Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Apoptosis ; 27(9-10): 778-786, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35796799

RESUMEN

Acetic acid and hydrogen peroxide are the most common stimuli to induce apoptosis in yeast. The initial phase of this cell death process is characterized by the maintenance of plasma membrane integrity in cells that had already lost their viability. As loss of plasma membrane integrity is typically assessed by staining with propidium iodide (PI) after exposure of cells to a stimulus and cell viability is determined 48 h after plating, the percentage of cells with compromised plasma membrane integrity and c.f.u. counts often do not correlate. Herein, we developed a simple method to explore at what point after an apoptotic stimulus and plating cells do non-viable cells die as result of plasma membrane disruption, i.e., when cells surpass the point-of-no-return and undergo a secondary necrosis. The method consisted in washing cells and re-suspending them in stimulus-free medium after acetic acid and hydrogen peroxide treatments, to mimic transfer to plating, and then assessing plasma membrane integrity through PI staining. We show that, after the stimuli are removed, cells that had lost proliferative capacity but still maintained plasma membrane integrity continue the cell death process and later lose plasma membrane integrity when progressing to secondary necrosis. After exposure to hydrogen peroxide, cells undergo secondary necrosis preceded by Nhp6Ap-GFP cytosolic localization, in contrast to acetic acid exposure, where Nhp6Ap-GFP cytosolic localization mainly occurs simultaneously with an earlier emergence of secondary necrosis. In conclusion, the developed method allows monitoring the irreversible loss of plasma membrane integrity of dying apoptotic cells after the point-of-no-return is trespassed, and better characterize the process of secondary necrosis after apoptosis.


Asunto(s)
Apoptosis , Saccharomyces cerevisiae , Ácido Acético/metabolismo , Ácido Acético/farmacología , Muerte Celular , Membrana Celular/metabolismo , Citometría de Flujo , Humanos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Necrosis/metabolismo , Propidio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Apoptosis ; 27(5-6): 368-381, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35362903

RESUMEN

Proteins of the Bcl-2 protein family, including pro-apoptotic Bax and anti-apoptotic Bcl-xL, are critical for mitochondrial-mediated apoptosis regulation. Since yeast lacks obvious orthologs of Bcl-2 family members, heterologous expression of these proteins has been used to investigate their molecular and functional aspects. Active Bax is involved in the formation of mitochondrial outer membrane pores, through which cytochrome c (cyt c) is released, triggering a cascade of downstream apoptotic events. However, when in its inactive form, Bax is largely cytosolic or weakly bound to mitochondria. Given the central role of Bax in apoptosis, studies aiming to understand its regulation are of paramount importance towards its exploitation as a therapeutic target. So far, studies taking advantage of heterologous expression of human Bax in yeast to unveil regulation of Bax activation have relied on the use of artificial mutated or mitochondrial tagged Bax for its activation, rather than the wild type Bax (Bax α). Here, we found that cell death could be triggered in yeast cells heterologoulsy expressing Bax α with concentrations of acetic acid that are not lethal to wild type cells. This was associated with Bax mitochondrial translocation and cyt c release, closely resembling the natural Bax function in the cellular context. This regulated cell death process was reverted by co-expression with Bcl-xL, but not with Bcl-xLΔC, and in the absence of Rim11p, the yeast ortholog of mammalian GSK3ß. This novel system mimics human Bax α regulation by GSK3ß and can therefore be used as a platform to uncover novel Bax regulators and explore its therapeutic modulation.


Asunto(s)
Citocromos c , Saccharomyces cerevisiae , Ácido Acético , Animales , Apoptosis/genética , Proteínas Portadoras , Citocromos c/genética , Citocromos c/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Mamíferos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
3.
Med Res Rev ; 41(4): 1927-1964, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33483985

RESUMEN

The control of the intracellular pH is vital for the survival of all organisms. Membrane transporters, both at the plasma and intracellular membranes, are key players in maintaining a finely tuned pH balance between intra- and extracellular spaces, and therefore in cellular homeostasis. V-ATPase is a housekeeping ATP-driven proton pump highly conserved among prokaryotes and eukaryotes. This proton pump, which exhibits a complex multisubunit structure based on cell type-specific isoforms, is essential for pH regulation and for a multitude of ubiquitous and specialized functions. Thus, it is not surprising that V-ATPase aberrant overexpression, mislocalization, and mutations in V-ATPase subunit-encoding genes have been associated with several human diseases. However, the ubiquitous expression of this transporter and the high toxicity driven by its off-target inhibition, renders V-ATPase-directed therapies very challenging and increases the need for selective strategies. Here we review emerging evidence linking V-ATPase and both inherited and acquired human diseases, explore the therapeutic challenges and opportunities envisaged from recent data, and advance future research avenues. We highlight the importance of V-ATPases with unique subunit isoform molecular signatures and disease-associated isoforms to design selective V-ATPase-directed therapies. We also discuss the rational design of drug development pipelines and cutting-edge methodological approaches toward V-ATPase-centered drug discovery. Diseases like cancer, osteoporosis, and even fungal infections can benefit from V-ATPase-directed therapies.


Asunto(s)
ATPasas de Translocación de Protón Vacuolares , Descubrimiento de Drogas , Humanos , ATPasas de Translocación de Protón Vacuolares/metabolismo
4.
J Nat Prod ; 82(5): 1240-1249, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30964667

RESUMEN

Different positive pharmacological effects have been attributed to the natural product resveratrol (RSV), including antioxidant, antiaging, and cancer chemopreventive properties. However, its low bioavailability and rapid metabolic degradation has led to the suspicion that many of the biological activities of this compound observed in vitro may not be attainable in humans. To improve its bioavailability and pharmacokinetic profile, attempts have been made to encapsulate RSV into lipid-based nanocarrier systems. Here, the dioctadecyldimethylammonium bromide (DODAB):monoolein (MO) liposomal system (1:2) loaded with RSV revealed appropriate characteristics for drug release purposes: reduced size for cellular uptake (157 ± 23 nm), stability up to 80 days, positive surface charge (ζ ≈ +40 mV), and a controlled biphasic release of RSV from the lipid nanocarriers over a period of almost 50 h at pH 5.0 and 7.4. Moreover, the encapsulation efficiency of the nanocarrier ranged from 70% to 92% and its RSV loading capacity from 9% to 14%, when [RSV] was between 100 and 200 µM. The partition coefficient ( Kp) of RSV between lipid and aqueous phase was log Kp = 3.37 ± 0.10, suggesting moderate to high lipophilicity of this natural compound and reinforcing the lipid nanocarriers' suitability for RSV incorporation. The thermodynamic parameters of RSV partitioning in the lipid nanocarriers at 37 °C (Δ H = 43.76 ± 5.68 kJ mol-1; Δ S = 0.20 ± 0.005 kJ mol-1; and Δ G = -18.46 ± 3.48 kJ mol-1) reflected the spontaneity of the process and the establishment of hydrophobic interactions. The cellular uptake mechanism of the RSV-loaded nanocarriers labeled with the lipophilic fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) was studied in the eukaryotic model system Saccharomyces cerevisiae. Thirty minutes after incubation, yeast cells readily internalized nanocarriers and the spots of blue fluorescence of DPH clustered around the central vacuole in lipid droplets colocalized with the green fluorescence of the lipophilic endocytosis probe FM1-43. Subsequent studies with the endocytosis defective yeast deletion mutant ( end3Δ) and with the endocytosis inhibitor methyl-ß-cyclodextrin supported the involvement of an endocytic pathway. This novel nanotechnology approach opens good perspectives for medical applications.


Asunto(s)
Antioxidantes/administración & dosificación , Antioxidantes/farmacocinética , Endocitosis/efectos de los fármacos , Resveratrol/administración & dosificación , Resveratrol/farmacocinética , Saccharomyces cerevisiae/metabolismo , Disponibilidad Biológica , Portadores de Fármacos , Composición de Medicamentos , Estabilidad de Medicamentos , Liposomas , Mutación , Nanoestructuras , Saccharomyces cerevisiae/genética
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(6): 576-583, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29496584

RESUMEN

Changes in sphingolipid metabolism have been linked to modulation of cell fate in both yeast and mammalian cells. We previously assessed the role of sphingolipids in cell death regulation using a well characterized yeast model of acetic acid-induced regulated cell death, finding that Isc1p, inositol phosphosphingolipid phospholipase C, plays a pro-death role in this process. Indeed, isc1∆ mutants exhibited a higher resistance to acetic acid associated with reduced mitochondrial alterations. Here, we show that Isc1p is regulated by Sch9p under acetic acid stress, since both single and double mutants lacking Isc1p or/and Sch9p have the same resistant phenotype, and SCH9 deletion leads to a higher retention of Isc1p in the endoplasmic reticulum upon acetic acid exposure. We also found that the higher resistance of all mutants correlates with higher levels of endogenous mitochondrial phosphorylated long chain bases (LCBPs), suggesting that changing the sphingolipid balance in favour of LCBPs in mitochondria results in increased survival to acetic acid. In conclusion, our results suggest that Sch9p pathways modulate acetic acid-induced cell death, through the regulation of Isc1p cellular distribution, thus affecting the sphingolipid balance that regulates cell fate.


Asunto(s)
Ácido Acético/farmacología , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fosfolipasas de Tipo C/metabolismo , Retículo Endoplásmico/genética , Mitocondrias/genética , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fosfolipasas de Tipo C/genética
6.
FEMS Yeast Res ; 14(1): 160-78, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24103214

RESUMEN

It has been established that sphingolipids are engaged in the regulation of apoptosis both as direct executors and as signalling molecules. However, the peculiarities of this class of bioactive lipids, namely the interconnectivity of their metabolic pathways, the specific subcellular localization where they are generated and the transport mechanisms involved, introduce a considerably high level of complexity in deciphering their role in the signalling and regulation of programmed cell death. Although yeast is undeniably a simple model, the conservation of the sphingolipid metabolism and of the core machinery engaged in regulated cell death has already provided valuable clues to the understanding of metabolic pathways involved in distinct cellular processes, including apoptosis. It can be anticipated that studies using this model system will further unravel mechanisms underlying the regulation of apoptosis by sphingolipids and contribute to novel therapeutic strategies against serious human diseases associated with dysfunction of sphingolipid-dependent cell death programmes.


Asunto(s)
Apoptosis/efectos de los fármacos , Saccharomyces cerevisiae/fisiología , Control Social Formal , Esfingolípidos/metabolismo , Redes y Vías Metabólicas , Modelos Biológicos
7.
Cell Death Differ ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714881

RESUMEN

The study of cell death mechanisms in fungi, particularly yeasts, has gained substantial interest in recent decades driven by the potential for biotechnological advancements and therapeutic interventions. Examples include the development of robust yeast strains for industrial fermentations and high-value compound production, novel food preservation strategies against spoilage yeasts, and the identification of targets for treating fungal infections in the clinic. In this review, we discuss a wide range of methods to characterize cellular alterations associated with yeast cell death, noting the advantages and limitations. We describe assays to monitor reversible events versus those that mark a commitment to cell death (point-of-no-return), as these distinctions are important to decipher the underlying regulatory mechanisms. Several well-known challenges remain, including the varied susceptibilities to death within a cell population and the delineation of detailed cell death mechanisms. The identification and characterization of morphologically distinct subsets of dying yeast cells within dynamic yeast populations provides opportunities to reveal novel vulnerabilities and survival mechanisms. Elucidating the intricacies of yeast regulated cell death (yRCD) will contribute to the advancement of scientific knowledge and foster breakthrough discoveries with broad-ranging implications.

8.
Biomolecules ; 14(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38672489

RESUMEN

Colorectal cancer (CRC) is a leading cause of death worldwide. Conventional therapies are available with varying effectiveness. Acetate, a short-chain fatty acid produced by human intestinal bacteria, triggers mitochondria-mediated apoptosis preferentially in CRC but not in normal colonocytes, which has spurred an interest in its use for CRC prevention/therapy. We previously uncovered that acetate-induced mitochondrial-mediated apoptosis in CRC cells is significantly enhanced by the inhibition of the lysosomal protease cathepsin D (CatD), which indicates both mitochondria and the lysosome are involved in the regulation of acetate-induced apoptosis. Herein, we sought to determine whether mitochondrial function affects CatD apoptotic function. We found that enhancement of acetate-induced apoptosis by CatD inhibition depends on oligomycin A-sensitive respiration. Mechanistically, the potentiating effect is associated with an increase in cellular and mitochondrial superoxide anion accumulation and mitochondrial mass. Our results provide novel clues into the regulation of CatD function and the effect of tumor heterogeneity in the outcome of combined treatment using acetate and CatD inhibitors.


Asunto(s)
Apoptosis , Catepsina D , Neoplasias Colorrectales , Mitocondrias , Oligomicinas , Humanos , Acetatos/farmacología , Apoptosis/efectos de los fármacos , Catepsina D/metabolismo , Catepsina D/antagonistas & inhibidores , Línea Celular Tumoral , Respiración de la Célula/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Oligomicinas/farmacología
9.
Mol Cell Biol ; : 1-14, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39099191

RESUMEN

N-terminal acetyltransferase B (NatB) is a major contributor to the N-terminal acetylome and is implicated in several key cellular processes including apoptosis and proteostasis. However, the molecular mechanisms linking NatB-mediated N-terminal acetylation to apoptosis and its relationship with protein homeostasis remain elusive. In this study, we generated mouse embryonic fibroblasts (MEFs) with an inactivated catalytic subunit of NatB (Naa20-/-) to investigate the impact of NatB deficiency on apoptosis regulation. Through quantitative N-terminomics, label-free quantification, and targeted proteomics, we demonstrated that NatB does not influence the proteostasis of all its substrates. Instead, our focus on putative NatB-dependent apoptotic factors revealed that NatB serves as a protective shield against UBR4 and UBR1 Arg/N-recognin-mediated degradation. Notably, Naa20-/- MEFs exhibited reduced responsiveness to an extrinsic pro-apoptotic stimulus, a phenotype that was partially reversible upon UBR4 Arg/N-recognin silencing and consequent inhibition of procaspase-8 degradation. Collectively, our results shed light on how the interplay between NatB-mediated acetylation and the Arg/N-degron pathway appears to impact apoptosis regulation, providing new perspectives in the field including in therapeutic interventions.

10.
BMC Genomics ; 14: 838, 2013 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-24286259

RESUMEN

BACKGROUND: Acetic acid is mostly known as a toxic by-product of alcoholic fermentation carried out by Saccharomyces cerevisiae, which it frequently impairs. The more recent finding that acetic acid triggers apoptotic programmed cell death (PCD) in yeast sparked an interest to develop strategies to modulate this process, to improve several biotechnological applications, but also for biomedical research. Indeed, acetate can trigger apoptosis in cancer cells, suggesting its exploitation as an anticancer compound. Therefore, we aimed to identify genes involved in the positive and negative regulation of acetic acid-induced PCD by optimizing a functional analysis of a yeast Euroscarf knock-out mutant collection. RESULTS: The screen consisted of exposing the mutant strains to acetic acid in YPD medium, pH 3.0, in 96-well plates, and subsequently evaluating the presence of culturable cells at different time points. Several functional categories emerged as greatly relevant for modulation of acetic acid-induced PCD (e.g.: mitochondrial function, transcription of glucose-repressed genes, protein synthesis and modifications, and vesicular traffic for protection, or amino acid transport and biosynthesis, oxidative stress response, cell growth and differentiation, protein phosphorylation and histone deacetylation for its execution). Known pro-apoptotic and anti-apoptotic genes were found, validating the approach developed. Metabolism stood out as a main regulator of this process, since impairment of major carbohydrate metabolic pathways conferred resistance to acetic acid-induced PCD. Among these, lipid catabolism arose as one of the most significant new functions identified. The results also showed that many of the cellular and metabolic features that constitute hallmarks of tumour cells (such as higher glycolytic energetic dependence, lower mitochondrial functionality, increased cell division and metabolite synthesis) confer sensitivity to acetic acid-induced PCD, potentially explaining why tumour cells are more susceptible to acetate than untransformed cells and reinforcing the interest in exploiting this acid in cancer therapy. Furthermore, our results clearly establish a connection between cell proliferation and cell death regulation, evidencing a conserved developmental role of programmed cell death in unicellular eukaryotes. CONCLUSIONS: This work advanced the characterization of acetic acid-induced PCD, providing a wealth of new information on putative molecular targets for its control with impact both in biotechnology and biomedicine.


Asunto(s)
Ácido Acético/farmacología , Apoptosis/genética , Genes Fúngicos , Saccharomyces cerevisiae/genética , Metabolismo de los Hidratos de Carbono/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genoma Fúngico , Viabilidad Microbiana/efectos de los fármacos , Mitocondrias/genética , Procesamiento Proteico-Postraduccional/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Estrés Fisiológico
11.
Microbiology (Reading) ; 159(Pt 5): 848-856, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23449920

RESUMEN

The yeast vacuole is functionally analogous to the mammalian lysosome. Both play important roles in fundamental cellular processes such as protein degradation, detoxification, osmoregulation, autophagy and apoptosis which, when deregulated in humans, can lead to several diseases. Some of these vacuolar roles are difficult to study in a cellular context, and therefore the use of a cell-free system is an important approach to gain further insight into the different molecular mechanisms required for vacuolar function. In the present study, the potentialities of flow cytometry for the structural and functional characterization of isolated yeast vacuoles were explored. The isolation protocol resulted in a yeast vacuolar fraction with a degree of purity suitable for cytometric analysis. Moreover, isolated vacuoles were structurally and functionally intact and able to generate and maintain electrochemical gradients of ions across the vacuolar membrane, as assessed by flow cytometry. Proton and calcium gradients were dissipated by NH4Cl and calcimycin, respectively. These results established flow cytometry as a powerful technique for the characterization of isolated vacuoles. The protocols developed in this study can also be used to enhance our understanding of several molecular mechanisms underlying the development of lysosome-related diseases, as well as provide tools to screen for new drugs that can modulate these processes, which have promising clinical relevance.


Asunto(s)
Citometría de Flujo/métodos , Saccharomyces cerevisiae/metabolismo , Vacuolas/química , Vacuolas/metabolismo , Lisosomas/química , Lisosomas/metabolismo , Saccharomyces cerevisiae/química
12.
FEMS Yeast Res ; 13(7): 700-5, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23937324

RESUMEN

The regulation of protein kinase C (PKC) isoforms by ceramide is still controversial. In this work, the yeast Saccharomyces cerevisiae was used as a model to elucidate the effect of ceramide on the activity of mammalian PKC isoforms. For that, isc1Δ cells, with a deletion in the pathway for ceramide production by hydrolysis of complex sphingolipids, individually expressing mammalian PKCα, δ and ζ were used. Contrary to PKCα and ζ, expression of PKCδ in isc1Δ cells exhibited a similar phenotype to that observed with wild-type yeast cells expressing PKCδ treated with a PKC activator, as phorbol 12-myristate 13-acetate (PMA), specifically a growth inhibition associated with a G2/M cell cycle arrest. Interestingly, in isc1Δ yeast cells expressing PKCδ this phenotype was completely abrogated in the presence of exogenous ceramide. Moreover, using a yeast-based assay previously developed for the screening of PKC inhibitors, it was also shown that, like the known PKC inhibitor NPC 15437, ceramide reduced the PMA-induced growth inhibition, supporting an inhibitory effect of ceramide on PKCδ. Altogether, these results may indicate that ceramide distinctly interfere with the activity of PKCα, δ and ζ. Most importantly, they showed that ceramide is an inhibitor of PKCδ.


Asunto(s)
Ceramidas/metabolismo , Proteína Quinasa C/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/fisiología , Ciclo Celular/efectos de los fármacos , Inhibidores Enzimáticos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Quinasa C/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética
13.
Pharmaceutics ; 15(8)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37631376

RESUMEN

Bovine lactoferrin (bLf) is a milk-derived protein that exhibits potent broad-spectrum antifungal activity against multiple fungi. bLf is susceptible to degradation, while some of its properties depend on the tertiary structure. So, the encapsulation of bLf in stimuli-responsive therapeutic formulations provides an added value to enhance its biological activities. Plasmonic magnetoliposomes (PMLs) arise as promising nanocarriers for dual hyperthermia (magneto-photothermia) and local chemotherapy, since the combination of magnetic and gold nanoparticles (NPs) in a single nanosystem (multifunctional liposomes) enables the targeting and controlled release of loaded drugs. In this work, plasmonic magnetoliposomes (PMLs) containing manganese ferrite nanoparticles (28 nm size) and gold nanoparticles (5-7.5 nm size), functionalized with 11-mercaptoundecanoic acid or octadecanethiol, were prepared and loaded with bLf. The NPs' optical, magnetic and structural properties were measured via UV/vis/NIR absorption spectroscopy, SQUID and TEM, respectively. The Specific Absorption Rate (SAR) was calculated to assess the capabilities for magnetic and photothermal hyperthermia. Finally, the antifungal potential of bLf-loaded PMLs and their mechanism of internalization were assessed in Saccharomyces cerevisiae by counting the colony forming units and using fluorescence microscopy. The results demonstrate that PMLs are mainly internalized through an energy- and temperature-dependent endocytic process, though the contribution of a diffusion component cannot be discarded. Most notably, only bLf-loaded plasmonic magnetoliposomes display cytotoxicity with an efficiency similar to free bLf, attesting their promising potential for bLf delivery in the context of antifungal therapeutic interventions.

14.
Exp Cell Res ; 317(8): 1147-58, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21338602

RESUMEN

The role of individual protein kinase C (PKC) isoforms in the regulation of p53-mediated apoptosis is still uncertain. Using yeast cells co-expressing the human wild-type p53 and a single mammalian PKCα, δ, ε or ζ, we showed a differential regulation of p53-mediated apoptosis by these PKC isoforms. Whereas PKCα and ζ had no effect on p53 activity, PKCδ and ε stimulated a p53-mediated mitochondria-dependent apoptosis. Moreover, using pifithrin-α and -µ, selective inhibitors of p53 transcriptional activity and mitochondrial p53 translocation, respectively, we showed the activation of a transcription-dependent and -independent p53-mediated apoptosis by PKCδ and ε. The activation of mitochondrial p53 translocation by PKCδ and ε was further confirmed by immunofluorescence and Western blot analysis. Together, this work reveals the conservation in yeast of functional transcription-dependent and -independent p53 apoptotic mechanisms. Furthermore, it gives mechanistic insights about the regulation of p53-mediated apoptosis by PKCδ and ε through modulation of p53 transcriptional activity and of its translocation to mitochondria. Finally, it underscores a major role of PKCδ and ε as positive regulators of p53-mediated apoptosis, and therefore as promising therapeutic targets in cancer.


Asunto(s)
Apoptosis/genética , Proteína Quinasa C-alfa/metabolismo , Proteína Quinasa C-delta/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Proteína Quinasa C/metabolismo , Saccharomyces cerevisiae/fisiología , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Benzotiazoles/metabolismo , Bovinos , Regulación Fúngica de la Expresión Génica , Humanos , Peróxido de Hidrógeno/farmacología , Ratones , Mitocondrias/metabolismo , Oxidantes/farmacología , Proteína Quinasa C/genética , Proteína Quinasa C-alfa/genética , Proteína Quinasa C-delta/genética , Proteína Quinasa C-epsilon/genética , Ratas , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Tolueno/análogos & derivados , Tolueno/metabolismo , Proteína p53 Supresora de Tumor/genética
15.
Exp Cell Res ; 317(6): 781-90, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21172347

RESUMEN

Protein kinase Cα (PKCα) is a classical PKC isoform whose involvement in cell death is not completely understood. Bax, a major member of the Bcl-2 family, is required for apoptotic cell death and regulation of Bax translocation and insertion into the outer mitochondrial membrane is crucial for regulation of the apoptotic process. Here we show that PKCα increases the translocation and insertion of Bax c-myc (an active form of Bax) into the outer membrane of yeast mitochondria. This is associated with an increase in cytochrome c (cyt c) release, reactive oxygen species production (ROS), mitochondrial network fragmentation and cell death. This cell death process is regulated, since it correlates with an increase in autophagy but not with plasma membrane permeabilization. The observed increase in Bax c-myc translocation and insertion by PKCα is not due to Bax c-myc phosphorylation, and the higher cell death observed is independent of the PKCα kinase activity. PKCα may therefore have functions other than its kinase activity that aid in Bax c-myc translocation and insertion into mitochondria. Together, these results give a mechanistic insight on apoptosis regulation by PKCα through regulation of Bax insertion into mitochondria.


Asunto(s)
Apoptosis , Mitocondrias/genética , Proteína Quinasa C-alfa/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Saccharomyces cerevisiae/fisiología , Animales , Bovinos , Mitocondrias/metabolismo , Mutagénesis Insercional , Proteína Quinasa C-alfa/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
16.
Biomolecules ; 12(1)2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35053267

RESUMEN

Lactoferrin (Lf) is a milk-derived protein with well-recognized potential as a therapeutic agent against a wide variety of cancers. This natural protein exhibits health-promoting effects and has several interesting features, including its selectivity towards cancer cells, good tolerability in humans, worldwide availability, and holding a generally recognized as safe (GRAS) status. To prompt the rational clinical application of this promising anticancer compound, previous works aimed to unveil the molecular mechanisms underlying its selective anticancer activity, where plasmalemmal V-ATPase was identified as an Lf target in cancer cells. V-ATPase is a proton pump critical for cellular homeostasis that migrates to the plasma membrane of highly metastatic cancer cells contributing to the acidity of the tumor microenvironment. Cancer cells were found to be susceptible to Lf only when this proton pump is present at the plasma membrane. Plasmalemmal V-ATPase can thus be an excellent biomarker for driving treatment decisions and forecasting clinical outcomes of Lf-based anticancer strategies. Future research endeavors should thus seek to validate this biomarker by thorough preclinical and clinical studies, as well as to develop effective methods for its detection under clinical settings.


Asunto(s)
Adenosina Trifosfatasas , Lactoferrina , Adenosina Trifosfatasas/metabolismo , Biomarcadores/metabolismo , Membrana Celular/metabolismo , Humanos , Lactoferrina/metabolismo , Microambiente Tumoral
17.
Int J Biol Macromol ; 202: 309-317, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35038474

RESUMEN

Lactoferrin (Lf) is a versatile natural milk-derived protein that exhibits multiple interesting biological activities. Since it is safe for human administration and currently manufactured using low cost and well-established large-scale processes, the Lf scientific community has been devoted at dissecting its mechanisms of action towards its more rational and efficient use for various applications. Emerging literature has identified proton pumping ATPases as molecular targets of Lf in different cellular models linked to distinct activities of this natural protein. Information on this subject has not been systematically analysed before, hence herein we review the current state of art on the effect of Lf on proton pumping ATPases. Though structurally different, we propose that Lf holds a proton pump inhibitor (PPI)-like activity based on the functional resemblance with the classical inhibitors of the stomach H+/K+-ATPase. The downstream events and outcomes of the PPI-like activity of Lf, as well as its impact for the development of improved Lf applications are also discussed.


Asunto(s)
Lactoferrina , Inhibidores de la Bomba de Protones , Humanos , Lactoferrina/farmacología , Inhibidores de la Bomba de Protones/farmacología , Inhibidores de la Bomba de Protones/uso terapéutico
18.
Int J Biol Macromol ; 220: 1589-1604, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36116593

RESUMEN

The milk-derived bovine lactoferrin (bLf) is an iron-binding glycoprotein with remarkable selective anticancer activity towards highly metastatic cancer cells displaying the proton pump V-ATPase at the plasma membrane. As studies aiming to dissect the bLf mechanisms of action are critical to improve its efficacy and boost its targeted clinical use, herein we sought to further uncover the molecular basis of bLf anticancer activity. We showed that bLf co-localizes with V-ATPase and cholesterol-rich lipid rafts at the plasma membrane of highly metastatic cancer cells. Our data also revealed that bLf perturbs cellular trafficking, induces intracellular accumulation of cholesterol and lipid rafts disruption, downregulates PI3K, and AKT or p-AKT and inhibits glycolysis of cancer cells harbouring V-ATPase at the plasma membrane lipid rafts. Altogether, our results can lay the foundation for future bLf-based targeted anticancer strategies as they unravel a novel cascade of molecular events that explains and further reinforces bLf selectivity for cancer cells displaying plasmalemmal V-ATPase.


Asunto(s)
Antineoplásicos , Neoplasias , Adenosina Trifosfatasas/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Membrana Celular/metabolismo , Colesterol/metabolismo , Glucólisis , Hierro/química , Lactoferrina/química , Microdominios de Membrana/metabolismo , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Bombas de Protones/metabolismo
19.
Pharmaceutics ; 14(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36559189

RESUMEN

Calcium-doped manganese ferrite nanoparticles (NPs) are gaining special interest in the biomedical field due to their lower cytotoxicity compared with other ferrites, and the fact that they have improved magnetic properties. Magnetic hyperthermia (MH) is an alternative cancer treatment, in which magnetic nanoparticles promote local heating that can lead to the apoptosis of cancer cells. In this work, manganese/calcium ferrite NPs coated with citrate (CaxMn1-xFe2O4 (x = 0, 0.2, 1), were synthesized by the sol-gel method, followed by calcination, and then characterized regarding their crystalline structure (by X-ray diffraction, XRD), size and shape (by Transmission Electron Microscopy, TEM), hydrodynamic size and zeta potential (by Dynamic Light Scattering, DLS), and heating efficiency (measuring the Specific Absorption Rate, SAR, and Intrinsic Loss Power, ILP) under an alternating magnetic field. The obtained NPs showed a particle size within the range of 10 nm to 20 nm (by TEM) with a spherical or cubic shape. Ca0.2Mn0.8Fe2O4 NPs exhibited the highest SAR value of 36.3 W/g at the lowest field frequency tested, and achieved a temperature variation of ~7 °C in 120 s, meaning that these NPs are suitable magnetic hyperthermia agents. In vitro cellular internalization and cytotoxicity experiments, performed using the human cell line HEK 293T, confirmed cytocompatibility over 0-250 µg/mL range and successful internalization after 24 h. Based on these studies, our data suggest that these manganese-calcium ferrite NPs have potential for MH application and further use in in vivo systems.

20.
J Fungi (Basel) ; 8(1)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35050019

RESUMEN

Yeast-based bioethanol production from lignocellulosic hydrolysates (LH) is an attractive and sustainable alternative for biofuel production. However, the presence of acetic acid (AA) in LH is still a major problem. Indeed, above certain concentrations, AA inhibits yeast fermentation and triggers a regulated cell death (RCD) process mediated by the mitochondria and vacuole. Understanding the mechanisms involved in AA-induced RCD (AA-RCD) may thus help select robust fermentative yeast strains, providing novel insights to improve lignocellulosic ethanol (LE) production. Herein, we hypothesized that zinc vacuolar transporters are involved in vacuole-mediated AA-RCD, since zinc enhances ethanol production and zinc-dependent catalase and superoxide dismutase protect from AA-RCD. In this work, zinc limitation sensitized wild-type cells to AA-RCD, while zinc supplementation resulted in a small protective effect. Cells lacking the vacuolar zinc transporter Zrt3 were highly resistant to AA-RCD, exhibiting reduced vacuolar dysfunction. Moreover, zrt3Δ cells displayed higher ethanol productivity than their wild-type counterparts, both when cultivated in rich medium with AA (0.29 g L-1 h-1 versus 0.11 g L-1 h-1) and in an LH (0.73 g L-1 h-1 versus 0.55 g L-1 h-1). Overall, the deletion of ZRT3 emerges as a promising strategy to increase strain robustness in LE industrial production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA