Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 102(4): 1757-1836, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35001665

RESUMEN

The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.


Asunto(s)
Fibrosis Quística , Enfermedad Pulmonar Obstructiva Crónica , Fibrosis Quística/metabolismo , Humanos , Pulmón/metabolismo , Depuración Mucociliar , Moco/metabolismo
2.
Respir Res ; 25(1): 188, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678280

RESUMEN

Repetitive bouts of coughing expose the large airways to significant cycles of shear stress. This leads to the release of alarmins and the tussive agent adenosine triphosphate (ATP) which may be modulated by the activity of ion channels present in the human airway. This study aimed to investigate the role of the transient receptor potential subfamily vanilloid member 2 (TRPV2) channel in mechanically induced ATP release from primary bronchial epithelial cells (PBECs).PBECs were obtained from individuals undergoing bronchoscopy. They were cultured in vitro and exposed to mechanical stress in the form of compressive and fluid shear stress (CFSS) or fluid shear stress (FSS) alone at various intensities. ATP release was measured using a luciferin-luciferase assay. Functional TRPV2 protein expression in human PBECs was investigated by confocal calcium imaging. The role of TRPV2 inhibition on FSS-induced ATP release was investigated using the TRPV2 inhibitor tranilast or siRNA knockdown of TRPV2. TRPV2 protein expression in human lung tissue was also determined by immunohistochemistry.ATP release was significantly increased in PBECs subjected to CFSS compared with control (unstimulated) PBECs (N = 3, ***P < 0.001). PBECs expressed functional TRPV2 channels. TRPV2 protein was also detected in fixed human lung tissue. ATP release from FFS stimulated PBECs was decreased by the TRPV2 inhibitor tranilast (N = 3, **P < 0.01) (vehicle: 159 ± 17.49 nM, tranilast: 25.08 ± 5.1 nM) or by TRPV2 siRNA knockdown (N = 3, *P < 0.05) (vehicle: 197 ± 24.52 nM, siRNA: 119 ± 26.85 nM).In conclusion, TRPV2 is expressed in the human airway and modulates ATP release from mechanically stimulated PBECs.


Asunto(s)
Adenosina Trifosfato , Bronquios , Células Epiteliales , Canales Catiónicos TRPV , Humanos , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Adenosina Trifosfato/metabolismo , Bronquios/metabolismo , Células Cultivadas , Células Epiteliales/metabolismo , Estrés Mecánico , Masculino , Mecanotransducción Celular/fisiología
3.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L765-L775, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37847709

RESUMEN

Airway mucociliary clearance (MCC) is required for host defense and is often diminished in chronic lung diseases. Effective clearance depends upon coordinated actions of the airway epithelium and a mobile mucus layer. Dysregulation of the primary secreted airway mucin proteins, MUC5B and MUC5AC, is associated with a reduction in the rate of MCC; however, how other secreted proteins impact the integrity of the mucus layer and MCC remains unclear. We previously identified the gene Bpifb1/Lplunc1 as a regulator of airway MUC5B protein levels using genetic approaches. Here, we show that BPIFB1 is required for effective MCC in vivo using Bpifb1 knockout (KO) mice. Reduced MCC in Bpifb1 KO mice occurred in the absence of defects in epithelial ion transport or reduced ciliary beat frequency. Loss of BPIFB1 in vivo and in vitro altered biophysical and biochemical properties of mucus that have been previously linked to impaired MCC. Finally, we detected colocalization of BPIFB1 and MUC5B in secretory granules in mice and the protein mesh of secreted mucus in human airway epithelia cultures. Collectively, our findings demonstrate that BPIFB1 is an important component of the mucociliary apparatus in mice and a key component of the mucus protein network.NEW & NOTEWORTHY BPIFB1, also known as LPLUNC1, was found to regulate mucociliary clearance (MCC), a key aspect of host defense in the airway. Loss of this protein was also associated with altered biophysical and biochemical properties of mucus that have been previously linked to impaired MCC.


Asunto(s)
Enfermedades Pulmonares , Depuración Mucociliar , Ratones , Humanos , Animales , Depuración Mucociliar/fisiología , Sistema Respiratorio/metabolismo , Moco/metabolismo , Enfermedades Pulmonares/metabolismo , Ratones Noqueados
4.
Am J Respir Crit Care Med ; 201(8): 946-954, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31898911

RESUMEN

Rationale: Enhancing non-CFTR (cystic fibrosis transmembrane conductance regulator)-mediated anion secretion is an attractive therapeutic approach for the treatment of cystic fibrosis (CF) and other mucoobstructive diseases.Objectives: To determine the effects of TMEM16A potentiation on epithelial fluid secretion and mucociliary clearance.Methods: The effects of a novel low-molecular-weight TMEM16A potentiator (ETX001) were evaluated in human cell and animal models of airway epithelial function and mucus transport.Measurements and Main Results: Potentiating the activity of TMEM16A with ETX001 increased the Ca2+-activated Cl- channel activity and anion secretion in human bronchial epithelial (HBE) cells from patients with CF without impacting calcium signaling. ETX001 rapidly increased fluid secretion and airway surface liquid height in CF-HBE cells under both static conditions and conditions designed to mimic the shear stress associated with tidal breathing. In ovine models of mucus clearance (tracheal mucus velocity and mucociliary clearance), inhaled ETX001 was able to accelerate clearance both when CFTR function was reduced by administration of a pharmacological blocker and when CFTR was fully functional.Conclusions: Enhancing the activity of TMEM16A increases epithelial fluid secretion and enhances mucus clearance independent of CFTR function. TMEM16A potentiation is a novel approach for the treatment of patients with CF and non-CF mucoobstructive diseases.


Asunto(s)
Anoctamina-1/efectos de los fármacos , Fibrosis Quística/metabolismo , Células Epiteliales/efectos de los fármacos , Moduladores del Transporte de Membrana/farmacología , Depuración Mucociliar/efectos de los fármacos , Moco/efectos de los fármacos , Administración por Inhalación , Animales , Anoctamina-1/metabolismo , Bronquios/citología , Señalización del Calcio/efectos de los fármacos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Humanos , Transporte Iónico/efectos de los fármacos , Técnicas de Placa-Clamp , Respiración , Mucosa Respiratoria/citología , Ovinos , Tráquea/efectos de los fármacos , Tráquea/metabolismo
5.
Am J Respir Crit Care Med ; 201(6): 661-670, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31765597

RESUMEN

Rationale: Non-cystic fibrosis bronchiectasis is characterized by airway mucus accumulation and sputum production, but the role of mucus concentration in the pathogenesis of these abnormalities has not been characterized.Objectives: This study was designed to: 1) measure mucus concentration and biophysical properties of bronchiectasis mucus; 2) identify the secreted mucins contained in bronchiectasis mucus; 3) relate mucus properties to airway epithelial mucin RNA/protein expression; and 4) explore relationships between mucus hyperconcentration and disease severity.Methods: Sputum samples were collected from subjects with bronchiectasis, with and without chronic erythromycin administration, and healthy control subjects. Sputum percent solid concentrations, total and individual mucin concentrations, osmotic pressures, rheological properties, and inflammatory mediators were measured. Intracellular mucins were measured in endobronchial biopsies by immunohistochemistry and gene expression. MUC5B (mucin 5B) polymorphisms were identified by quantitative PCR. In a replication bronchiectasis cohort, spontaneously expectorated and hypertonic saline-induced sputa were collected, and mucus/mucin concentrations were measured.Measurements and Main Results: Bronchiectasis sputum exhibited increased percent solids, total and individual (MUC5B and MUC5AC) mucin concentrations, osmotic pressure, and elastic and viscous moduli compared with healthy sputum. Within subjects with bronchiectasis, sputum percent solids correlated inversely with FEV1 and positively with bronchiectasis extent, as measured by high-resolution computed tomography, and inflammatory mediators. No difference was detected in MUC5B rs35705950 SNP allele frequency between bronchiectasis and healthy individuals. Hypertonic saline inhalation acutely reduced non-cystic fibrosis bronchiectasis mucus concentration by 5%.Conclusions: Hyperconcentrated airway mucus is characteristic of subjects with bronchiectasis, likely contributes to disease pathophysiology, and may be a target for pharmacotherapy.


Asunto(s)
Bronquiectasia/tratamiento farmacológico , Bronquiectasia/fisiopatología , Eritromicina/uso terapéutico , Moco/química , Sistema Respiratorio/fisiopatología , Esputo/química , Anciano , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Moco/microbiología , Queensland , Esputo/microbiología
6.
Proc Natl Acad Sci U S A ; 115(49): 12501-12506, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30420506

RESUMEN

Clearance of intrapulmonary mucus by the high-velocity airflow generated by cough is the major rescue clearance mechanism in subjects with mucoobstructive diseases and failed cilial-dependent mucus clearance, e.g., subjects with cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). Previous studies have investigated the mechanical forces generated at airway surfaces by cough but have not considered the effects of mucus biophysical properties on cough efficacy. Theoretically, mucus can be cleared by cough from the lung by an adhesive failure, i.e., breaking mucus-cell surface adhesive bonds and/or by cohesive failure, i.e., directly fracturing mucus. Utilizing peel-testing technologies, mucus-epithelial surface adhesive and mucus cohesive strengths were measured. Because both mucus concentration and pH have been reported to alter mucus biophysical properties in disease, the effects of mucus concentration and pH on adhesion and cohesion were compared. Both adhesive and cohesive strengths depended on mucus concentration, but neither on physiologically relevant changes in pH nor bicarbonate concentration. Mucus from bronchial epithelial cultures and patient sputum samples exhibited similar adhesive and cohesive properties. Notably, the magnitudes of both adhesive and cohesive strength exhibited similar velocity and concentration dependencies, suggesting that viscous dissipation of energy within mucus during cough determines the efficiency of cough clearance of diseased, hyperconcentrated, mucus. Calculations of airflow-induced shear forces on airway mucus related to mucus concentration predicted substantially reduced cough clearance in small versus large airways. Studies designed to improve cough clearance in subjects with mucoobstructive diseases identified reductions of mucus concentration and viscous dissipation as key therapeutic strategies.


Asunto(s)
Tos/patología , Moco/fisiología , Bicarbonatos , Adhesión Celular , Fibrosis Quística , Células Epiteliales , Humanos , Concentración de Iones de Hidrógeno , Enfermedades Pulmonares , Depuración Mucociliar/fisiología , Moco/química , Fenómenos Fisiológicos Respiratorios , Reología , Esputo
7.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L356-L365, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31800264

RESUMEN

Airway surface dehydration is a pathological feature of cystic fibrosis (CF) lung disease. CF is caused by mutations in the CF transmembrane conductance regulator (CFTR), a cyclic AMP-regulated Cl- channel controlled in part by the adenosine A2B receptor. An alternative CFTR-independent mechanism of fluid secretion is regulated by ATP via the P2Y2 receptor (P2Y2R) that activates Ca2+-regulated Cl- channels (CaCC/TMEM16) and inhibits Na+ absorption. However, due to rapid ATP hydrolysis, steady-state ATP levels in CF airway surface liquid (ASL) are inadequate to maintain P2Y2R-mediated fluid secretion. Therefore, inhibiting airway epithelial ecto-ATPases to increase ASL ATP levels constitutes a strategy to restore airway surface hydration in CF. Using [γ32P]ATP as radiotracer, we assessed the effect of a series of ATPase inhibitory compounds on the stability of physiologically occurring ATP concentrations. We identified the polyoxometalate [Co4(H2O)2(PW9O34)2]10- (POM-5) as the most potent and effective ecto-ATPase inhibitor in CF airway epithelial cells. POM-5 caused long-lasting inhibition of ATP hydrolysis in airway epithelia, which was reversible upon removal of the inhibitor. Importantly, POM-5 markedly enhanced steady-state levels of released ATP, promoting increased ASL volume in CF cell surfaces. These results provide proof of concept for ecto-ATPase inhibitors as therapeutic agents to restore hydration of CF airway surfaces. As a test of this notion, cell-free sputum supernatants from CF subjects were studied and found to have abnormally elevated ATPase activity, which was markedly inhibited by POM-5.


Asunto(s)
Adenosina Trifosfato/metabolismo , Fibrosis Quística/metabolismo , Mucosa Respiratoria/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Bronquios/patología , Fibrosis Quística/patología , Inhibidores Enzimáticos/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Hidrólisis , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/patología , Esputo/enzimología , Compuestos de Tungsteno/farmacología
8.
Eur Respir J ; 51(5)2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29599187

RESUMEN

Inhaled hypertonic saline (HS) is an effective therapy for muco-obstructive lung diseases. However, the mechanism of action and principles pertinent to HS administration remain unclear.An in vitro system aerosolised HS to epithelial cells at rates comparable to in vivo conditions. Airway surface liquid (ASL) volume and cell height responses were measured by confocal microscopy under normal and hyperconcentrated mucus states.Aerosolised HS produced a rapid increase in ASL height and decrease in cell height. Added ASL volume was quickly reabsorbed following termination of nebulisation, although cell height did not recover within the same time frame. ASL volume responses to repeated HS administrations were blunted, but could be restored by a hypotonic saline bolus interposed between HS administrations. HS-induced ASL hydration was prolonged with hyperconcentrated mucus on the airway surface, with more modest reductions in cell volume.Aerosolised HS produced osmotically induced increases in ASL height that were limited by active sodium absorption and cell volume-induced reductions in cell water permeability. Mucus on airway surfaces prolonged the effect of HS via mucus-dependent osmotic forces, suggesting that the duration of action of HS is increased in patients with hyperconcentrated mucus.


Asunto(s)
Interleucina-8/metabolismo , Mucosa Respiratoria/metabolismo , Solución Salina Hipertónica/farmacología , Células Cultivadas , Humanos , Potenciales de la Membrana/efectos de los fármacos , Modelos Teóricos , Depuración Mucociliar/efectos de los fármacos , Nebulizadores y Vaporizadores , Concentración Osmolar
9.
Eur Respir J ; 52(6)2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30361244

RESUMEN

Cystic fibrosis (CF) is a recessive genetic disease that is characterised by airway mucus plugging and reduced mucus clearance. There are currently alternative hypotheses that attempt to describe the abnormally viscous and elastic mucus that is a hallmark of CF airways disease, including: 1) loss of CF transmembrane regulator (CFTR)-dependent airway surface volume (water) secretion, producing mucus hyperconcentration-dependent increased viscosity, and 2) impaired bicarbonate secretion by CFTR, producing acidification of airway surfaces and increased mucus viscosity.A series of experiments was conducted to determine the contributions of mucus concentration versus pH to the rheological properties of airway mucus across length scales from the nanoscopic to macroscopic.For length scales greater than the nanoscopic, i.e. those relevant to mucociliary clearance, the effect of mucus concentration dominated over the effect of airway acidification.Mucus hydration and chemical reduction of disulfide bonds that connect mucin monomers are more promising therapeutic approaches than alkalisation.


Asunto(s)
Fibrosis Quística/metabolismo , Depuración Mucociliar , Moco/metabolismo , Adolescente , Adulto , Fibrosis Quística/fisiopatología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Femenino , Humanos , Concentración de Iones de Hidrógeno , Inmunohistoquímica , Masculino , Microscopía Fluorescente , Persona de Mediana Edad , Sistema Respiratorio/fisiopatología , Reología , Esputo/metabolismo , Adulto Joven
10.
J Theor Biol ; 438: 34-45, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29154907

RESUMEN

A robust method based on reverse engineering was utilized to construct the ion-channel conductance functions for airway epithelial sodium channels (ENaC), the cystic fibrosis transmembrane conductance regulator (CFTR), and calcium-activated chloride channels (CaCC). The ion-channel conductance models for both normal (NL) and cystic fibrosis (CF) airway epithelia were developed and then coupled to an adenosine triphosphate (ATP) metabolism model and a fluid transport model (collectively called the integrated cell model) to investigate airway surface liquid (ASL) volume regulation and hence mucus concentration, by mechanical forces in NL and CF human airways. The epithelial cell models for NL and CF required differences in Cl- secretion (decreased in CF) and Na+ absorption (raised in CF) to reproduce behaviors similar to in vitro epithelial cells exposed to mechanical forces (cyclic shear stress, cyclic compressive pressure and cilial strain) and selected modulators of ion channels and ATP release. The epithelial cell models were then used to investigate the effects of mechanical forces and evaporative flux on ASL and mucus homeostasis in both NL and CF airway epithelia. Because of reduced CF ASL volumes, CF mucus concentrations increased and produced a greater dependence of ASL volume regulation on cilia-mucus-ATP release interactions in CF than NL epithelial nodules. Similarly, the CF model was less tolerant to evaporation induced ASL volume reduction at all ATP release rates than the NL model. Consequently, this reverse engineered model appears to provide a robust tool for investigating CF pathophysiology and novel therapies.


Asunto(s)
Células Epiteliales/metabolismo , Modelos Biológicos , Mucosa Respiratoria/metabolismo , Adenosina Trifosfato/metabolismo , Fenómenos Biomecánicos , Calibración , Cilios/metabolismo , Simulación por Computador , Activación del Canal Iónico , Canales Iónicos/metabolismo , Moco/metabolismo , Reproducibilidad de los Resultados , Propiedades de Superficie
11.
COPD ; 15(6): 572-580, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30712400

RESUMEN

Mucus hydration is important in mucus clearance and lung health. This study sought to test the relative utility of spontaneous sputum (SS) versus the reasonably noninvasive induced sputum (IS) samples for measurement of mucus hydration. SS and IS samples were collected over a 2-day study interval. Sputum was induced with escalating inhaled nebulized 3-5% hypertonic saline. Viscous portions of the samples ("plugs") were utilized for percent solids and total mucin analyses. Cytokines, nucleotides/nucleosides and cell differentials were measured in plugs diluted into 0.1% Sputolysin. Overall, 61.5% of chronic bronchitis (CB) subjects produced a SS sample and 95.2% an IS sample. Total expectorate sample weights were less for the SS (0.94 ± 0.98 g) than the IS (2.67 ± 2.33 g) samples. Percent solids for the SS samples (3.56% ± 1.95; n = 162) were significantly greater than the IS samples (3.08% ± 1.81; n = 121), p = 0.133. Total mucin concentrations also exhibited a dilution of the IS samples: SS = 4.15 ± 3.23 mg/ml (n = 62) versus IS= 3.34 ± 2.55 mg/ml (n = 71) (p = 0.371). Total mucins (combined SS and IS) but not percent solids, were inversely associated with FEV1 percent predicted (p = 0.052) and FEV1,/FVC % (p = 0.035). There were no significant differences between sample types in cytokine or differential cell counts. The probability of sample collections was less for SS than IS samples. Measurements of hydration revealed modest dilution of the IS samples compared to SS. Thus for measurements of mucus hydration, both SS and IS samples appear to be largely interchangeable.


Asunto(s)
Bronquitis Crónica/metabolismo , Mucinas/metabolismo , Moco/metabolismo , Esputo/metabolismo , Anciano , Bronquitis Crónica/fisiopatología , Recuento de Células , Citocinas/metabolismo , Femenino , Volumen Espiratorio Forzado , Humanos , Masculino , Persona de Mediana Edad , Nucleósidos/metabolismo , Nucleótidos/metabolismo , Solución Salina Hipertónica , Esputo/citología , Capacidad Vital , Agua/metabolismo
12.
Am J Physiol Lung Cell Mol Physiol ; 312(3): L398-L404, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28062483

RESUMEN

Although airway mucus dehydration is key to pathophysiology of cystic fibrosis (CF) and other airways diseases, measuring mucus hydration is challenging. We explored a robust method to estimate mucus hydration using sialic acid as a marker for mucin content. Terminal sialic acid residues from mucins were cleaved by acid hydrolysis from airway samples, and concentrations of sialic acid, urea, and other biomarkers were analyzed by mass spectrometry. In mucins purified from human airway epithelial (HAE), sialic acid concentrations after acid hydrolysis correlated with mucin concentrations (r2 = 0.92). Sialic acid-to-urea ratios measured from filters applied to the apical surface of cultured HAE correlated to percent solids and were elevated in samples from CF HAEs relative to controls (2.2 ± 1.1 vs. 0.93 ± 1.8, P < 0.01). Sialic acid-to-urea ratios were elevated in bronchoalveolar lavage fluid (BALF) from ß-epithelial sodium channel (ENaC) transgenic mice, known to have reduced mucus hydration, and mice sensitized to house dust mite allergen. In a translational application, elevated sialic acid-to-urea ratios were measured in BALF from young children with CF who had airway infection relative to those who did not (5.5 ± 3.7 vs. 1.9 ± 1.4, P < 0.02) and could be assessed simultaneously with established biomarkers of inflammation. The sialic acid-to-urea ratio performed similarly to percent solids, the gold standard measure of mucus hydration. The method proved robust and has potential to serve as flexible techniques to assess mucin hydration, particularly in samples like BALF in which established methods such as percent solids cannot be utilized.


Asunto(s)
Líquidos Corporales/metabolismo , Pulmón/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Urea/metabolismo , Animales , Preescolar , Fibrosis Quística/metabolismo , Demografía , Células Epiteliales/metabolismo , Femenino , Humanos , Hidrólisis , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mucinas/metabolismo
13.
Proc Natl Acad Sci U S A ; 111(41): E4289-97, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25267619

RESUMEN

Biological materials exhibit complex nanotopology, i.e., a composite liquid and solid phase structure that is heterogeneous on the nanoscale. The diffusion of nanoparticles in nanotopological environments can elucidate biophysical changes associated with pathogenesis and disease progression. However, there is a lack of methods that characterize nanoprobe diffusion and translate easily to in vivo studies. Here, we demonstrate a method based on optical coherence tomography (OCT) to depth-resolve diffusion of plasmon-resonant gold nanorods (GNRs) that are weakly constrained by the biological tissue. By using GNRs that are on the size scale of the polymeric mesh, their Brownian motion is minimally hindered by intermittent collisions with local macromolecules. OCT depth-resolves the particle-averaged translational diffusion coefficient (DT) of GNRs within each coherence volume, which is separable from the nonequilibrium motile activities of cells based on the unique polarized light-scattering properties of GNRs. We show how this enables minimally invasive imaging and monitoring of nanotopological changes in a variety of biological models, including extracellular matrix (ECM) remodeling as relevant to carcinogenesis, and dehydration of pulmonary mucus as relevant to cystic fibrosis. In 3D ECM models, DT of GNRs decreases with both increasing collagen concentration and cell density. Similarly, DT of GNRs is sensitive to human bronchial-epithelial mucus concentration over a physiologically relevant range. This novel method comprises a broad-based platform for studying heterogeneous nanotopology, as distinct from bulk viscoelasticity, in biological milieu.


Asunto(s)
Nanopartículas del Metal/química , Nanotubos/química , Tomografía de Coherencia Óptica , Bronquios/citología , Células Cultivadas , Colágeno/farmacología , Difusión , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Matriz Extracelular/química , Oro/química , Humanos , Nanopartículas del Metal/ultraestructura , Moco/efectos de los fármacos , Nanotubos/ultraestructura , Polietilenglicoles/química , Soluciones , Células del Estroma/citología , Células del Estroma/efectos de los fármacos
14.
Am J Physiol Lung Cell Mol Physiol ; 310(9): L860-7, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26968767

RESUMEN

Respiratory infections are a major cause of morbidity and mortality in the elderly. Previous reports have suggested that mucociliary clearance (MCC) is impaired in older individuals, but the cause is unclear. To unravel the mechanisms responsible for the age-associated decline in MCC, we investigated the MCC system in young (3 mo) and old (2 yr) C57BL/6 mice. We found that old mice had significantly reduced MCC function in both the upper and lower airways compared with young mice. Measurement of bioelectric properties of isolated tracheal and bronchial tissue revealed a significant decrease in Cl(-) secretion, suggesting that the older mice may have a reduced ability to maintain a sufficiently hydrated airway surface for efficient MCC. Ciliary beat frequency was also observed to be reduced in the older animals; however, this reduction was small relative to the reduction in MCC. Interestingly, the level of the major secreted mucin, Muc5b, was found to be reduced in both bronchioalveolar lavage and isolated tracheal tissue. Our previous studies of Muc5b(-/-) mice have demonstrated that Muc5b is essential for normal MCC in the mouse. Furthermore, examination of Muc5b(+/-) and wild-type animals revealed that heterozygous animals, which secrete ∼50% of the wild-type level of Muc5b, also demonstrate a markedly reduced level of MCC, confirming the importance of Muc5b levels to MCC. These results demonstrate that aged mice exhibit a decrease in MCC and suggest that a reduced level of secretion of both Cl(-) and Muc5b may be responsible.


Asunto(s)
Envejecimiento , Mucina 5B/metabolismo , Mucosa Respiratoria/metabolismo , Animales , Cloruros/metabolismo , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Depuración Mucociliar , Tráquea/metabolismo
15.
Am J Respir Crit Care Med ; 192(2): 182-90, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25909230

RESUMEN

RATIONALE: Chronic bronchitis (CB) is characterized by persistent cough and sputum production. Studies were performed to test whether mucus hyperconcentration and increased partial osmotic pressure, in part caused by abnormal purine nucleotide regulation of ion transport, contribute to the pathogenesis of CB. OBJECTIVES: We tested the hypothesis that CB is characterized by mucus hyperconcentration, increased mucus partial osmotic pressures, and reduced mucus clearance. METHODS: We measured in subjects with CB as compared with normal and asymptomatic smoking control subjects indices of mucus concentration (hydration; i.e., percentage solids) and sputum adenine nucleotide/nucleoside concentrations. In addition, sputum partial osmotic pressures and mucus transport rates were measured in subjects with CB. MEASUREMENTS AND RESULTS: CB secretions were hyperconcentrated as indexed by an increase in percentage solids and total mucins, in part reflecting decreased extracellular nucleotide/nucleoside concentrations. CB mucus generated concentration-dependent increases in partial osmotic pressures into ranges predicted to reduce mucus transport. Mucociliary clearance (MCC) in subjects with CB was negatively correlated with mucus concentration (percentage solids). As a test of relationships between mucus concentration and disease, mucus concentrations and MCC were compared with FEV1, and both were significantly correlated. CONCLUSIONS: Abnormal regulation of airway surface hydration may slow MCC in CB and contribute to disease pathogenesis.


Asunto(s)
Bronquitis Crónica/fisiopatología , Depuración Mucociliar/fisiología , Moco/química , Moco/fisiología , Presión Osmótica/fisiología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
16.
J Theor Biol ; 325: 42-51, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23415939

RESUMEN

We develop a proof-of-principle model for auto-regulation of water volume in the lung airway surface layer (ASL) by coupling biochemical kinetics, transient ASL volume, and homeostatic mechanical stresses. The model is based on the hypothesis that ASL volume is sensed through soluble mediators and phasic stresses generated by beating cilia and air drag forces. Model parameters are fit based on the available data on human bronchial epithelial cell cultures. Simulations then demonstrate that homeostatic volume regulation is a natural consequence of the processes described. The model maintains ASL volume within a physiological range that modulates with phasic stress frequency and amplitude. Next, we show that the model successfully reproduces the responses of cell cultures to significant isotonic and hypotonic challenges, and to hypertonic saline, an effective therapy for mucus hydration in cystic fibrosis patients. These results compel an advanced airway hydration model with therapeutic value that will necessitate detailed kinetics of multiple molecular pathways, feedback to ASL viscoelasticity properties, and stress signaling from the ASL to the cilia and epithelial cells.


Asunto(s)
Homeostasis/fisiología , Pulmón/fisiología , Modelos Biológicos , Mucosa Respiratoria/fisiología , Agua Corporal/fisiología , Cilios/fisiología , Elasticidad , Humanos , Moco/fisiología , Estrés Mecánico , Viscosidad
17.
Nat Chem ; 15(11): 1559-1568, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37814114

RESUMEN

The convergent positioning of functional groups in biomacromolecules leads to good binding, catalytic and transport capabilities. Synthetic frameworks capable of convergently locking functional groups with minimized conformational uncertainty-leading to similar properties-are highly desirable but rare. Here we report C5-symmetric aromatic pentaamide macrocycles synthesized in one pot from the corresponding monomers. Their crystal structures reveal a star-shaped, fully constrained backbone that causes ten alternating NH/CH hydrogen-bond donors and five large amide dipoles to orient towards the centre of the macrocycle. With a highly electropositive cavity in a high-energy unbound state, the macrocycles bind anions in a 1:1 stoichiometry in solution, with high affinity for halides and very high affinity for oxoanions. We demonstrate that such macrocycles are able to transport anions across lipid bilayers with a high chloride selectivity and restore the depleted airway surface liquid of cystic fibrosis airway cell cultures.


Asunto(s)
Compuestos Macrocíclicos , Compuestos Macrocíclicos/química , Cristalografía por Rayos X , Conformación Molecular , Amidas/química , Aniones/química
18.
Sci Transl Med ; 15(699): eabo7728, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37285404

RESUMEN

Unlike solid organs, human airway epithelia derive their oxygen from inspired air rather than the vasculature. Many pulmonary diseases are associated with intraluminal airway obstruction caused by aspirated foreign bodies, virus infection, tumors, or mucus plugs intrinsic to airway disease, including cystic fibrosis (CF). Consistent with requirements for luminal O2, airway epithelia surrounding mucus plugs in chronic obstructive pulmonary disease (COPD) lungs are hypoxic. Despite these observations, the effects of chronic hypoxia (CH) on airway epithelial host defense functions relevant to pulmonary disease have not been investigated. Molecular characterization of resected human lungs from individuals with a spectrum of muco-obstructive lung diseases (MOLDs) or COVID-19 identified molecular features of chronic hypoxia, including increased EGLN3 expression, in epithelia lining mucus-obstructed airways. In vitro experiments using cultured chronically hypoxic airway epithelia revealed conversion to a glycolytic metabolic state with maintenance of cellular architecture. Chronically hypoxic airway epithelia unexpectedly exhibited increased MUC5B mucin production and increased transepithelial Na+ and fluid absorption mediated by HIF1α/HIF2α-dependent up-regulation of ß and γENaC (epithelial Na+ channel) subunit expression. The combination of increased Na+ absorption and MUC5B production generated hyperconcentrated mucus predicted to perpetuate obstruction. Single-cell and bulk RNA sequencing analyses of chronically hypoxic cultured airway epithelia revealed transcriptional changes involved in airway wall remodeling, destruction, and angiogenesis. These results were confirmed by RNA-in situ hybridization studies of lungs from individuals with MOLD. Our data suggest that chronic airway epithelial hypoxia may be central to the pathogenesis of persistent mucus accumulation in MOLDs and associated airway wall damage.


Asunto(s)
COVID-19 , Fibrosis Quística , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Pulmón/metabolismo , Moco/metabolismo , Hipoxia/metabolismo
19.
PLoS Biol ; 7(7): e1000155, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19621064

RESUMEN

Dysfunction of CFTR in cystic fibrosis (CF) airway epithelium perturbs the normal regulation of ion transport, leading to a reduced volume of airway surface liquid (ASL), mucus dehydration, decreased mucus transport, and mucus plugging of the airways. CFTR is normally expressed in ciliated epithelial cells of the surface and submucosal gland ductal epithelium and submucosal gland acinar cells. Critical questions for the development of gene transfer strategies for CF airway disease are what airway regions require CFTR function and how many epithelial cells require CFTR expression to restore normal ASL volume regulation and mucus transport to CF airway epithelium? An in vitro model of human CF ciliated surface airway epithelium (CF HAE) was used to test whether a human parainfluenza virus (PIV) vector engineered to express CFTR (PIVCFTR) could deliver sufficient CFTR to CF HAE to restore mucus transport, thus correcting the CF phenotype. PIVCFTR delivered CFTR to >60% of airway surface epithelial cells and expressed CFTR protein in CF HAE approximately 100-fold over endogenous levels in non-CF HAE. This efficiency of CFTR delivery fully corrected the basic bioelectric defects of Cl(-) and Na(+) epithelial ion transport and restored ASL volume regulation and mucus transport to levels approaching those of non-CF HAE. To determine the numbers of CF HAE surface epithelial cells required to express CFTR for restoration of mucus transport to normal levels, different amounts of PIVCFTR were used to express CFTR in 3%-65% of the surface epithelial cells of CF HAE and correlated to increasing ASL volumes and mucus transport rates. These data demonstrate for the first time, to our knowledge, that restoration of normal mucus transport rates in CF HAE was achieved after CFTR delivery to 25% of surface epithelial cells. In vivo experimentation in appropriate models will be required to determine what level of mucus transport will afford clinical benefit to CF patients, but we predict that a future goal for corrective gene transfer to the CF human airways in vivo would attempt to target at least 25% of surface epithelial cells to achieve mucus transport rates comparable to those in non-CF airways.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Moco/metabolismo , Mucosa Respiratoria/metabolismo , Análisis de Varianza , Transporte Biológico/fisiología , Células Cultivadas , Cloruros/metabolismo , Fibrosis Quística/genética , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunohistoquímica , Microscopía Fluorescente , Virus de la Parainfluenza 1 Humana/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Mucosa Respiratoria/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sodio/metabolismo
20.
Subcell Biochem ; 55: 51-74, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21560044

RESUMEN

Extracellular nucleotides are key components of the signaling network regulating airway clearance. They are released by the epithelium into the airway surface liquid (ASL) to stimulate cilia beating activity, mucus secretion and airway hydration. Understanding the factors affecting their availability for purinoceptor activation is an important step toward the development of new therapies for obstructive lung diseases. This chapter presents a mathematical model developed to gain predictive insights into the regulation of ASL nucleotide concentrations on human airway epithelia. The parameters were estimated from experimental data collected on polarized primary cultures of human nasal and bronchial epithelial cells. This model reproduces major experimental observations: (1) the independence of steady-state nucleotide concentrations on ASL height, (2) the impact of selective ectonucleotidase inhibitors on their steady-state ASL concentrations, (3) the changes in ASL composition caused by mechanical stress mimicking normal breathing, (4) and the differences in steady-state concentrations existing between nasal and bronchial epithelia. In addition, this model launched the study of nucleotide release into uncharted territories, which led to the discovery that airway epithelia release, not only ATP, but also ADP and AMP. This study shows that computational modeling, coupled to experimental validation, provides a powerful approach for the identification of key therapeutic targets for the improvement of airway clearance in obstructive respiratory diseases.


Asunto(s)
Adenina/metabolismo , Adenosina Trifosfato/metabolismo , Simulación por Computador , Células Epiteliales/metabolismo , Modelos Biológicos , Mucosa Respiratoria/metabolismo , Animales , Humanos , Análisis Numérico Asistido por Computador , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA