Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(18)2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39335151

RESUMEN

BACKGROUND/OBJECTIVES: Pulmonary neuroendocrine neoplasms (NENs) account for 20% of malignant lung tumors. Their management is challenging due to their diverse clinical features and aggressive nature. Currently, metabolomics offers a range of potential cancer biomarkers for diagnosis, monitoring tumor progression, and assessing therapeutic response. However, a specific metabolomic profile for early diagnosis of lung NENs has yet to be identified. This study aims to identify specific metabolomic profiles that can serve as biomarkers for early diagnosis of lung NENs. METHODS: We measured 153 metabolites using liquid chromatography combined with mass spectrometry (LC-MS) in the plasma of 120 NEN patients and compared them with those of 71 healthy individuals. Additionally, we compared these profiles with those of 466 patients with non-small-cell lung cancers (NSCLCs) to ensure clinical relevance. RESULTS: We identified 21 metabolites with consistently altered plasma concentrations in NENs. Compared to healthy controls, 18 metabolites were specific to carcinoid tumors, 5 to small-cell lung carcinomas (SCLCs), and 10 to large-cell neuroendocrine carcinomas (LCNECs). These findings revealed alterations in various metabolic pathways, such as fatty acid biosynthesis and beta-oxidation, the Warburg effect, and the citric acid cycle. CONCLUSIONS: Our study identified biomarker metabolites in the plasma of patients with each subtype of lung NENs and demonstrated significant alterations in several metabolic pathways. These metabolomic profiles could potentially serve as biomarkers for early diagnosis and better management of lung NENs.

2.
Future Sci OA ; 7(4): FSO679, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33815824

RESUMEN

AIM: The assessment of tumor response to therapy is of critical importance as it permits for a prospective end point evaluation and provides a guide to clinicians for making future treatment decisions. However, current practices in early evaluation of chemotherapy are insufficient. Amantadine is a substrate for SSAT-1. The present pilot study tests the hypothesis that SSAT-1 activity within the tumor, as measured by plasma acetylamantadine concentrations, can be used to monitor patient response to therapy. RESULTS: In cases with evidence of disease response, there was a reduction in the plasma acetylamantadine concentration at 4 h by approximately 32%. There was a mean increase of approximately 34% at the 4 h collection in the nonresponders. CONCLUSION: Although large-scale studies are required these findings suggest that the amantadine test could allow for determination of the efficacy of therapeutic interventions earlier, providing an effective test to assess response to treatment and for better management of patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA