Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(8): e2213030120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36791112

RESUMEN

Load-bearing soft tissues normally show J-shaped stress-strain behaviors with high compliance at low strains yet high strength at high strains. They have high water content but are still tough and durable. By contrast, naturally derived hydrogels are weak and brittle. Although hydrogels prepared from synthetic polymers can be strong and tough, they do not have the desired bioactivity for emerging biomedical applications. Here, we present a thermomechanical approach to replicate the combinational properties of soft tissues in protein-based photocrosslinkable hydrogels. As a demonstration, we create a gelatin methacryloyl fiber hydrogel with soft tissue-like mechanical properties, such as low Young's modulus (0.1 to 0.3 MPa), high strength (1.1 ± 0.2 MPa), high toughness (9,100 ± 2,200 J/m3), and high fatigue resistance (2,300 ± 500 J/m2). This hydrogel also resembles the biochemical and architectural properties of native extracellular matrix, which enables a fast formation of 3D interconnected cell meshwork inside hydrogels. The fiber architecture also regulates cellular mechanoresponse and supports cell remodeling inside hydrogels. The integration of tissue-like mechanical properties and bioactivity is highly desirable for the next-generation biomaterials and could advance emerging fields such as tissue engineering and regenerative medicine.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Hidrogeles/química , Materiales Biocompatibles/química , Ingeniería de Tejidos , Agua/química , Polímeros
2.
Circ Res ; 128(9): 1344-1370, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33914601

RESUMEN

Calcific aortic valve disease is dramatically increasing in global burden, yet no therapy exists outside of prosthetic replacement. The increasing proportion of younger and more active patients mandates alternative therapies. Studies suggest a window of opportunity for biologically based diagnostics and therapeutics to alleviate or delay calcific aortic valve disease progression. Advancement, however, has been hampered by limited understanding of the complex mechanisms driving calcific aortic valve disease initiation and progression towards clinically relevant interventions.


Asunto(s)
Estenosis de la Válvula Aórtica/etiología , Válvula Aórtica/citología , Válvula Aórtica/patología , Calcinosis/etiología , Progresión de la Enfermedad , Células Endoteliales/fisiología , Válvula Aórtica/inmunología , Válvula Aórtica/fisiología , Estenosis de la Válvula Aórtica/diagnóstico , Estenosis de la Válvula Aórtica/inmunología , Estenosis de la Válvula Aórtica/terapia , Calcinosis/diagnóstico , Calcinosis/inmunología , Calcinosis/terapia , Moléculas de Adhesión Celular/metabolismo , Homeostasis , Humanos , Sistema Inmunológico/fisiología , Mediadores de Inflamación/metabolismo , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo III/metabolismo , Pronóstico , Especies Reactivas de Oxígeno , Factores de Riesgo , Vasculitis/etiología
3.
Dev Dyn ; 251(3): 481-497, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34535945

RESUMEN

BACKGROUND: While much is known about the genetic regulation of early valvular morphogenesis, mechanisms governing fetal valvular growth and remodeling remain unclear. Hemodynamic forces strongly influence morphogenesis, but it is unknown whether or how they interact with valvulogenic signaling programs. Side-specific activity of valvulogenic programs motivates the hypothesis that shear stress pattern-specific endocardial signaling controls the elongation of leaflets. RESULTS: We determined that extension of the semilunar valve occurs via fibrosa sided endocardial proliferation. Low OSS was necessary and sufficient to induce canonical Wnt/ß-catenin activation in fetal valve endothelium, which in turn drives BMP receptor/ligand expression, and pSmad1/5 activity essential for endocardial proliferation. In contrast, ventricularis endocardial cells expressed active Notch1 but minimal pSmad1/5. Endocardial monolayers exposed to LSS attenuate Wnt signaling in a Notch1 dependent manner. CONCLUSIONS: Low OSS is transduced by endocardial cells into canonical Wnt signaling programs that regulate BMP signaling and endocardial proliferation. In contrast, high LSS induces Notch signaling in endocardial cells, inhibiting Wnt signaling and thereby restricting growth on the ventricular surface. Our results identify a novel mechanically regulated molecular switch, whereby fluid shear stress drives the growth of valve endothelium, orchestrating the extension of the valve in the direction of blood flow.


Asunto(s)
Válvula Aórtica , Endocardio , Endocardio/metabolismo , Femenino , Humanos , Morfogénesis , Embarazo , Estrés Mecánico , Vía de Señalización Wnt
4.
Development ; 145(20)2018 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-30333235

RESUMEN

Growth and remodeling of the primitive pharyngeal arch artery (PAA) network into the extracardiac great vessels is poorly understood but a major source of clinically serious malformations. Undisrupted blood flow is required for normal PAA development, yet specific relationships between hemodynamics and remodeling remain largely unknown. Meeting this challenge is hindered by the common reductionist analysis of morphology to single idealized models, where in fact structural morphology varies substantially. Quantitative technical tools that allow tracking of morphological and hemodynamic changes in a population-based setting are essential to advancing our understanding of morphogenesis. Here, we have developed a methodological pipeline from high-resolution nano-computed tomography imaging and live-imaging flow measurements to multiscale pulsatile computational models. We combine experimental-based computational models of multiple PAAs to quantify hemodynamic forces in the rapidly morphing Hamburger Hamilton (HH) stage HH18, HH24 and HH26 embryos. We identify local morphological variation along the PAAs and their association with specific hemodynamic changes. Population-level mechano-morphogenic variability analysis is a powerful strategy for identifying stage-specific regions of well and poorly tolerated morphological and/or hemodynamic variation that may protect or initiate cardiovascular malformations.


Asunto(s)
Aorta Torácica/embriología , Aorta Torácica/fisiología , Región Branquial/embriología , Región Branquial/fisiología , Hemodinámica/fisiología , Remodelación Vascular , Puntos Anatómicos de Referencia , Animales , Embrión de Pollo , Simulación por Computador , Hidrodinámica , Imagenología Tridimensional , Análisis de la Onda del Pulso , Reproducibilidad de los Resultados
5.
Annu Rev Physiol ; 79: 21-41, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-27959615

RESUMEN

Normal aortic valves are composed of valve endothelial cells (VECs) and valve interstitial cells (VICs). VICs are the major cell population and have distinct embryonic origins in the endocardium and cardiac neural crest cells. Cell signaling between the VECs and VICs plays critical roles in aortic valve morphogenesis. Disruption of major cell signaling pathways results in aortic valve malformations, including bicuspid aortic valve (BAV). BAV is a common congenital heart valve disease that may lead to calcific aortic valve disease (CAVD), but there is currently no effective medical treatment for this beyond surgical replacement. Mouse and human studies have identified causative gene mutations for BAV and CAVD via disrupted VEC to VIC signaling. Future studies on the developmental signaling mechanisms underlying aortic valve malformations and the pathogenesis of CAVD using genetically modified mouse models and patient-induced pluripotent stem cells may identify new effective therapeutic targets for the disease.


Asunto(s)
Válvula Aórtica/patología , Enfermedades de las Válvulas Cardíacas/patología , Animales , Células Endoteliales/patología , Enfermedades de las Válvulas Cardíacas/genética , Humanos , Transducción de Señal/genética
6.
Proc Natl Acad Sci U S A ; 114(3): 492-497, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28034921

RESUMEN

Tumor microvasculature tends to be malformed, more permeable, and more tortuous than vessels in healthy tissue, effects that have been largely attributed to up-regulated VEGF expression. However, tumor tissue tends to stiffen during solid tumor progression, and tissue stiffness is known to alter cell behaviors including proliferation, migration, and cell-cell adhesion, which are all requisite for angiogenesis. Using in vitro, in vivo, and ex ovo models, we investigated the effects of matrix stiffness on vessel growth and integrity during angiogenesis. Our data indicate that angiogenic outgrowth, invasion, and neovessel branching increase with matrix cross-linking. These effects are caused by increased matrix stiffness independent of matrix density, because increased matrix density results in decreased angiogenesis. Notably, matrix stiffness up-regulates matrix metalloproteinase (MMP) activity, and inhibiting MMPs significantly reduces angiogenic outgrowth in stiffer cross-linked gels. To investigate the functional significance of altered endothelial cell behavior in response to matrix stiffness, we measured endothelial cell barrier function on substrates mimicking the stiffness of healthy and tumor tissue. Our data indicate that barrier function is impaired and the localization of vascular endothelial cadherin is altered as function of matrix stiffness. These results demonstrate that matrix stiffness, separately from matrix density, can alter vascular growth and integrity, mimicking the changes that exist in tumor vasculature. These data suggest that therapeutically targeting tumor stiffness or the endothelial cell response to tumor stiffening may help restore vessel structure, minimize metastasis, and aid in drug delivery.


Asunto(s)
Matriz Extracelular/fisiología , Neoplasias Mamarias Experimentales/irrigación sanguínea , Neoplasias Mamarias Experimentales/fisiopatología , Microvasos/fisiopatología , Animales , Fenómenos Biomecánicos , Bovinos , Células Cultivadas , Embrión de Pollo , Colágeno/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neoplasias Mamarias Experimentales/patología , Metaloproteinasas de la Matriz/metabolismo , Ratones , Microvasos/patología , Invasividad Neoplásica/patología , Invasividad Neoplásica/fisiopatología , Neovascularización Patológica/patología , Neovascularización Patológica/fisiopatología , Fenotipo , Microambiente Tumoral/fisiología , Rigidez Vascular/fisiología
7.
BMC Biol ; 17(1): 103, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31831016

RESUMEN

BACKGROUND: Videographic material of animals can contain inapparent signals, such as color changes or motion that hold information about physiological functions, such as heart and respiration rate, pulse wave velocity, and vocalization. Eulerian video magnification allows the enhancement of such signals to enable their detection. The purpose of this study is to demonstrate how signals relevant to experimental physiology can be extracted from non-contact videographic material of animals. RESULTS: We applied Eulerian video magnification to detect physiological signals in a range of experimental models and in captive and free ranging wildlife. Neotenic Mexican axolotls were studied to demonstrate the extraction of heart rate signal of non-embryonic animals from dedicated videographic material. Heart rate could be acquired both in single and multiple animal setups of leucistic and normally colored animals under different physiological conditions (resting, exercised, or anesthetized) using a wide range of video qualities. Pulse wave velocity could also be measured in the low blood pressure system of the axolotl as well as in the high-pressure system of the human being. Heart rate extraction was also possible from videos of conscious, unconstrained zebrafish and from non-dedicated videographic material of sand lizard and giraffe. This technique also allowed for heart rate detection in embryonic chickens in ovo through the eggshell and in embryonic mice in utero and could be used as a gating signal to acquire two-phase volumetric micro-CT data of the beating embryonic chicken heart. Additionally, Eulerian video magnification was used to demonstrate how vocalization-induced vibrations can be detected in infrasound-producing Asian elephants. CONCLUSIONS: Eulerian video magnification provides a technique to extract inapparent temporal signals from videographic material of animals. This can be applied in experimental and comparative physiology where contact-based recordings (e.g., heart rate) cannot be acquired.


Asunto(s)
Ambystoma mexicanum/fisiología , Frecuencia Cardíaca , Fisiología/métodos , Grabación de Cinta de Video/métodos , Pez Cebra/fisiología , Animales , Embrión de Pollo , Humanos , Ratones , Pulso Arterial/instrumentación , Análisis de la Onda del Pulso/instrumentación
8.
Eur Heart J ; 38(9): 675-686, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26491108

RESUMEN

AIMS: Congenital anomalies of arterial valves are common birth defects, leading to valvar stenosis. With no pharmaceutical treatment that can prevent the disease progression, prosthetic replacement is the only choice of treatment, incurring considerable morbidity and mortality. Animal models presenting localized anomalies and stenosis of congenital arterial valves similar to that of humans are critically needed research tools to uncover developmental molecular mechanisms underlying this devastating human condition. METHODS AND RESULTS: We generated and characterized mouse models with conditionally altered Notch signalling in endothelial or interstitial cells of developing valves. Mice with inactivation of Notch1 signalling in valvar endothelial cells (VEC) developed congenital anomalies of arterial valves including bicuspid aortic valves and valvar stenosis. Notch1 signalling in VEC was required for repressing proliferation and activating apoptosis of valvar interstitial cells (VIC) after endocardial-to-mesenchymal transformation (EMT). We showed that Notch signalling regulated Tnfα expression in vivo, and Tnf signalling was necessary for apoptosis of VIC and post-EMT development of arterial valves. Furthermore, activation or inhibition of Notch signalling in cultured pig aortic VEC-promoted or suppressed apoptosis of VIC, respectively. CONCLUSION: We have now met the need of critical animal models and shown that Notch-Tnf signalling balances proliferation and apoptosis for post-EMT development of arterial valves. Our results suggest that mutations in its components may lead to congenital anomaly of aortic valves and valvar stenosis in humans.


Asunto(s)
Estenosis de la Válvula Aórtica/etiología , Receptor Notch1/metabolismo , Animales , Válvula Aórtica/anomalías , Estenosis de la Válvula Aórtica/embriología , Estenosis de la Válvula Aórtica/fisiopatología , Apoptosis/fisiología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Homeostasis/fisiología , Células Madre Mesenquimatosas/fisiología , Ratones Noqueados , Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/metabolismo
9.
Dev Dyn ; 246(11): 868-880, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28249360

RESUMEN

The Zebrafish has emerged to become a powerful vertebrate animal model for cardiovascular research in recent years. Its advantages include easy genetic manipulation, transparency, small size, low cost, and the ability to survive without active circulation at early stages of development. Sequencing the whole genome and identifying ortholog genes with human genome made it possible to induce clinically relevant cardiovascular defects via genetic approaches. Heart function and disturbed hemodynamics need to be assessed in a reliable manner for these disease models in order to reveal the mechanobiology of induced defects. This effort requires precise determination of blood flow patterns as well as hemodynamic stress (i.e., wall shear stress and pressure) levels within the developing heart. While traditional approach involves time-lapse brightfield microscopy to track cell and tissue movements, in more recent studies fast light-sheet fluorescent microscopes are utilized for that purpose. Integration of more complicated techniques like particle image velocimetry and computational fluid dynamics modeling for hemodynamic analysis holds a great promise to the advancement of the Zebrafish studies. Here, we discuss the latest developments in heart function and hemodynamic analysis for Zebrafish embryos and conclude with our future perspective on dynamic analysis of the Zebrafish cardiovascular system. Developmental Dynamics 246:868-880, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Corazón/embriología , Hemodinámica/fisiología , Pez Cebra/embriología , Animales , Velocidad del Flujo Sanguíneo , Embrión no Mamífero , Corazón/fisiología , Estrés Mecánico , Pez Cebra/fisiología
10.
Arterioscler Thromb Vasc Biol ; 36(8): 1627-37, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27312222

RESUMEN

OBJECTIVE: Calcific aortic valve (AoV) disease is a significant clinical problem for which the regulatory mechanisms are poorly understood. Enhanced cell-cell adhesion is a common mechanism of cellular aggregation, but its role in calcific lesion formation is not known. Cadherin-11 (Cad-11) has been associated with lesion formation in vitro, but its function during adult valve homeostasis and pathogenesis is not known. This study aims to elucidate the specific functions of Cad-11 and its downstream targets, RhoA and Sox9, in extracellular matrix remodeling and AoV calcification. APPROACH AND RESULTS: We conditionally overexpressed Cad-11 in murine heart valves using a novel double-transgenic Nfatc1(Cre);R26-Cad11(TglTg) mouse model. These mice developed hemodynamically significant aortic stenosis with prominent calcific lesions in the AoV leaflets. Cad-11 overexpression upregulated downstream targets, RhoA and Sox9, in the valve interstitial cells, causing calcification and extensive pathogenic extracellular matrix remodeling. AoV interstitial cells overexpressing Cad-11 in an osteogenic environment in vitro rapidly form calcific nodules analogous to in vivo lesions. Molecular analyses revealed upregulation of osteoblastic and myofibroblastic markers. Treatment with a Rho-associated protein kinase inhibitor attenuated nodule formation, further supporting that Cad-11-driven calcification acts through the small GTPase RhoA/Rho-associated protein kinase signaling pathway. CONCLUSIONS: This study identifies one of the underlying molecular mechanisms of heart valve calcification and demonstrates that overexpression of Cad-11 upregulates RhoA and Sox9 to induce calcification and extracellular matrix remodeling in adult AoV pathogenesis. The findings provide a potential molecular target for clinical treatment.


Asunto(s)
Estenosis de la Válvula Aórtica/metabolismo , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Cadherinas/metabolismo , Calcinosis/metabolismo , Matriz Extracelular/metabolismo , Animales , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/patología , Cadherinas/genética , Calcinosis/genética , Calcinosis/patología , Estudios de Casos y Controles , Adhesión Celular , Movimiento Celular , Células Cultivadas , Modelos Animales de Enfermedad , Matriz Extracelular/patología , Predisposición Genética a la Enfermedad , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Factor de Transcripción SOX9/metabolismo , Índice de Severidad de la Enfermedad , Fibras de Estrés/metabolismo , Fibras de Estrés/patología , Regulación hacia Arriba , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
11.
Dev Dyn ; 245(10): 1001-10, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27447729

RESUMEN

BACKGROUND: Gestationally survivable congenital malformations arise during mid-late stages of development that are inaccessible in vivo with traditional optical imaging for assessing long-term abnormal patterning. MicroCT is an attractive technology to rapidly and inexpensively generate quantitative three-dimensional (3D) datasets but requires exogenous contrast media. Here we establish dose-dependent toxicity, persistence, and biodistribution of three different metallic nanoparticles in day 4 chick embryos. RESULTS: We determined that 110-nm alkaline earth metal particles were nontoxic and persisted in the chick embryo for up to 24 hr postinjection with contrast enhancement levels at high as 1,600 Hounsfield units (HU). The 15-nm gold nanoparticles persisted with x-ray attenuation higher than that of the surrounding yolk and albumen for up to 8 hr postinjection, while 1.9-nm particles resulted in lethality by 8 hr. We identified spatial and temporally heterogeneous contrast enhancement ranging from 250 to 1,600 HU. With the most optimal 110-nm alkaline earth metal particles, we quantified an exponential increase in the tissue perfusion vs. distance from the dorsal aorta into the flank over 8 hr with a peak perfusion rate of 0.7 µm(2) /s measured at a distance of 0.3 mm. CONCLUSIONS: These results demonstrate the safety, efficacy, and opportunity of nanoparticle based contrast media in live embryos for quantitative analysis of embryogenesis. Developmental Dynamics 245:1001-1010, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Medios de Contraste/efectos adversos , Nanopartículas del Metal/efectos adversos , Microtomografía por Rayos X/métodos , Animales , Embrión de Pollo , Medios de Contraste/química , Desarrollo Embrionario/fisiología , Nanopartículas del Metal/química
12.
Dev Biol ; 407(1): 145-57, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26188246

RESUMEN

Proper remodeling of the endocardial cushions into thin fibrous valves is essential for gestational progression and long-term function. This process involves dynamic interactions between resident cells and their local environment, much of which is not understood. In this study, we show that deficiency of the cell-cell adhesion protein cadherin-11 (Cad-11) results in significant embryonic and perinatal lethality primarily due to valve related cardiac dysfunction. While endocardial to mesenchymal transformation is not abrogated, mesenchymal cells do not homogeneously cellularize the cushions. These cushions remain thickened with disorganized ECM, resulting in pronounced aortic valve insufficiency. Mice that survive to adulthood maintain thickened and stenotic semilunar valves, but interestingly do not develop calcification. Cad-11 (-/-) aortic valve leaflets contained reduced Sox9 activity, ß1 integrin expression, and RhoA-GTP activity, suggesting that remodeling defects are due to improper migration and/or cellular contraction. Cad-11 deletion or siRNA knockdown reduced migration, eliminated collective migration, and impaired 3D matrix compaction by aortic valve interstitial cells (VIC). Cad-11 depleted cells in culture contained few filopodia, stress fibers, or contact inhibited locomotion. Transfection of Cad-11 depleted cells with constitutively active RhoA restored cell phenotypes. Together, these results identify cadherin-11 mediated adhesive signaling for proper remodeling of the embryonic semilunar valves.


Asunto(s)
Válvula Aórtica/embriología , Cadherinas/fisiología , Movimiento Celular , Matriz Extracelular/metabolismo , Animales , Válvula Aórtica/citología , Polaridad Celular , Pollos , Cojinetes Endocárdicos/embriología , Ratones , Ratones Endogámicos C57BL , Morfogénesis , Porcinos , Proteína de Unión al GTP rhoA/fisiología
13.
Am J Pathol ; 182(5): 1922-31, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23499458

RESUMEN

Arterial endothelial cells maintain vascular homeostasis and vessel tone in part through the secretion of nitric oxide (NO). In this study, we determined how aortic valve endothelial cells (VEC) regulate aortic valve interstitial cell (VIC) phenotype and matrix calcification through NO. Using an anchored in vitro collagen hydrogel culture system, we demonstrate that three-dimensionally cultured porcine VIC do not calcify in osteogenic medium unless under mechanical stress. Co-culture with porcine VEC, however, significantly attenuated VIC calcification through inhibition of myofibroblastic activation, osteogenic differentiation, and calcium deposition. Incubation with the NO donor DETA-NO inhibited VIC osteogenic differentiation and matrix calcification, whereas incubation with the NO blocker l-NAME augmented calcification even in 3D VIC-VEC co-culture. Aortic VEC, but not VIC, expressed endothelial NO synthase (eNOS) in both porcine and human valves, which was reduced in osteogenic medium. eNOS expression was reduced in calcified human aortic valves in a side-specific manner. Porcine leaflets exposed to the soluble guanylyl cyclase inhibitor ODQ increased osteocalcin and α-smooth muscle actin expression. Finally, side-specific shear stress applied to porcine aortic valve leaflet endothelial surfaces increased cGMP production in VEC. Valve endothelial-derived NO is a natural inhibitor of the early phases of valve calcification and therefore may be an important regulator of valve homeostasis and pathology.


Asunto(s)
Estenosis de la Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/fisiopatología , Válvula Aórtica/patología , Calcinosis/patología , Calcinosis/fisiopatología , Células Endoteliales/patología , Hemodinámica , Óxido Nítrico/metabolismo , Transducción de Señal , Animales , Válvula Aórtica/enzimología , Válvula Aórtica/fisiopatología , Estenosis de la Válvula Aórtica/enzimología , Calcinosis/enzimología , Diferenciación Celular , Geles , Válvulas Cardíacas/enzimología , Válvulas Cardíacas/patología , Humanos , Inmunohistoquímica , Miofibroblastos/metabolismo , Miofibroblastos/patología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Coloración y Etiquetado , Sus scrofa
14.
Biotechnol Bioeng ; 111(11): 2326-37, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24898772

RESUMEN

Understanding the role of mechanical forces on cell behavior is critical for tissue engineering, regenerative medicine, and disease initiation studies. Current hemodynamic bioreactors are largely limited to 2D substrates or the application of general flow conditions at a tissue level, which eliminates the investigation of some essential physiological and pathological responses. One example is the mesenchymal transformation of endothelial cells in response to shear stress. Endothelial to mesenchymal transformation (EndMT) is a valve morphogenic mechanism associated with aortic valve disease initiation. The aortic valve experiences oscillatory shear on the disease-susceptible fibrosa, and the role of hemodynamics on adult EndMT is unknown. The goal of this work was to develop and characterize a microfluidic bioreactor that applies physiologically relevant laminar or oscillatory shear stresses to endothelial cells and permits the quantitative analysis of 3D cell-extracellular matrix (ECM) interactions. In this study, porcine aortic valve endothelial cells were seeded onto 3D collagen I gels and exposed to different magnitudes of steady or oscillatory shear stress for 48 h. Cells elongated and aligned perpendicular to laminar, but not oscillatory shear. Low steady shear stress (2 dyne/cm(2) ) and oscillatory shear stress upregulated EndMT (ACTA2, Snail, TGFB1) and inflammation (ICAM1, NFKB1) related gene expression, EndMT-related (αSMA) protein expression, and matrix invasion when compared with static controls or cells exposed to high steady shear (10 and 20 dyne/cm(2) ). Our system enables direct testing of the role of shear stress on endothelial cell mesenchymal transformation in a dynamic, 3D environment and shows that hemodynamics regulate EndMT in adult valve endothelial cells.


Asunto(s)
Válvula Aórtica/fisiología , Células Endoteliales/fisiología , Fenómenos Físicos , Estrés Fisiológico , Animales , Reactores Biológicos , Microfluídica/instrumentación , Microfluídica/métodos , Técnicas de Cultivo de Órganos , Porcinos
15.
Arterioscler Thromb Vasc Biol ; 33(1): 121-30, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23104848

RESUMEN

OBJECTIVE: Inflammatory activation of valve endothelium is an early phase of aortic valve disease pathogenesis, but subsequent mechanisms are poorly understood. Adult valve endothelial cells retain the developmental ability to undergo endothelial-to-mesenchymal transformation (EndMT), but a biological role has not been established. Here, we test whether and how inflammatory cytokines (tumor necrosis factor-α and interleukin-6) regulate EndMT in embryonic and adult valve endothelium. METHODS AND RESULTS: Using in vitro 3-dimensional collagen gel culture assays with primary cells, we determined that interleukin-6 and tumor necrosis factor-α induce EndMT and cell invasion in dose-dependent manners. Inflammatory-EndMT occurred through an Akt/nuclear factor-κB-dependent pathway in both adult and embryonic stages. In embryonic valves, inflammatory-EndMT required canonical transforming growth factor-ß signaling through activin receptor-like kinases 2 and 5 to drive EndMT. In adult valve endothelium, however, inflammatory-induced EndMT still occurred when activin receptor-like kinases 2 and 5 signaling was blocked. Inflammatory receptor gene expression was significantly upregulated in vivo during embryonic valve maturation. Endothelial-derived mesenchymal cells expressing activated nuclear factor-κB were found distal to calcific lesions in diseased human aortic valves. CONCLUSIONS: Inflammatory cytokine-induced EndMT in valve endothelium is present in both embryonic and adult stages, acting through Akt/nuclear factor-κB, but differently using transforming growth factor-ß signaling. Molecular signatures of valve EndMT may be important diagnostic and therapeutic targets in early valve disease.


Asunto(s)
Válvula Aórtica/metabolismo , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal , Enfermedades de las Válvulas Cardíacas/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Receptores de Activinas Tipo I/metabolismo , Animales , Válvula Aórtica/embriología , Válvula Aórtica/inmunología , Válvula Aórtica/patología , Calcinosis/inmunología , Calcinosis/metabolismo , Calcinosis/patología , Movimiento Celular , Células Cultivadas , Embrión de Pollo , Células Endoteliales/inmunología , Células Endoteliales/patología , Transición Epitelial-Mesenquimal/genética , Regulación de la Expresión Génica , Enfermedades de las Válvulas Cardíacas/genética , Enfermedades de las Válvulas Cardíacas/inmunología , Enfermedades de las Válvulas Cardíacas/patología , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , FN-kappa B/genética , FN-kappa B/metabolismo , Cultivo Primario de Células , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Codorniz , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteínas Recombinantes/metabolismo , Transducción de Señal , Porcinos , Factores de Tiempo , Transfección , Factor de Crecimiento Transformador beta1/metabolismo
16.
Birth Defects Res C Embryo Today ; 99(2): 106-20, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23897595

RESUMEN

Congenital heart defects (CHD) are the most prevalent congenital disease, with 45% of deaths resulting from a congenital defect due to a cardiac malformation. Clinically significant CHD permit survival upon birth, but may become immediately life threatening. Advances in surgical intervention have significantly reduced perinatal mortality, but the outcome for many malformations is bleak. Furthermore, patients living while tolerating a CHD often acquire additional complications due to the long-term systemic blood flow changes caused by even subtle anatomical abnormalities. Accurate diagnosis of defects during fetal development is critical for interventional planning and improving patient outcomes. Advances in quantitative, multidimensional imaging are necessary to uncover the basic scientific and clinically relevant morphogenetic changes and associated hemodynamic consequences influencing normal and abnormal heart development. Ultrasound is the most widely used clinical imaging technology for assessing fetal cardiac development. Ultrasound-based fetal assessment modalities include motion mode (M-mode), two dimensional (2D), and 3D/4D imaging. These datasets can be combined with computational fluid dynamics analysis to yield quantitative, volumetric, and physiological data. Additional imaging modalities, however, are available to study basic mechanisms of cardiogenesis, including optical coherence tomography, microcomputed tomography, and magnetic resonance imaging. Each imaging technology has its advantages and disadvantages regarding resolution, depth of penetration, soft tissue contrast considerations, and cost. In this review, we analyze the current clinical and scientific imaging technologies, research studies utilizing them, and appropriate animal models reflecting clinically relevant cardiogenesis and cardiac malformations. We conclude with discussing the translational impact and future opportunities for cardiovascular development imaging research.


Asunto(s)
Corazón/diagnóstico por imagen , Corazón/embriología , Procesamiento de Imagen Asistido por Computador/métodos , Animales , Diagnóstico por Imagen/métodos , Modelos Animales de Enfermedad , Enfermedades Fetales/diagnóstico , Enfermedades Fetales/diagnóstico por imagen , Enfermedades Fetales/mortalidad , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/mortalidad , Humanos , Imagen por Resonancia Magnética/métodos , Radiografía , Ultrasonografía
17.
Cells Tissues Organs ; 198(4): 300-10, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24356423

RESUMEN

Proper fibroblast cell migration and differentiation are critical for valve formation and homeostasis, but uncontrolled myofibroblastic activation may precede osteogenic differentiation and calcification. Cadherin-11 (cad-11) is a cell-cell adhesion protein classically expressed at mesenchymal-osteoblast interfaces that participates in mesenchymal differentiation to osteochondral lineages. This suggests cad-11 may have an important role in heart valve development and pathogenesis, but its expression patterns in valves are largely unknown. In this study, we profiled the spatial and temporal expression patterns of cad-11 in embryonic chick and mouse heart development. We determined that cad-11 is expressed in both endocardial and mesenchymal cells of the atrioventricular and outflow tract cushions (pre-HH30/E14), but becomes restricted to the valve endocardial/endothelial cells during late fetal remodeling and throughout postnatal life. We then investigated changes in cad-11 expression in a murine aortic valve disease model (the ApoE(-/-)). Unlike wild-type mice, cad-11 becomes dramatically re-expressed in the interstitium. Similarly, in calcified human aortic valve leaflets, cad-11 loses endothelial confinement and becomes significantly re-expressed in the valve interstitium. Double labeling identified that 91% of myofibroblastic and 96% of osteoblastic cells in calcified aortic valves were also cad-11 positive. Collectively, our results suggest that cad-11 is important for proper embryonic cushion formation and remodeling, but may also participate in aortic valve pathogenesis if re-expressed in adulthood.


Asunto(s)
Estenosis de la Válvula Aórtica/embriología , Estenosis de la Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Cadherinas/biosíntesis , Calcinosis/embriología , Calcinosis/metabolismo , Válvulas Cardíacas/embriología , Válvulas Cardíacas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Válvula Aórtica/embriología , Válvula Aórtica/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Embrión de Pollo , Expresión Génica , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Transducción de Señal
18.
Differentiation ; 84(1): 149-62, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22695188

RESUMEN

Animal models are critically important for a mechanistic understanding of embryonic morphogenesis. For decades, visualizing these rapid and complex multidimensional events has relied on projection images and thin section reconstructions. While much insight has been gained, fixed tissue specimens offer limited information on dynamic processes that are essential for tissue assembly and organ patterning. Quantitative imaging is required to unlock the important basic science and clinically relevant secrets that remain hidden. Recent advances in live imaging technology have enabled quantitative longitudinal analysis of embryonic morphogenesis at multiple length and time scales. Four different imaging modalities are currently being used to monitor embryonic morphogenesis: optical, ultrasound, magnetic resonance imaging (MRI), and micro-computed tomography (micro-CT). Each has its advantages and limitations with respect to spatial resolution, depth of field, scanning speed, and tissue contrast. In addition, new processing tools have been developed to enhance live imaging capabilities. In this review, we analyze each type of imaging source and its use in quantitative study of embryonic morphogenesis in small animal models. We describe the physics behind their function, identify some examples in which the modality has revealed new quantitative insights, and then conclude with a discussion of new research directions with live imaging.


Asunto(s)
Desarrollo Embrionario , Animales , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Ratones , Microscopía Acústica , Microscopía Confocal , Microscopía Fluorescente , Modelos Animales , Ultrasonografía Doppler , Microtomografía por Rayos X
19.
Expert Opin Biol Ther ; 23(6): 553-564, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37171790

RESUMEN

INTRODUCTION: Heart valve disease is a growing burden on the healthcare system. Current solutions are insufficient for young patients and do not offer relief from reintervention. Tissue engineered heart valves (TEHVs) offer a solution that grows and responds to the native environment in a similar way to a healthy valve. Stem cells hold potential to populate these valves as a malleable source that can adapt to environmental cues. AREAS COVERED: This review covers current methods of recapitulating features of native heart valves with tissue engineering through use of stem cell populations with in situ and in vitro methods. EXPERT OPINION: In the field of TEHVs, we see a variety of approaches in cell source, biomaterial, and maturation methods. Choosing appropriate cell populations may be very patient specific; consistency and predictability will be key to long-term success. In situ methods are closer to translation but struggle with consistent cellularization. In vitro culture requires specialized methods but may recapitulate native valve cell populations with higher fidelity. Understanding how cell populations react to valve conditions and immune response is vital for success. Detrimental valve pathologies have proven to be difficult to avoid in early translation attempts.


Asunto(s)
Prótesis Valvulares Cardíacas , Ingeniería de Tejidos , Humanos , Válvulas Cardíacas , Células Madre , Materiales Biocompatibles
20.
ASAIO J ; 69(1): 1-10, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35649199

RESUMEN

Titanium alloys have traditionally been used in blood-contacting cardiovascular devices, including left ventricular assist devices (LVADs). However, titanium surfaces are susceptible to adverse coagulation, leading to thrombogenesis and stroke. To improve hemocompatibility, LVAD manufacturers introduced powder sintering on blood-wetted surfaces in the 1980s to induce endothelialization. This technique has been employed in multiple contemporary LVADs on the pump housing, as well as the interior and exterior of the inflow cannula. Despite the wide adoption of sintered titanium, reported biologic response over the past several decades has been highly variable and apparently unpredictable-including combinations of neointima, pseudoneoimtima, thrombus, and pannus. We present a history of sintered titanium used in LVAD, a review of accumulated clinical outcomes, and a synopsis of gross appearance and composition of various depositions found clinically and in animal studies, which is unfortunately confounded by the variability and inconsistency in terminology. Therefore, this review endeavors to introduce a unified taxonomy to harmonize published observations of biologic response to sintered titanium in LVADs. From these data, we are able to deduce the natural history of the biologic response to sintered titanium, toward development of a deterministic model of the genesis of a hemocompatible neointima.


Asunto(s)
Productos Biológicos , Corazón Auxiliar , Trombosis , Animales , Titanio , Pannus , Neointima/etiología , Trombosis/etiología , Corazón Auxiliar/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA