Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 373
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 157(4): 773-5, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24813604

RESUMEN

Mapping synaptic connections and projections is crucial for understanding brain dynamics and function. In a recent issue of Nature, Oh et al. present a wiring diagram of the whole mouse brain, where standardized labeling, tracing, and imaging of axonal connections reveal new details in the network organization of neuronal connectivity.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/citología , Conectoma , Animales , Masculino
2.
Proc Natl Acad Sci U S A ; 121(16): e2304704121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38593073

RESUMEN

Childhood maltreatment (CM) leads to a lifelong susceptibility to mental ill-health which might be reflected by its effects on adult brain structure, perhaps indirectly mediated by its effects on adult metabolic, immune, and psychosocial systems. Indexing these systemic factors via body mass index (BMI), C-reactive protein (CRP), and rates of adult trauma (AT), respectively, we tested three hypotheses: (H1) CM has direct or indirect effects on adult trauma, BMI, and CRP; (H2) adult trauma, BMI, and CRP are all independently related to adult brain structure; and (H3) childhood maltreatment has indirect effects on adult brain structure mediated in parallel by BMI, CRP, and AT. Using path analysis and data from N = 116,887 participants in UK Biobank, we find that CM is related to greater BMI and AT levels, and that these two variables mediate CM's effects on CRP [H1]. Regression analyses on the UKB MRI subsample (N = 21,738) revealed that greater CRP and BMI were both independently related to a spatially convergent pattern of cortical effects (Spearman's ρ = 0.87) characterized by fronto-occipital increases and temporo-parietal reductions in thickness. Subcortically, BMI was associated with greater volume, AT with lower volume and CPR with effects in both directions [H2]. Finally, path models indicated that CM has indirect effects in a subset of brain regions mediated through its direct effects on BMI and AT and indirect effects on CRP [H3]. Results provide evidence that childhood maltreatment can influence brain structure decades after exposure by increasing individual risk toward adult trauma, obesity, and inflammation.


Asunto(s)
Encéfalo , Maltrato a los Niños , Adulto , Humanos , Niño , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Proteína C-Reactiva/metabolismo , Inflamación/metabolismo , Obesidad/complicaciones , Maltrato a los Niños/psicología
3.
Proc Natl Acad Sci U S A ; 121(33): e2314074121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39121162

RESUMEN

Adolescent development of human brain structural and functional networks is increasingly recognized as fundamental to emergence of typical and atypical adult cognitive and emotional proodal magnetic resonance imaging (MRI) data collected from N [Formula: see text] 300 healthy adolescents (51%; female; 14 to 26 y) each scanned repeatedly in an accelerated longitudinal design, to provide an analyzable dataset of 469 structural scans and 448 functional MRI scans. We estimated the morphometric similarity between each possible pair of 358 cortical areas on a feature vector comprising six macro- and microstructural MRI metrics, resulting in a morphometric similarity network (MSN) for each scan. Over the course of adolescence, we found that morphometric similarity increased in paralimbic cortical areas, e.g., insula and cingulate cortex, but generally decreased in neocortical areas, and these results were replicated in an independent developmental MRI cohort (N [Formula: see text] 304). Increasing hubness of paralimbic nodes in MSNs was associated with increased strength of coupling between their morphometric similarity and functional connectivity. Decreasing hubness of neocortical nodes in MSNs was associated with reduced strength of structure-function coupling and increasingly diverse functional connections in the corresponding fMRI networks. Neocortical areas became more structurally differentiated and more functionally integrative in a metabolically expensive process linked to cortical thinning and myelination, whereas paralimbic areas specialized for affective and interoceptive functions became less differentiated, as hypothetically predicted by a developmental transition from periallocortical to proisocortical organization of the cortex. Cytoarchitectonically distinct zones of the human cortex undergo distinct neurodevelopmental programs during typical adolescence.


Asunto(s)
Imagen por Resonancia Magnética , Neocórtex , Humanos , Adolescente , Femenino , Masculino , Neocórtex/diagnóstico por imagen , Neocórtex/crecimiento & desarrollo , Neocórtex/fisiología , Adulto , Adulto Joven , Mapeo Encefálico/métodos , Desarrollo del Adolescente/fisiología , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/crecimiento & desarrollo , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología
4.
Mol Psychiatry ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271754

RESUMEN

Transcriptomic profiles are important indicators for molecular mechanisms and pathways involved in major depressive disorder (MDD) and its different phenotypes, such as immunometabolic depression. We performed whole-transcriptome and pathway analyses on 139 individuals from the observational, case-control, BIOmarkers in DEPression (BIODEP) study, 105 with MDD and 34 controls. We divided MDD participants based on levels of inflammation, as measured by serum high-sensitivity C-reactive protein (CRP), in n = 39 'not inflamed' (CRP < 1 mg/L), n = 31 with 'elevated CRP' (1-3 mg/L), and n = 35 with 'low-grade inflammation' (>3 mg/L). We performed whole-blood RNA sequencing using Illumina NextSeq 550 and statistical analyses with the Deseq2 package for R statistics (RUV-corrected) and subsequent pathway analyses with Ingenuity Pathway Analysis. Immunometabolic pathways were activated in individuals with CRP > 1 mg/L, although surprisingly the CRP 1-3 group showed stronger immune activation than the CRP > 3 group. The main pathways identified in the comparison between CRP < 1 group and controls were cell-cycle-related, which may be protective against immunometabolic abnormalities in this 'non-inflamed' depressed group. We further divided MDD participants based on exposure and response to antidepressants (n = 47 non-responders, n = 37 responders, and n = 22 unmedicated), and identified specific immunomodulatory and neuroprotective pathways in responders (especially vs. non-responders), which could be relevant to treatment response. In further subgroup analyses, we found that the specific transcriptional profile of responders is independent of CRP levels, and that the inhibition of cell-cycle-related pathways in MDD with CRP < 1 mg/L is present only in those who are currently depressed, and not in the responders. The present study demonstrates immunometabolic and cell-cycle-related transcriptomic pathways associated with MDD and different (CRP-based and treatment-based) MDD phenotypes, while shedding light on potential molecular mechanisms that could prevent or facilitate an individual's trajectory toward immunometabolic depression and/or treatment-non-responsive depression. The recognition and integration of these mechanisms will facilitate a precision-medicine approach in MDD.

5.
Mol Psychiatry ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266711

RESUMEN

The psychosis spectrum encompasses a heterogeneous range of clinical conditions associated with abnormal brain development. Detecting patterns of atypical neuroanatomical maturation across psychiatric disorders requires an interpretable metric standardized by age-, sex- and site-effect. The molecular and micro-architectural attributes that account for these deviations in brain structure from typical neurodevelopment are still unknown. Here, we aggregate structural magnetic resonance imaging data from 38,696 healthy controls (HC) and 1256 psychosis-related conditions, including first-degree relatives of schizophrenia (SCZ) and schizoaffective disorder (SAD) patients (n = 160), individuals who had psychotic experiences (n = 157), patients who experienced a first episode of psychosis (FEP, n = 352), and individuals with chronic SCZ or SAD (n = 587). Using a normative modeling approach, we generated centile scores for cortical gray matter (GM) phenotypes, identifying deviations in regional volumes below the expected trajectory for all conditions, with a greater impact on the clinically diagnosed ones, FEP and chronic. Additionally, we mapped 46 neurobiological features from healthy individuals (including neurotransmitters, cell types, layer thickness, microstructure, cortical expansion, and metabolism) to these abnormal centiles using a multivariate approach. Results revealed that neurobiological features were highly co-localized with centile deviations, where metabolism (e.g., cerebral metabolic rate of oxygen (CMRGlu) and cerebral blood flow (CBF)) and neurotransmitter concentrations (e.g., serotonin (5-HT) and acetylcholine (α4ß2) receptors) showed the most consistent spatial overlap with abnormal GM trajectories. Taken together these findings shed light on the vulnerability factors that may underlie atypical brain maturation during different stages of psychosis.

6.
Proc Natl Acad Sci U S A ; 119(27): e2116673119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35776541

RESUMEN

Adolescence is a time of profound changes in the physical wiring and function of the brain. Here, we analyzed structural and functional brain network development in an accelerated longitudinal cohort spanning 14 to 25 y (n = 199). Core to our work was an advanced in vivo model of cortical wiring incorporating MRI features of corticocortical proximity, microstructural similarity, and white matter tractography. Longitudinal analyses assessing age-related changes in cortical wiring identified a continued differentiation of multiple corticocortical structural networks in youth. We then assessed structure-function coupling using resting-state functional MRI measures in the same participants both via cross-sectional analysis at baseline and by studying longitudinal change between baseline and follow-up scans. At baseline, regions with more similar structural wiring were more likely to be functionally coupled. Moreover, correlating longitudinal structural wiring changes with longitudinal functional connectivity reconfigurations, we found that increased structural differentiation, particularly between sensory/unimodal and default mode networks, was reflected by reduced functional interactions. These findings provide insights into adolescent development of human brain structure and function, illustrating how structural wiring interacts with the maturation of macroscale functional hierarchies.


Asunto(s)
Desarrollo del Adolescente , Encéfalo , Conectoma , Adolescente , Encéfalo/fisiología , Encéfalo/ultraestructura , Estudios Transversales , Humanos , Imagen por Resonancia Magnética , Red Nerviosa/fisiología , Red Nerviosa/ultraestructura
7.
Mol Psychiatry ; 28(3): 1146-1158, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36473996

RESUMEN

Preadolescence is a critical period characterized by dramatic morphological changes and accelerated cortico-subcortical development. Moreover, the coordinated development of cortical and subcortical regions underlies the emerging cognitive functions during this period. Deviations in this maturational coordination may underlie various psychiatric disorders that begin during preadolescence, but to date these deviations remain largely uncharted. We constructed a comprehensive whole-brain morphometric similarity network (MSN) from 17 neuroimaging modalities in a large preadolescence sample (N = 8908) from Adolescent Brain Cognitive Development (ABCD) study and investigated its association with 10 cognitive subscales and 27 psychiatric subscales or diagnoses. Based on the MSNs, each brain was clustered into five modules with distinct cytoarchitecture and evolutionary relevance. While morphometric correlation was positive within modules, it was negative between modules, especially between isocortical and paralimbic/subcortical modules; this developmental dissimilarity was genetically linked to synapse and neurogenesis. The cortico-subcortical dissimilarity becomes more pronounced longitudinally in healthy children, reflecting developmental differentiation of segregated cytoarchitectonic areas. Higher cortico-subcortical dissimilarity (between the isocortical and paralimbic/subcortical modules) were related to better cognitive performance. In comparison, children with poor modular differentiation between cortex and subcortex displayed higher burden of externalizing and internalizing symptoms. These results highlighted cortical-subcortical morphometric dissimilarity as a dynamic maturational marker of cognitive and psychiatric status during the preadolescent stage and provided insights into brain development.


Asunto(s)
Imagen por Resonancia Magnética , Trastornos Mentales , Niño , Adolescente , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo , Cognición , Neuroimagen
8.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33811142

RESUMEN

Brain structural covariance norms capture the coordination of neurodevelopmental programs between different brain regions. We develop and apply anatomical imbalance mapping (AIM), a method to measure and model individual deviations from these norms, to provide a lifespan map of morphological integration in the human cortex. In cross-sectional and longitudinal data, analysis of whole-brain average anatomical imbalance reveals a reproducible tightening of structural covariance by age 25 y, which loosens after the seventh decade of life. Anatomical imbalance change in development and in aging is greatest in the association cortex and least in the sensorimotor cortex. Finally, we show that interindividual variation in whole-brain average anatomical imbalance is positively correlated with a marker of human prenatal stress (birthweight disparity between monozygotic twins) and negatively correlated with general cognitive ability. This work provides methods and empirical insights to advance our understanding of coordinated anatomical organization of the human brain and its interindividual variation.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Variación Biológica Poblacional , Corteza Cerebral/diagnóstico por imagen , Conectoma , Femenino , Humanos , Masculino
9.
Radiology ; 309(1): e230096, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37906015

RESUMEN

Background Clinically acquired brain MRI scans represent a valuable but underused resource for investigating neurodevelopment due to their technical heterogeneity and lack of appropriate controls. These barriers have curtailed retrospective studies of clinical brain MRI scans compared with more costly prospectively acquired research-quality brain MRI scans. Purpose To provide a benchmark for neuroanatomic variability in clinically acquired brain MRI scans with limited imaging pathology (SLIPs) and to evaluate if growth charts from curated clinical MRI scans differed from research-quality MRI scans or were influenced by clinical indication for the scan. Materials and Methods In this secondary analysis of preexisting data, clinical brain MRI SLIPs from an urban pediatric health care system (individuals aged ≤22 years) were scanned across nine 3.0-T MRI scanners. The curation process included manual review of signed radiology reports and automated and manual quality review of images without gross pathology. Global and regional volumetric imaging phenotypes were measured using two image segmentation pipelines, and clinical brain growth charts were quantitatively compared with charts derived from a large set of research controls in the same age range by means of Pearson correlation and age at peak volume. Results The curated clinical data set included 532 patients (277 male; median age, 10 years [IQR, 5-14 years]; age range, 28 days after birth to 22 years) scanned between 2005 and 2020. Clinical brain growth charts were highly correlated with growth charts derived from research data sets (22 studies, 8346 individuals [4947 male]; age range, 152 days after birth to 22 years) in terms of normative developmental trajectories predicted by the models (median r = 0.979). Conclusion The clinical indication of the scans did not significantly bias the output of clinical brain charts. Brain growth charts derived from clinical controls with limited imaging pathology were highly correlated with brain charts from research controls, suggesting the potential of curated clinical MRI scans to supplement research data sets. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Ertl-Wagner and Pai in this issue.


Asunto(s)
Encéfalo , Gráficos de Crecimiento , Humanos , Masculino , Niño , Recién Nacido , Estudios Retrospectivos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética/métodos , Cabeza
10.
Mol Psychiatry ; 27(3): 1647-1657, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34880450

RESUMEN

Antidepressants are an effective treatment for major depressive disorder (MDD), although individual response is unpredictable and highly variable. Whilst the mode of action of antidepressants is incompletely understood, many medications are associated with changes in DNA methylation in genes that are plausibly linked to their mechanisms. Studies of DNA methylation may therefore reveal the biological processes underpinning the efficacy and side effects of antidepressants. We performed a methylome-wide association study (MWAS) of self-reported antidepressant use accounting for lifestyle factors and MDD in Generation Scotland (GS:SFHS, N = 6428, EPIC array) and the Netherlands Twin Register (NTR, N = 2449, 450 K array) and ran a meta-analysis of antidepressant use across these two cohorts. We found ten CpG sites significantly associated with self-reported antidepressant use in GS:SFHS, with the top CpG located within a gene previously associated with mental health disorders, ATP6V1B2 (ß = -0.055, pcorrected = 0.005). Other top loci were annotated to genes including CASP10, TMBIM1, MAPKAPK3, and HEBP2, which have previously been implicated in the innate immune response. Next, using penalised regression, we trained a methylation-based score of self-reported antidepressant use in a subset of 3799 GS:SFHS individuals that predicted antidepressant use in a second subset of GS:SFHS (N = 3360, ß = 0.377, p = 3.12 × 10-11, R2 = 2.12%). In an MWAS analysis of prescribed selective serotonin reuptake inhibitors, we showed convergent findings with those based on self-report. In NTR, we did not find any CpGs significantly associated with antidepressant use. The meta-analysis identified the two CpGs of the ten above that were common to the two arrays used as being significantly associated with antidepressant use, although the effect was in the opposite direction for one of them. Antidepressants were associated with epigenetic alterations in loci previously associated with mental health disorders and the innate immune system. These changes predicted self-reported antidepressant use in a subset of GS:SFHS and identified processes that may be relevant to our mechanistic understanding of clinically relevant antidepressant drug actions and side effects.


Asunto(s)
Trastorno Depresivo Mayor , Proteínas Gestacionales , Antidepresivos/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , Epigenoma , Proteínas de Unión al Hemo , Humanos , Sistema Inmunológico , Países Bajos , Proteínas Gestacionales/genética , Escocia
11.
Brain ; 145(11): 4097-4107, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36065116

RESUMEN

COVID-19 is associated with neurological complications including stroke, delirium and encephalitis. Furthermore, a post-viral syndrome dominated by neuropsychiatric symptoms is common, and is seemingly unrelated to COVID-19 severity. The true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated host inflammatory responses appear to be a key driver of COVID-19 severity. We investigated the dynamics of, and relationship between, serum markers of brain injury [neurofilament light (NfL), glial fibrillary acidic protein (GFAP) and total tau] and markers of dysregulated host response (autoantibody production and cytokine profiles) in 175 patients admitted with COVID-19 and 45 patients with influenza. During hospitalization, sera from patients with COVID-19 demonstrated elevations of NfL and GFAP in a severity-dependent manner, with evidence of ongoing active brain injury at follow-up 4 months later. These biomarkers were associated with elevations of pro-inflammatory cytokines and the presence of autoantibodies to a large number of different antigens. Autoantibodies were commonly seen against lung surfactant proteins but also brain proteins such as myelin associated glycoprotein. Commensurate findings were seen in the influenza cohort. A distinct process characterized by elevation of serum total tau was seen in patients at follow-up, which appeared to be independent of initial disease severity and was not associated with dysregulated immune responses unlike NfL and GFAP. These results demonstrate that brain injury is a common consequence of both COVID-19 and influenza, and is therefore likely to be a feature of severe viral infection more broadly. The brain injury occurs in the context of dysregulation of both innate and adaptive immune responses, with no single pathogenic mechanism clearly responsible.


Asunto(s)
Lesiones Encefálicas , COVID-19 , Gripe Humana , Humanos , Proteínas de Neurofilamentos , COVID-19/complicaciones , Biomarcadores , Autoanticuerpos , Inmunidad
12.
Cereb Cortex ; 32(18): 4128-4140, 2022 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-35029670

RESUMEN

Substantial progress has been made studying morphological changes in brain regions during adolescence, but less is known of network-level changes in their relationship. Here, we compare covariance networks constructed from the correlation of morphometric volumes across 135 brain regions of marmoset monkeys in early adolescence and adulthood. Substantial shifts are identified in the topology of structural covariance networks in the prefrontal cortex (PFC) and temporal lobe. PFC regions become more structurally differentiated and segregated within their own local network, hypothesized to reflect increased specialization after maturation. In contrast, temporal regions show increased inter-hemispheric covariances that may underlie the establishment of distributed networks. Regionally selective coupling of structural and maturational covariance is revealed, with relatively weak coupling in transmodal association areas. The latter may be a consequence of continued maturation within adulthood, but also environmental factors, for example, family size, affecting brain morphology. Advancing our understanding of how morphological relationships within higher-order brain areas mature in adolescence deepens our knowledge of the developing brain's organizing principles.


Asunto(s)
Callithrix , Imagen por Resonancia Magnética , Animales , Encéfalo/anatomía & histología , Corteza Prefrontal , Lóbulo Temporal
13.
Dev Psychopathol ; 35(5): 2253-2263, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37493043

RESUMEN

Childhood adversity is one of the strongest predictors of adolescent mental illness. Therefore, it is critical that the mechanisms that aid resilient functioning in individuals exposed to childhood adversity are better understood. Here, we examined whether resilient functioning was related to structural brain network topology. We quantified resilient functioning at the individual level as psychosocial functioning adjusted for the severity of childhood adversity in a large sample of adolescents (N = 2406, aged 14-24). Next, we examined nodal degree (the number of connections that brain regions have in a network) using brain-wide cortical thickness measures in a representative subset (N = 275) using a sliding window approach. We found that higher resilient functioning was associated with lower nodal degree of multiple regions including the dorsolateral prefrontal cortex, the medial prefrontal cortex, and the posterior superior temporal sulcus (z > 1.645). During adolescence, decreases in nodal degree are thought to reflect a normative developmental process that is part of the extensive remodeling of structural brain network topology. Prior findings in this sample showed that decreased nodal degree was associated with age, as such our findings of negative associations between nodal degree and resilient functioning may therefore potentially resemble a more mature structural network configuration in individuals with higher resilient functioning.


Asunto(s)
Experiencias Adversas de la Infancia , Trastornos Mentales , Resiliencia Psicológica , Humanos , Adolescente , Encéfalo/diagnóstico por imagen , Lóbulo Temporal , Imagen por Resonancia Magnética
14.
Proc Natl Acad Sci U S A ; 117(26): 15253-15261, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32541059

RESUMEN

Regular drug use can lead to addiction, but not everyone who takes drugs makes this transition. How exactly drugs of abuse interact with individual vulnerability is not fully understood, nor is it clear how individuals defy the risks associated with drugs or addiction vulnerability. We used resting-state functional MRI (fMRI) in 162 participants to characterize risk- and resilience-related changes in corticostriatal functional circuits in individuals exposed to stimulant drugs both with and without clinically diagnosed drug addiction, siblings of addicted individuals, and control volunteers. The likelihood of developing addiction, whether due to familial vulnerability or drug use, was associated with significant hypoconnectivity in orbitofrontal and ventromedial prefrontal cortical-striatal circuits-pathways critically implicated in goal-directed decision-making. By contrast, resilience against a diagnosis of substance use disorder was associated with hyperconnectivity in two networks involving 1) the lateral prefrontal cortex and medial caudate nucleus and 2) the supplementary motor area, superior medial frontal cortex, and putamen-brain circuits respectively implicated in top-down inhibitory control and the regulation of habits. These findings point toward a predisposing vulnerability in the causation of addiction, related to impaired goal-directed actions, as well as countervailing resilience systems implicated in behavioral regulation, and may inform novel strategies for therapeutic and preventative interventions.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Red Nerviosa/fisiología , Trastornos Relacionados con Sustancias , Adulto , Encéfalo/fisiopatología , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Psicología
15.
Proc Natl Acad Sci U S A ; 117(41): 25911-25922, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32989168

RESUMEN

A characteristic of adaptive behavior is its goal-directed nature. An ability to act in a goal-directed manner is progressively refined during development, but this refinement can be impacted by the emergence of psychiatric disorders. Disorders of compulsivity have been framed computationally as a deficit in model-based control, and have been linked also to abnormal frontostriatal connectivity. However, the developmental trajectory of model-based control, including an interplay between its maturation and an emergence of compulsivity, has not been characterized. Availing of a large sample of healthy adolescents (n = 569) aged 14 to 24 y, we show behaviorally that over the course of adolescence there is a within-person increase in model-based control, and this is more pronounced in younger participants. Using a bivariate latent change score model, we provide evidence that the presence of higher compulsivity traits is associated with an atypical profile of this developmental maturation in model-based control. Resting-state fMRI data from a subset of the behaviorally assessed subjects (n = 230) revealed that compulsivity is associated with a less pronounced change of within-subject developmental remodeling of functional connectivity, specifically between the striatum and a frontoparietal network. Thus, in an otherwise clinically healthy population sample, in early development, individual differences in compulsivity are linked to the developmental trajectory of model-based control and a remodeling of frontostriatal connectivity.


Asunto(s)
Desarrollo del Adolescente , Conducta Compulsiva/psicología , Adolescente , Adulto , Conducta Compulsiva/diagnóstico por imagen , Conducta Compulsiva/fisiopatología , Cuerpo Estriado/diagnóstico por imagen , Femenino , Objetivos , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
16.
Proc Natl Acad Sci U S A ; 117(6): 3248-3253, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31992644

RESUMEN

Adolescent changes in human brain function are not entirely understood. Here, we used multiecho functional MRI (fMRI) to measure developmental change in functional connectivity (FC) of resting-state oscillations between pairs of 330 cortical regions and 16 subcortical regions in 298 healthy adolescents scanned 520 times. Participants were aged 14 to 26 y and were scanned on 1 to 3 occasions at least 6 mo apart. We found 2 distinct modes of age-related change in FC: "conservative" and "disruptive." Conservative development was characteristic of primary cortex, which was strongly connected at 14 y and became even more connected in the period from 14 to 26 y. Disruptive development was characteristic of association cortex and subcortical regions, where connectivity was remodeled: connections that were weak at 14 y became stronger during adolescence, and connections that were strong at 14 y became weaker. These modes of development were quantified using the maturational index (MI), estimated as Spearman's correlation between edgewise baseline FC (at 14 y, [Formula: see text]) and adolescent change in FC ([Formula: see text]), at each region. Disruptive systems (with negative MI) were activated by social cognition and autobiographical memory tasks in prior fMRI data and significantly colocated with prior maps of aerobic glycolysis (AG), AG-related gene expression, postnatal cortical surface expansion, and adolescent shrinkage of cortical thickness. The presence of these 2 modes of development was robust to numerous sensitivity analyses. We conclude that human brain organization is disrupted during adolescence by remodeling of FC between association cortical and subcortical areas.


Asunto(s)
Desarrollo del Adolescente/fisiología , Encéfalo/crecimiento & desarrollo , Red Nerviosa/crecimiento & desarrollo , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Conectoma , Femenino , Movimientos de la Cabeza/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Adulto Joven
17.
Eur Child Adolesc Psychiatry ; 32(5): 797-807, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-34792650

RESUMEN

Characterizing patterns of mental phenomena in epidemiological studies of adolescents can provide insight into the latent organization of psychiatric disorders. This avoids the biases of chronicity and selection inherent in clinical samples, guides models of shared aetiology within psychiatric disorders and informs the development and implementation of interventions. We applied Gaussian mixture modelling to measures of mental phenomena from two general population cohorts: the Avon Longitudinal Study of Parents and Children (ALSPAC, n = 3018) and the Neuroscience in Psychiatry Network (NSPN, n = 2023). We defined classes according to their patterns of both positive (e.g. wellbeing and self-esteem) and negative (e.g. depression, anxiety, and psychotic experiences) phenomena. Subsequently, we characterized classes by considering the distribution of diagnoses and sex split across classes. Four well-separated classes were identified within each cohort. Classes primarily differed by overall severity of transdiagnostic distress rather than particular patterns of phenomena akin to diagnoses. Further, as overall severity of distress increased, so did within-class variability, the proportion of individuals with operational psychiatric diagnoses. These results suggest that classes of mental phenomena in the general population of adolescents may not be the same as those found in clinical samples. Classes differentiated only by overall severity support the existence of a general, transdiagnostic mental distress factor and have important implications for intervention.


Asunto(s)
Trastornos de Ansiedad , Ansiedad , Niño , Humanos , Adolescente , Estudios Longitudinales , Ansiedad/diagnóstico , Ansiedad/epidemiología , Ansiedad/psicología , Trastornos de Ansiedad/diagnóstico , Trastornos de Ansiedad/epidemiología , Padres
18.
J Neurosci ; 41(33): 7015-7028, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34244364

RESUMEN

Anatomical organization of the primate cortex varies as a function of total brain size, where possession of a larger brain is accompanied by disproportionate expansion of associative cortices alongside a relative contraction of sensorimotor systems. However, equivalent scaling maps are not yet available for regional white matter anatomy. Here, we use three large-scale neuroimaging datasets to examine how regional white matter volume (WMV) scales with interindividual variation in brain volume among typically developing humans (combined N = 2391: 1247 females, 1144 males). We show that WMV scaling is regionally heterogeneous: larger brains have relatively greater WMV in anterior and posterior regions of cortical white matter, as well as the genu and splenium of the corpus callosum, but relatively less WMV in most subcortical regions. Furthermore, regions of positive WMV scaling tend to connect previously-defined regions of positive gray matter scaling in the cortex, revealing a coordinated coupling of regional gray and white matter organization with naturally occurring variations in human brain size. However, we also show that two commonly studied measures of white matter microstructure, fractional anisotropy (FA) and magnetization transfer (MT), scale negatively with brain size, and do so in a manner that is spatially unlike WMV scaling. Collectively, these findings provide a more complete view of anatomic scaling in the human brain, and offer new contexts for the interpretation of regional white matter variation in health and disease.SIGNIFICANCE STATEMENT Recent work has shown that, in humans, regional cortical and subcortical anatomy show systematic changes as a function of brain size variation. Here, we show that regional white matter structures also show brain-size related changes in humans. Specifically, white matter regions connecting higher-order cortical systems are relatively expanded in larger human brains, while subcortical and cerebellar white matter tracts responsible for unimodal sensory or motor functions are relatively contracted. This regional scaling of white matter volume (WMV) is coordinated with regional scaling of cortical anatomy, but is distinct from scaling of white matter microstructure. These findings provide a more complete view of anatomic scaling of the human brain, with relevance for evolutionary, basic, and clinical neuroscience.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Sustancia Blanca/anatomía & histología , Adolescente , Adulto , Anisotropía , Variación Biológica Individual , Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Niño , Estudios de Cohortes , Cuerpo Calloso/anatomía & histología , Imagen de Difusión por Resonancia Magnética , Femenino , Sustancia Gris/anatomía & histología , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Dinámicas no Lineales , Tamaño de los Órganos , Reproducibilidad de los Resultados , Adulto Joven
19.
Nat Rev Neurosci ; 18(3): 131-146, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28148956

RESUMEN

Defining the organizational principles of neuronal networks at the cellular scale, or micro-connectomics, is a key challenge of modern neuroscience. In this Review, we focus on graph theoretical parameters of micro-connectome topology, often informed by economical principles that conceptually originated with Ramón y Cajal's conservation laws. First, we summarize results from studies in intact small organisms and in samples from larger nervous systems. We then evaluate the evidence for an economical trade-off between biological cost and functional value in the organization of neuronal networks. Various results suggest that many aspects of neuronal network organization are indeed the outcome of competition between these two fundamental selection pressures.


Asunto(s)
Encéfalo/patología , Conectoma , Modelos Neurológicos , Vías Nerviosas/patología , Neuronas/patología , Animales , Encéfalo/fisiología , Conectoma/métodos , Humanos , Vías Nerviosas/fisiología , Neurociencias/métodos
20.
Psychol Med ; 52(14): 3289-3296, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-33731235

RESUMEN

BACKGROUND: Depression and overweight are each associated with abnormal immune system activation. We sought to disentangle the extent to which depressive symptoms and overweight status contributed to increased inflammation and abnormal cortisol levels. METHODS: Participants were recruited through the Wellcome Trust NIMA Consortium. The sample of 216 participants consisted of 69 overweight patients with depression; 35 overweight controls; 55 normal-weight patients with depression and 57 normal-weight controls. Peripheral inflammation was measured as high-sensitivity C-Reactive Protein (hsCRP) in serum. Salivary cortisol was collected at multiple points throughout the day to measure cortisol awakening response and diurnal cortisol levels. RESULTS: Overweight patients with depression had significantly higher hsCRP compared with overweight controls (p = 0.042), normal-weight depressed patients (p < 0.001) and normal-weight controls (p < 0.001), after controlling for age and gender. Multivariable logistic regression showed that comorbid depression and overweight significantly increased the risk of clinically elevated hsCRP levels ⩾3 mg/L (OR 2.44, 1.28-3.94). In a separate multivariable logistic regression model, overweight status contributed most to the risk of having hsCRP levels ⩾3 mg/L (OR 1.52, 0.7-2.41), while depression also contributed a significant risk (OR 1.09, 0.27-2). There were no significant differences between groups in cortisol awakening response and diurnal cortisol levels. CONCLUSION: Comorbid depression and overweight status are associated with increased hsCRP, and the coexistence of these conditions amplified the risk of clinically elevated hsCRP levels. Overweight status contributed most to the risk of clinically elevated hsCRP levels, but depression also contributed to a significant risk. We observed no differences in cortisol levels between groups.


Asunto(s)
Hidrocortisona , Sobrepeso , Humanos , Sobrepeso/epidemiología , Hidrocortisona/metabolismo , Proteína C-Reactiva/análisis , Depresión/epidemiología , Inflamación , Sistema Hipófiso-Suprarrenal/metabolismo , Saliva/química , Sistema Hipotálamo-Hipofisario/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA