(2): 757-74, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23929721

RESUMEN

In seeds, desiccation tolerance (DT) and the ability to survive the dry state for prolonged periods of time (longevity) are two essential traits for seed quality that are consecutively acquired during maturation. Using transcriptomic and metabolomic profiling together with a conditional-dependent network of global transcription interactions, we dissected the maturation events from the end of seed filling to final maturation drying during the last 3 weeks of seed development in Medicago truncatula. The network revealed distinct coexpression modules related to the acquisition of DT, longevity, and pod abscission. The acquisition of DT and dormancy module was associated with abiotic stress response genes, including late embryogenesis abundant (LEA) genes. The longevity module was enriched in genes involved in RNA processing and translation. Concomitantly, LEA polypeptides accumulated, displaying an 18-d delayed accumulation compared with transcripts. During maturation, gulose and stachyose levels increased and correlated with longevity. A seed-specific network identified known and putative transcriptional regulators of DT, including ABSCISIC ACID-INSENSITIVE3 (MtABI3), MtABI4, MtABI5, and APETALA2/ ETHYLENE RESPONSE ELEMENT BINDING PROTEIN (AtAP2/EREBP) transcription factor as major hubs. These transcriptional activators were highly connected to LEA genes. Longevity genes were highly connected to two MtAP2/EREBP and two basic leucine zipper transcription factors. A heat shock factor was found at the transition of DT and longevity modules, connecting to both gene sets. Gain- and loss-of-function approaches of MtABI3 confirmed 80% of its predicted targets, thereby experimentally validating the network. This study captures the coordinated regulation of seed maturation and identifies distinct regulatory networks underlying the preparation for the dry and quiescent states.


Asunto(s)
Adaptación Fisiológica/genética , Desecación , Redes Reguladoras de Genes/genética , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Longevidad/genética , Medicago truncatula/fisiología , Redes y Vías Metabólicas/genética , Metaboloma/genética , Metabolómica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reproducibilidad de los Resultados , Semillas/fisiología , Transcripción Genética , Transcriptoma/genética
19.
Methods Mol Biol ; 2830: 63-69, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38977568

RESUMEN

The longevity of seeds, also known as storability, is the period of time for which a seed lot maintains its viability during storage. The method aims to determine longevity of a seed lot during storage in a controlled environment. Seeds are first rehydrated to a preset water content (or relative humidity, RH) and then incubated under controlled conditions for various periods of time to allow for deterioration to occur. At increasing intervals during storage, seeds are retrieved and viability is tested by scoring germination of the seed lot (i.e., radicle protrusion). From these data, a survival curve can be drawn depicting loss of germination during time of storage from which different parameters estimating longevity can be inferred. These parameters can be used to compare longevity between different seed lots, genotypes, or species at similar storage conditions. This test can also be used as a proxy to measure seed vigor or physiological seed quality.


Asunto(s)
Germinación , Semillas , Semillas/crecimiento & desarrollo , Semillas/fisiología , Humedad , Longevidad , Agua
20.
Plant Methods ; 20(1): 16, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287427

RESUMEN

BACKGROUND: One of the levers towards alternative solutions to pesticides is to improve seed defenses against pathogens, but a better understanding is needed on the type and regulation of existing pathways during germination. Dormant seeds are able to defend themselves against microorganisms during cycles of rehydration and dehydration in the soil. During imbibition, seeds leak copious amounts of exudates. Here, we developed a nephelometry method to assay antimicrobial activity (AA) in tomato seed exudates as a proxy to assess level of defenses. RESULTS: A protocol is described to determine the level of AA against the nonhost filamentous fungus Alternaria brassicicola in the exudates of tomato seeds and seedlings. The fungal and exudate concentrations can be adjusted to modulate the assay sensitivity, thereby providing a large window of AA detection. We established that AA in dormant seeds depends on the genotype. It ranged from very strong AA to complete absence of AA, even after prolonged imbibition. AA depends also on the stages of germination and seedling emergence. Exudates from germinated seeds and seedlings showed very strong AA, while those from dormant seeds exhibited less activity for the same imbibition time. The exudate AA did not impact the growth of a pathogenic fungus host of tomato, Alternaria alternata, illustrating the adaptation of this fungus to its host. CONCLUSIONS: We demonstrate that our nephelometry method is a simple yet powerful bioassay to quantify AA in seed exudates. Different developmental stages from dormant seed to seedlings show different levels of AA in the exudate that vary between genotypes, highlighting a genetic diversity x developmental stage interaction in defense. These findings will be important to identify molecules in the exudates conferring antifungal properties and obtain a better understanding of the regulatory and biosynthetic pathways through the lifecycle of seeds, from dormant seeds until seedling emergence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA