Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Br J Clin Pharmacol ; 89(3): 1089-1098, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36178950

RESUMEN

AIMS: Patients on treatment with oral fixed dose imatinib are frequently under- or overexposed to the drug. We investigated the association between the gene activity score (GAS) of imatinib-metabolizing cytochromes (CYP3A4, CYP3A5, CYP2D6, CYP2C9, CYP2C19, CYP2C8) and imatinib and nor-imatinib exposure. We also investigated the impact of concurrent drug-drug-interactions (DDIs) on the association between GAS and imatinib exposure. METHODS: Serial plasma samples were collected from 33 GIST patients treated with imatinib 400 mg daily within a prospective clinical trial. Imatinib and nor-imatinib Ctrough were quantified by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Genetic polymorphisms with a functional impact on imatinib-metabolizing cytochromes were identified and a GAS was calculated for each gene. A DDI-adjusted GAS was also generated. RESULTS: Imatinib and nor-imatinib Ctrough were measured in 161 plasma samples. CYP2D6 GAS and metabolizer status based on genotype were associated with imatinib and (imatinib + nor-imatinib) Ctrough . CYP2D6 poor and intermediate metabolizers were predicted to have a lower nor-imatinib/imatinib metabolic ratio than normal metabolizers (0.197 and 0.193 vs. 0.247, P = .0205), whereas CYP2C8*3 carriers had a higher ratio than CYP2C8*1/*1 patients (0.263 vs. 0.201, P = .0220). CYP2C9 metabolizer status was inversely related to the metabolic ratio with an effect probably driven by the linkage disequilibrium between CYP2C9*2 and CYP2C8*3. The CYP2D6 DDI-adjusted GAS was still predictive of imatinib exposure. CONCLUSIONS: These findings highlight that CYP2D6 plays a major role in imatinib pharmacokinetics, but other players (i.e., CYP2C8) may influence imatinib exposure. These findings could drive the selection of patients more susceptible to imatinib under- or overexposure who could be candidates for personalized treatment and intensified monitoring strategies.


Asunto(s)
Citocromo P-450 CYP2D6 , Tumores del Estroma Gastrointestinal , Humanos , Citocromo P-450 CYP2D6/genética , Mesilato de Imatinib/efectos adversos , Mesilato de Imatinib/farmacocinética , Citocromo P-450 CYP2C8/genética , Farmacogenética , Citocromo P-450 CYP2C9/genética , Estudios Prospectivos , Cromatografía Liquida , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/genética , Espectrometría de Masas en Tándem , Citocromos/genética , Genotipo , Citocromo P-450 CYP2C19/genética
2.
Anal Chem ; 90(21): 12670-12677, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30350602

RESUMEN

Therapeutic drug monitoring (TDM) for anticancer drug imatinib has been suggested as the best way to improve the treatment response and minimize the risk of adverse reactions in chronic myelogenous leukemia (CML) and gastrointestinal stromal tumor (GIST) patients. TDM of oncology treatments with standard analytical methods, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) is, however, complex and demanding. This paper proposes a new method for quantitation of imatinib in human plasma, based on surface enhanced raman spectroscopy (SERS) and multivariate calibration using partial least-squares regression (PLSR). The best PLSR model was obtained with three latent variables in the range from 123 to 5000 ng/mL of imatinib, providing a standard error of prediction (SEP) of 510 ng/mL. The method was validated in accordance with international guidelines, through the estimate of figures of merit, such as precision, accuracy, systematic error, analytical sensitivity, limits of detection, and quantitation. Moreover, the feasibility and clinical utility of this approach have also been verified using real plasma samples taken from deidentified patients. The results were in good agreement with a clinically validated LC-MS/MS method. The new SERS method presented in this preliminary work showed simplicity, short analysis time, good sensitivity, and could be considered a promising platform for TDM of imatinib treatment in a point-of-care setting.


Asunto(s)
Antineoplásicos/sangre , Mesilato de Imatinib/sangre , Espectrometría Raman/métodos , Calibración , Monitoreo de Drogas/métodos , Humanos , Análisis de los Mínimos Cuadrados , Límite de Detección , Análisis Multivariante , Reproducibilidad de los Resultados
3.
Artículo en Inglés | MEDLINE | ID: mdl-34700133

RESUMEN

Therapeutic drug monitoring (TDM) is strongly suggested to define the proper drug dosage to overcome inter- and intra-patient variability in drug exposure, which is typically observed with oral anticancer agents, such as palbociclib (PALBO), ribociclib (RIBO) and letrozole (LETRO), all approved for the treatment of HR+, HER2- locally advanced or metastatic breast cancer (BC). Optimal TDM implementation requires a blood sampling organization that can be hampered by limited availability of health and laboratory personnel. Dried Blood Spot (DBS) sampling is proposed to overcome such limitations. The aim of this work was the development of a new LC-MS/MS method to analyze DBS samples containing PALBO, RIBO, and LETRO. Analytes extraction from DBS was performed by adding a methanolic solution containing the corresponding internal standards. LC-MS/MS analysis was performed using a LC Nexera (Shimadzu) system coupled with an API 4000 QTrap (SCIEX) mass spectrometer. The chromatographic separation was performed on a Luna Omega Polar C18 column (Phenomenex). The method was applied to 38 clinical samples collected by finger prick. The influence of hematocrit and spot size, sample homogeneity, stability, and correlation between finger prick and venous DBS measurement were assessed. The analytical validation was performed according to EMA and FDA guidelines. The analytical range of the method was 1 to 250 ng/mL for PALBO, 40 to 10000 ng/mL for RIBO, and 2 to 500 ng/mL for LETRO, where linearity was assessed, obtaining mean coefficients of determination (R2) of 0.9979 for PALBO, 0.9980 for RIBO, and 0.9987 for LETRO). The LC-MS/MS method runtime was 6.6 min. Incurred sample reanalysis demonstrated reproducibility, as the percentage difference between the two quantifications was lower than 20% for 100% of PALBO, 81.8% of RIBO, and 90.9% of LETRO paired samples. Intra- and inter-day precision (CV (%)) was lower than 11.4% and intra- and inter-day accuracy was between 90.0 and 106.5%. DBS sample stability at room temperature was confirmed for 2.5 months. A positive correlation was observed between DBS and plasma concentrations for the 3 drugs, Lin's concordance correlation coefficients obtained by DBS normalization applying a selected strategy were 0.958 for PALBO, 0.957 for RIBO, and 0.963 for LETRO. In conclusion, a fast, easy, and reproducible DBS LC-MS/MS method for the simultaneous quantification of palbociclib; ribociclib and letrozole was developed to be used in clinical practice.


Asunto(s)
Aminopiridinas/sangre , Antineoplásicos/sangre , Neoplasias de la Mama/tratamiento farmacológico , Cromatografía Liquida/métodos , Pruebas con Sangre Seca/métodos , Monitoreo de Drogas/métodos , Letrozol/sangre , Piperazinas/sangre , Purinas/sangre , Piridinas/sangre , Espectrometría de Masas en Tándem/métodos , Aminopiridinas/uso terapéutico , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/sangre , Femenino , Humanos , Letrozol/uso terapéutico , Piperazinas/uso terapéutico , Purinas/uso terapéutico , Piridinas/uso terapéutico
4.
J Pharm Biomed Anal ; 179: 112949, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31784210

RESUMEN

Sunitinib is approved for advanced renal cell cancer, imatinib-resistant or -intolerant gastrointestinal stromal tumors and pancreatic neuroendocrine cancers. It is prescribed at a fixed dose but its plasma exposure shows large inter-individual variations. Taking into account the narrow therapeutic window and the positive exposure-efficacy relationship, there is a robust rationale for its therapeutic drug monitoring. In fact, a target plasma concentration of sunitinib plus its active metabolite, N-desethyl sunitinib, ≥50 ng/mL was suggested. In order to quantify sunitinib and N-desethyl sunitinib in patients' plasma, we developed and validated a new LC-MS/MS method applicable to clinical routine. In solution, sunitinib and N-desethyl sunitinib undergo to photo-isomerization and many published methods overcome this problem by conducting the entire procedures of samples collection and handling under strictly light-protection. Our method is based on a simple and fast procedure that quantitatively reconverts the E-isomer of both analytes, obtained during sample draw and processing without light-protection, into their Z-forms. Moreover, our method uses a small plasma volume (30 µL) and the analytes are extracted by a rapid protein precipitation. It was validated according to EMA-FDA guidelines. The calibration curves resulted linear (R2 always >0.993) over the concentration ranges (0.1-500 ng/mL for sunitinib, 0.1-250 ng/mL for N-desethyl sunitinib) with a good precision (within 7.7 % for sunitinib and 10.8% for N- desethyl sunitinib) and accuracy (range 95.8-102.9% for sunitinib and 92.3-106.2% for N-desethyl sunitinib). This method was applied to a pharmacokinetic study in one patient treated with sunitinib. Moreover, as incurred samples reanalysis is an established part of the bioanalytical process to support clinical studies, its assessment was performed early in order to assure that any reproducibility issues was detected as soon as possible. The percentage difference between the two runs resulted within ±20% in all the re-analysed samples for both sunitinib and N- desethyl sunitinib.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Indoles/análisis , Pirroles/análisis , Sunitinib/análisis , Espectrometría de Masas en Tándem/métodos , Antineoplásicos/análisis , Antineoplásicos/sangre , Antineoplásicos/química , Monitoreo de Drogas/métodos , Femenino , Humanos , Indoles/sangre , Indoles/química , Isomerismo , Masculino , Pirroles/sangre , Pirroles/química , Reproducibilidad de los Resultados , Sunitinib/sangre , Sunitinib/química
5.
PLoS One ; 15(2): e0228822, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32032379

RESUMEN

A novel LC-MS/MS method was developed for the quantification of the new cyclin dependent kinase inhibitors (CDKIs) palbociclib and ribociclib and the aromatase inhibitor letrozole used in combinatory regimen. The proposed method is appropriate to be applied in clinical practice due to the simple and fast sample preparation based on protein precipitation, the low amount of patient sample necessary for the analysis (10 µL) and the total run time of 6.5 min. It was fully validated according to FDA and EMA guidelines on bioanalytical method validation. The linearity was assessed (R2 within 0.9992-0.9983) over the concentration ranges of 0.3-250 ng/mL for palbociclib, 10-10000 ng/mL for ribociclib and 0.5-500 ng/mL for letrozole that properly cover the therapeutic plasma concentrations. A specific strategy was implemented to reduce the carryover phenomenon, formerly known for these CDKIs. This method was applied to quantify the Cmin of palbociclib, ribociclib and letrozole in plasma samples from patients enrolled in a clinical study. The same set of study samples was analysed twice in separate runs to assess the reproducibility of the method by means of the incurred samples reanalysis. The results corroborated the reliability of the analyte concentrations obtained with the bioanalytical method, already proved by the validation process. The percentage differences were always within ±10% for all the analytes and the R2 of the correlation graph between the two quantifications was equal to 0.9994.


Asunto(s)
Aminopiridinas/sangre , Cromatografía Líquida de Alta Presión/métodos , Letrozol/sangre , Piperazinas/sangre , Purinas/sangre , Piridinas/sangre , Espectrometría de Masas en Tándem/métodos , Estabilidad de Medicamentos , Humanos , Reproducibilidad de los Resultados
6.
PLoS One ; 14(11): e0225225, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31743371

RESUMEN

The introduction of imatinib, an oral tyrosine kinase inhibitor, as first-line standard therapy in patients with unresectable, metastatic, or recurrent gastro-intestinal stromal tumor (GIST), strongly improved their treatment outcomes. However, therapeutic drug monitoring (TDM) is recommended for this drug due to the large inter-individual variability in plasma concentration when standard dose is administered. A Cmin higher than 760 ng/mL was associated with a longer progression free survival. Thus, a LC-MS/MS method has been developed and fully validated to quantify imatinib and its active metabolite, norimatinib, in finger-prick dried blood spot (DBS). The influence of hematocrit, sample homogeneity, and spot size and the correlation between finger-prick and venous DBS measurements were also assessed. The method showed a good linearity (R2 > 0,996) between 50-7500 ng/mL for imatinib and 10-1500 ng/mL for norimatinib. Analytes were extracted from DBS samples by simply adding to 3 mm-discs 150 µL of acidified methanol containing IMA-D8. The collected extract was then injected on a LC Nexera system in-house configured for the on-line cleanup, coupled with an API-4000 QT. The chromatographic separation was conducted on a Synergi Fusion-RP column (4 µm, 2x50 mm) while the trapping column was a POROS R1/20 (20 µm, 2x30 mm). The total run time was 8.5 min. DBSs stored at room temperature in plastic envelopes containing a silica-gel drying bag were stable up to 16 months. The proposed method was applied to 67 clinical samples, showing a good correlation between patients' finger-prick DBS and plasma concentrations, measured by the reference LC-MS/MS method, internally validated. Imatinib and norimatinib concentrations found in finger-prick DBS were adjusted by hematocrit or by an experimental correction factor to estimate the corresponding plasma measurements. At the best of our knowledge, the proposed LC-MS/MS method is the first analytical assay to measure imatinib and norimatinib in DBS samples.


Asunto(s)
Pruebas con Sangre Seca , Tumores del Estroma Gastrointestinal/sangre , Adulto , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores , Cromatografía Liquida , Pruebas con Sangre Seca/métodos , Femenino , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Humanos , Mesilato de Imatinib/administración & dosificación , Masculino , Persona de Mediana Edad , Inhibidores de Proteínas Quinasas/administración & dosificación , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem
7.
J Pharm Biomed Anal ; 160: 360-367, 2018 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-30119000

RESUMEN

Sunitinib malate, an oral multi-targeted tyrosine kinase inhibitor approved for the treatment of metastatic renal cell carcinoma, gastrointestinal stromal tumor, and well-differentiated pancreatic neuroendocrine tumors, has been identified as a potential candidate for therapeutic drug monitoring approach. Nevertheless, the development of an analytical assay suitable for clinical application for the quantification of the plasma concentration of sunitinib and its active metabolite, N-desethyl sunitinib, is limited by its Z/E isomerization when exposed to light. Several LC-MS/MS methods already published require protection from light during all sample handling procedures to avoid the formation of E-isomer, which makes them not suitable for clinical practice. In order to obtain a simple and fast procedure to reconvert the E-isomer, formed during sample collection and treatment without light protection, and, thus, to have only Z-isomer peak to quantify, we studied the Z/E photodegradation with special attention to the condition allowing the reverse reaction in plasma matrix. After 30 min of light exposure, the E-isomer maximum percentage of both the analytes was reached (44% of E-sunitinib and 20% of E-N-desethyl sunitinib; these percentages were calculated with respect to the sum of E + Z). Moreover, the formation of the E-isomer increased up to 20% after lowering the pH of the solution. Since the reverse reaction takes place when the pre-exposed solution is placed in dark, we followed the E to Z-isomer kinetics into the autosampler. The conversion rate was very slow when the autosampler was set at 4 °C (after 4 h the mean percentages of E-isomer were 50% for sunitinib and 22% for N-desethyl sunitinib). The reconversion rate was considerably accelerated with the increasing of the temperature: incubating the analytical solution in a heated water bath for 5 min at 70 °C we obtained the quantitative (99%) reconversion of the E- to the Z-isomer. No effect of concentration was observed, while the presence of acids inhibited the reconversion. Based on these results, a simple and fast procedure was setup to quantitatively reconvert the E-isomer formed during sample collection and processing without light protection into its Z-form thus leading to a single peak to quantify. The application of this additional step allows to develop a LC-MS/MS method suitable to clinical practice, due to its practicality and speed.


Asunto(s)
Indoles/sangre , Isomerismo , Luz/efectos adversos , Pirroles/sangre , Sunitinib/sangre , Cromatografía Liquida , Humanos , Concentración de Iones de Hidrógeno , Espectrometría de Masas en Tándem , Temperatura , Factores de Tiempo
8.
Biosens Bioelectron ; 100: 298-303, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28942212

RESUMEN

One of the main targets in current clinical oncology is the development of a cheap device capable of monitoring in real-time the concentration of a drug in the blood of a patient. This would allow fine-tuning the dosage according to the patient's metabolism, a key condition to reduce side effects. By using surface plasmon resonance and fluorescence spectroscopy we here show that short peptides designed in silico by a recently developed algorithm are capable of binding the anticancer drug irinotecan (CPT-11) with micromolar affinity. Importantly, the recognition takes place in the denaturating solution used in standard therapeutic drug monitoring to detach the drug from the proteins that are present in human plasma, and some of the peptides are capable of distinguishing CPT-11 from its metabolite SN-38. These results suggest that the in silico design of small artificial peptides is now a viable route for designing sensing units, opening a wide range of applications in diagnostic and clinical areas.


Asunto(s)
Antineoplásicos/metabolismo , Camptotecina/análogos & derivados , Monitoreo de Drogas/métodos , Péptidos/metabolismo , Resonancia por Plasmón de Superficie/métodos , Secuencia de Aminoácidos , Antineoplásicos/sangre , Sitios de Unión , Camptotecina/sangre , Camptotecina/metabolismo , Humanos , Irinotecán , Modelos Moleculares , Péptidos/química , Unión Proteica , Espectrometría de Fluorescencia
9.
PLoS One ; 13(2): e0193500, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29474420

RESUMEN

Paclitaxel belongs to the taxanes family and it is used, alone or in multidrug regimens, for the therapy of several solid tumours, such as breast-, lung-, head and neck-, and ovarian cancer. Standard dosing of chemotherapy does not take into account the many inter-patient differences that make drug exposure highly variable, thus leading to the insurgence of severe toxicity. This is particularly true for paclitaxel considering that a relationship between haematological toxicity and plasma exposure was found. Therefore, in order to treat patients with the correct dose of paclitaxel, improving the overall benefit-risk ratio, Therapeutic Drug Monitoring is necessary. In order to quantify paclitaxel and its main metabolite, 6α-hydroxy-paclitaxel, in patients' plasma, we developed a new, sensitive and specific HPLC-MS/MS method applicable to all paclitaxel dosages used in clinical routine. The developed method used a small volume of plasma sample and is based on quick protein precipitation. The chromatographic separation of the analytes was achieved with a SunFire™ C18 column (3.5 µM, 92 Å, 2,1 x 150 mm); the mobile phases were 0.1% formic acid/bidistilled water and 0.1% formic acid/acetonitrile. The electrospray ionization source worked in positive ion mode and the mass spectrometer operated in selected reaction monitoring mode. Our bioanalytical method was successfully validated according to the FDA-EMA guidelines on bioanalytical method validation. The calibration curves resulted linear (R2 ≥0.9948) over the concentration ranges (1-10000 ng/mL for paclitaxel and 1-1000 ng/mL for 6α-hydroxy-paclitaxel) and were characterized by a good accuracy and precision. The intra- and inter-day precision and accuracy were determined on three quality control concentrations for paclitaxel and 6α-hydroxy-paclitaxel and resulted respectively <9.9% and within 91.1-114.8%. In addition, to further verify the assay reproducibility, we tested this method by re-analysing the incurred samples. This bioanalytical method was employed with success to a genotype-guided phase Ib study of weekly paclitaxel in ovarian cancer patients treated with a wide range of drug's dosages.


Asunto(s)
Análisis Químico de la Sangre/métodos , Cromatografía Líquida de Alta Presión/métodos , Paclitaxel/sangre , Paclitaxel/farmacocinética , Espectrometría de Masas en Tándem/métodos , Taxoides/sangre , Humanos , Límite de Detección , Paclitaxel/metabolismo , Taxoides/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA