Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
PLoS Med ; 14(5): e1002309, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28552987

RESUMEN

BACKGROUND: Inhibition of programmed death-ligand 1 (PD-L1) with atezolizumab can induce durable clinical benefit (DCB) in patients with metastatic urothelial cancers, including complete remissions in patients with chemotherapy refractory disease. Although mutation load and PD-L1 immune cell (IC) staining have been associated with response, they lack sufficient sensitivity and specificity for clinical use. Thus, there is a need to evaluate the peripheral blood immune environment and to conduct detailed analyses of mutation load, predicted neoantigens, and immune cellular infiltration in tumors to enhance our understanding of the biologic underpinnings of response and resistance. METHODS AND FINDINGS: The goals of this study were to (1) evaluate the association of mutation load and predicted neoantigen load with therapeutic benefit and (2) determine whether intratumoral and peripheral blood T cell receptor (TCR) clonality inform clinical outcomes in urothelial carcinoma treated with atezolizumab. We hypothesized that an elevated mutation load in combination with T cell clonal dominance among intratumoral lymphocytes prior to treatment or among peripheral T cells after treatment would be associated with effective tumor control upon treatment with anti-PD-L1 therapy. We performed whole exome sequencing (WES), RNA sequencing (RNA-seq), and T cell receptor sequencing (TCR-seq) of pretreatment tumor samples as well as TCR-seq of matched, serially collected peripheral blood, collected before and after treatment with atezolizumab. These parameters were assessed for correlation with DCB (defined as progression-free survival [PFS] >6 months), PFS, and overall survival (OS), both alone and in the context of clinical and intratumoral parameters known to be predictive of survival in this disease state. Patients with DCB displayed a higher proportion of tumor-infiltrating T lymphocytes (TIL) (n = 24, Mann-Whitney p = 0.047). Pretreatment peripheral blood TCR clonality below the median was associated with improved PFS (n = 29, log-rank p = 0.048) and OS (n = 29, log-rank p = 0.011). Patients with DCB also demonstrated more substantial expansion of tumor-associated TCR clones in the peripheral blood 3 weeks after starting treatment (n = 22, Mann-Whitney p = 0.022). The combination of high pretreatment peripheral blood TCR clonality with elevated PD-L1 IC staining in tumor tissue was strongly associated with poor clinical outcomes (n = 10, hazard ratio (HR) (mean) = 89.88, HR (median) = 23.41, 95% CI [2.43, 506.94], p(HR > 1) = 0.0014). Marked variations in mutation loads were seen with different somatic variant calling methodologies, which, in turn, impacted associations with clinical outcomes. Missense mutation load, predicted neoantigen load, and expressed neoantigen load did not demonstrate significant association with DCB (n = 25, Mann-Whitney p = 0.22, n = 25, Mann-Whitney p = 0.55, and n = 25, Mann-Whitney p = 0.29, respectively). Instead, we found evidence of time-varying effects of somatic mutation load on PFS in this cohort (n = 25, p = 0.044). A limitation of our study is its small sample size (n = 29), a subset of the patients treated on IMvigor 210 (NCT02108652). Given the number of exploratory analyses performed, we intend for these results to be hypothesis-generating. CONCLUSIONS: These results demonstrate the complex nature of immune response to checkpoint blockade and the compelling need for greater interrogation and data integration of both host and tumor factors. Incorporating these variables in prospective studies will facilitate identification and treatment of resistant patients.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Carcinoma/prevención & control , Neoplasias Urológicas/prevención & control , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados , Antígeno B7-H1/inmunología , Carcinoma/etiología , Carcinoma/inmunología , Exoma/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos T/genética , Análisis de Secuencia de ARN , Neoplasias Urológicas/etiología , Neoplasias Urológicas/inmunología , Urotelio/patología
2.
Artículo en Inglés | MEDLINE | ID: mdl-38863167

RESUMEN

Phase Ib trials are common in oncology development but often are not powered for statistical significance. Go/no-go decisions are largely driven by observed trends in response data. We applied a bootstrapping method to systematically compare tumor dynamic end points to historical control data to identify drugs with clinically meaningful efficacy. A proprietary mathematical model calibrated to phase Ib anti-PD-1 therapy trial data (KEYNOTE-001) was used to simulate thousands of phase Ib trials (n = 30) with a combination of anti-PD-1 therapy and four novel agents with varying efficacy. A redacted bootstrapping method compared these results to a simulated phase III control arm (N = 511) while adjusting for differences in trial duration and cohort size to determine the probability that the novel agent provides clinically meaningful efficacy. Receiver operating characteristic (ROC) analysis showed strong ability to separate drugs with modest (area under ROC [AUROC] = 83%), moderate (AUROC = 96%), and considerable efficacy (AUROC = 99%) from placebo in early-phase trials (n = 30). The method was shown to effectively move drugs with a range of efficacy through an in silico pipeline with an overall success rate of 93% and false-positive rate of 7.5% from phase I to phase III. This model allows for effective comparisons of tumor dynamics from early clinical trials with more mature historical control data and provides a framework to predict drug efficacy in early-phase trials. We suggest this method should be employed to improve decision making in early oncology trials.

3.
Stat Methods Med Res ; 28(12): 3502-3515, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30378472

RESUMEN

Joint modelling of longitudinal and time-to-event data has received much attention recently. Increasingly, extensions to standard joint modelling approaches are being proposed to handle complex data structures commonly encountered in applied research. In this paper, we propose a joint model for hierarchical longitudinal and time-to-event data. Our motivating application explores the association between tumor burden and progression-free survival in non-small cell lung cancer patients. We define tumor burden as a function of the sizes of target lesions clustered within a patient. Since a patient may have more than one lesion, and each lesion is tracked over time, the data have a three-level hierarchical structure: repeated measurements taken at time points (level 1) clustered within lesions (level 2) within patients (level 3). We jointly model the lesion-specific longitudinal trajectories and patient-specific risk of death or disease progression by specifying novel association structures that combine information across lower level clusters (e.g. lesions) into patient-level summaries (e.g. tumor burden). We provide user-friendly software for fitting the model under a Bayesian framework. Lastly, we discuss alternative situations in which additional clustering factor(s) occur at a level higher in the hierarchy than the patient-level, since this has implications for the model formulation.


Asunto(s)
Interpretación Estadística de Datos , Modelos Estadísticos , Supervivencia sin Progresión , Algoritmos , Teorema de Bayes , Carcinoma de Pulmón de Células no Pequeñas , Estudios Longitudinales , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA