Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Exp Bot ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716775

RESUMEN

Plant physiology and metabolism relies on the function of stomata, structures on the surface of above ground organs, which facilitate the exchange of gases with the atmosphere. The morphology of the guard cells and corresponding pore which make up the stomata, as well as the density (number per unit area) are critical in determining overall gas exchange capacity. These characteristics can be quantified visually from images captured using microscopes, traditionally relying on time-consuming manual analysis. However, deep learning (DL) models provide a promising route to increase the throughput and accuracy of plant phenotyping tasks, including stomatal analysis. Here we review the published literature on the application of DL for stomatal analysis. We discuss the variation in pipelines used; from data acquisition, pre-processing, DL architecture and output evaluation to post processing. We introduce the most common network structures, the plant species that have been studied, and the measurements that have been performed. Through this review, we hope to promote the use of DL methods for plant phenotyping tasks and highlight future requirements to optimise uptake; predominantly focusing on the sharing of datasets and generalisation of models as well as the caveats associated with utilising image data to infer physiological function.

2.
New Phytol ; 235(4): 1365-1378, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35569099

RESUMEN

Sunflecks are transient patches of direct radiation that provide a substantial proportion of the daily irradiance to leaves in the lower canopy. In this position, faster photosynthetic induction would allow for higher sunfleck-use efficiency, as is commonly reported in the literature. Yet, when sunflecks are too few and far between, it may be more beneficial for shade leaves to prioritize efficient photosynthesis under shade. We investigated the temporal dynamics of photosynthetic induction, recovery under shade, and stomatal movement during a sunfleck, in sun and shade leaves of Fagus sylvatica from three provenances of contrasting origin. We found that shade leaves complete full induction in a shorter time than sun leaves, but that sun leaves respond faster than shade leaves due to their much larger amplitude of induction. The core-range provenance achieved faster stomatal opening in shade leaves, which may allow for better sunfleck-use efficiency in denser canopies and lower canopy positions. Our findings represent a paradigm shift for future research into light fluctuations in canopies, drawing attention to the ubiquitous importance of sunflecks for photosynthesis, not only in lower-canopy leaves where shade is prevalent, but particularly in the upper canopy where longer sunflecks are more common due to canopy openness.


Asunto(s)
Fagus , Hojas de la Planta , Luz Solar , Fotosíntesis , Árboles
3.
Plant Cell Environ ; 44(11): 3524-3537, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34418115

RESUMEN

Under field conditions, plants are subject to wind-induced movement which creates fluctuations of light intensity and spectral quality reaching the leaves, defined here as windflecks. Within this study, irradiance within two contrasting wheat (Triticum aestivum) canopies during full sun conditions was measured using a spectroradiometer to determine the frequency, duration and magnitude of low- to high-light events plus the spectral composition during wind-induced movement. Similarly, a static canopy was modelled using three-dimensional reconstruction and ray tracing to determine fleck characteristics without the presence of wind. Corresponding architectural traits were measured manually and in silico including plant height, leaf area and angle plus biomechanical properties. Light intensity can differ up to 40% during a windfleck, with changes occurring on a sub-second scale compared to ~5 min in canopies not subject to wind. Features such as a shorter height, more erect leaf stature and having an open structure led to an increased frequency and reduced time interval of light flecks in the CMH79A canopy compared to Paragon. This finding illustrates the potential for architectural traits to be selected to improve the canopy light environment and provides the foundation to further explore the links between plant form and function in crop canopies.


Asunto(s)
Hojas de la Planta/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Viento , Fenómenos Biomecánicos , Luz , Fenotipo
4.
Plant Physiol ; 194(3): 1255-1256, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38051976

Asunto(s)
Sequías , Calor , Carbono
5.
Plant Physiol ; 194(3): 1257-1259, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-37962918
7.
Plant Physiol ; 181(1): 28-42, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31331997

RESUMEN

Understanding the relationships between local environmental conditions and plant structure and function is critical for both fundamental science and for improving the performance of crops in field settings. Wind-induced plant motion is important in most agricultural systems, yet the complexity of the field environment means that it remained understudied. Despite the ready availability of image sequences showing plant motion, the cultivation of crop plants in dense field stands makes it difficult to detect features and characterize their general movement traits. Here, we present a robust method for characterizing motion in field-grown wheat plants (Triticum aestivum) from time-ordered sequences of red, green, and blue images. A series of crops and augmentations was applied to a dataset of 290 collected and annotated images of ear tips to increase variation and resolution when training a convolutional neural network. This approach enables wheat ears to be detected in the field without the need for camera calibration or a fixed imaging position. Videos of wheat plants moving in the wind were also collected and split into their component frames. Ear tips were detected using the trained network, then tracked between frames using a probabilistic tracking algorithm to approximate movement. These data can be used to characterize key movement traits, such as periodicity, and obtain more detailed static plant properties to assess plant structure and function in the field. Automated data extraction may be possible for informing lodging models, breeding programs, and linking movement properties to canopy light distributions and dynamic light fluctuation.


Asunto(s)
Aprendizaje Profundo , Triticum/fisiología , Agricultura , Algoritmos , Cruzamiento , Productos Agrícolas , Ambiente , Movimiento (Física) , Fenotipo , Viento
8.
J Exp Bot ; 71(22): 7382-7392, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-32905587

RESUMEN

High light intensities raise photosynthetic and plant growth rates but can cause damage to the photosynthetic machinery. The likelihood and severity of deleterious effects are minimised by a set of photoprotective mechanisms, one key process being the controlled dissipation of energy from chlorophyll within PSII known as non-photochemical quenching (NPQ). Although ubiquitous, the role of NPQ in plant productivity is important because it momentarily reduces the quantum efficiency of photosynthesis. Rice plants overexpressing and deficient in the gene encoding a central regulator of NPQ, the protein PsbS, were used to assess the effect of protective effectiveness of NPQ (pNPQ) at the canopy scale. Using a combination of three-dimensional reconstruction, modelling, chlorophyll fluorescence, and gas exchange, the influence of altered NPQ capacity on the distribution of pNPQ was explored. A higher phototolerance in the lower layers of a canopy was found, regardless of genotype, suggesting a mechanism for increased protection for leaves that experience relatively low light intensities interspersed with brief periods of high light. Relative to wild-type plants, psbS overexpressors have a reduced risk of photoinactivation and early growth advantage, demonstrating that manipulating photoprotective mechanisms can impact both subcellular mechanisms and whole-canopy function.


Asunto(s)
Oryza , Clorofila , Luz , Oryza/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo
12.
15.
J Exp Bot ; 70(9): 2371-2380, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-30481324

RESUMEN

Wind-induced movement is a ubiquitous occurrence for all plants grown in natural or agricultural settings, and in the context of high, damaging wind speeds it has been well studied. However, the impact of lower wind speeds (which do not cause any damage) on mode of movement, light transmission, and photosynthetic properties has, surprisingly, not been fully explored. This impact is likely to be influenced by biomechanical properties and architectural features of the plant and canopy. A limited number of eco-physiological studies have indicated that movement in wind has the potential to alter light distribution within canopies, improving canopy productivity by relieving photosynthetic limitations. Given the current interest in canopy photosynthesis, it is timely to consider such movement in terms of crop yield progress. This opinion article sets out the background to wind-induced crop movement and argues that plant biomechanical properties may have a role in the optimization of whole-canopy photosynthesis via established physiological processes. We discuss how this could be achieved using canopy models.


Asunto(s)
Fotosíntesis/fisiología , Viento , Fenómenos Biomecánicos , Producción de Cultivos , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología
17.
Plant Physiol ; 190(3): 1550-1551, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-35980271
19.
Ann Bot ; 119(4): 517-532, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28065926

RESUMEN

Background and Aims: Intercropping systems contain two or more species simultaneously in close proximity. Due to contrasting features of the component crops, quantification of the light environment and photosynthetic productivity is extremely difficult. However it is an essential component of productivity. Here, a low-tech but high-resolution method is presented that can be applied to single- and multi-species cropping systems to facilitate characterization of the light environment. Different row layouts of an intercrop consisting of Bambara groundnut ( Vigna subterranea ) and proso millet ( Panicum miliaceum ) have been used as an example and the new opportunities presented by this approach have been analysed. Methods: Three-dimensional plant reconstruction, based on stereo cameras, combined with ray tracing was implemented to explore the light environment within the Bambara groundnut-proso millet intercropping system and associated monocrops. Gas exchange data were used to predict the total carbon gain of each component crop. Key Results: The shading influence of the tall proso millet on the shorter Bambara groundnut results in a reduction in total canopy light interception and carbon gain. However, the increased leaf area index (LAI) of proso millet, higher photosynthetic potential due to the C4 pathway and sub-optimal photosynthetic acclimation of Bambara groundnut to shade means that increasing the number of rows of millet will lead to greater light interception and carbon gain per unit ground area, despite Bambara groundnut intercepting more light per unit leaf area. Conclusions: Three-dimensional reconstruction combined with ray tracing provides a novel, accurate method of exploring the light environment within an intercrop that does not require difficult measurements of light interception and data-intensive manual reconstruction, especially for such systems with inherently high spatial possibilities. It provides new opportunities for calculating potential productivity within multi-species cropping systems, enables the quantification of dynamic physiological differences between crops grown as monoculture and those within intercrops, and enables the prediction of new productive combinations of previously untested crops.


Asunto(s)
Producción de Cultivos , Imagenología Tridimensional , Producción de Cultivos/métodos , Imagenología Tridimensional/métodos , Luz , Modelos Teóricos , Panicum/crecimiento & desarrollo , Fotosíntesis , Vigna/crecimiento & desarrollo
20.
Plant Physiol ; 169(2): 1192-204, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26282240

RESUMEN

Photoinhibition reduces photosynthetic productivity; however, it is difficult to quantify accurately in complex canopies partly because of a lack of high-resolution structural data on plant canopy architecture, which determines complex fluctuations of light in space and time. Here, we evaluate the effects of photoinhibition on long-term carbon gain (over 1 d) in three different wheat (Triticum aestivum) lines, which are architecturally diverse. We use a unique method for accurate digital three-dimensional reconstruction of canopies growing in the field. The reconstruction method captures unique architectural differences between lines, such as leaf angle, curvature, and leaf density, thus providing a sensitive method of evaluating the productivity of actual canopy structures that previously were difficult or impossible to obtain. We show that complex data on light distribution can be automatically obtained without conventional manual measurements. We use a mathematical model of photosynthesis parameterized by field data consisting of chlorophyll fluorescence, light response curves of carbon dioxide assimilation, and manual confirmation of canopy architecture and light attenuation. Model simulations show that photoinhibition alone can result in substantial reduction in carbon gain, but this is highly dependent on exact canopy architecture and the diurnal dynamics of photoinhibition. The use of such highly realistic canopy reconstructions also allows us to conclude that even a moderate change in leaf angle in upper layers of the wheat canopy led to a large increase in the number of leaves in a severely light-limited state.


Asunto(s)
Carbono/metabolismo , Imagenología Tridimensional/métodos , Modelos Biológicos , Triticum/fisiología , Fluorescencia , Luz , Fotosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA