Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Regul Integr Comp Physiol ; 316(6): R776-R782, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31042418

RESUMEN

Exercise promotes physiological cardiac hypertrophy and activates the renin-angiotensin system (RAS), which plays an important role in cardiac physiology, both through the classical axis [angiotensin II type 1 receptor (AT1R) activated by angiotensin II (ANG II)] and the alternative axis [proto-oncogene Mas receptor (MASR) activated by angiotensin-(1-7)]. However, very intense exercise could have deleterious effects on the cardiovascular system. We aimed to analyze the cardiac hypertrophy phenotype and the classical and alternative RAS axes in the myocardium of mice submitted to swimming exercises of varying volume and intensity for the development of cardiac hypertrophy. Male Balb/c mice were divided into three groups, sedentary, swimming twice a day without overload (T2), and swimming three times a day with a 2% body weight overload (T3), totaling 6 wk of training. Both training groups developed similar cardiac hypertrophy, but only T3 mice improved their oxidative capacity. We observed that T2 had increased levels of MASR, which was followed by the activation of its main downstream protein AKT; meanwhile, AT1R and its main downstream protein ERK remained unchanged. Furthermore, no change was observed regarding the levels of angiotensin peptides, in either group. In addition, we observed no change in the ratio of expression of the myosin heavy chain ß-isoform to that of the α-isoform. Fibrosis was not observed in any of the groups. In conclusion, our results suggest that increasing exercise volume and intensity did not induce a pathological hypertrophy phenotype, but instead improved the oxidative capacity, and this process might have the participation of the RAS alternative axis.


Asunto(s)
Cardiomegalia/metabolismo , Miocardio/metabolismo , Sistema Renina-Angiotensina/fisiología , Angiotensina I/metabolismo , Angiotensina II/metabolismo , Animales , Cardiomegalia/fisiopatología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones Endogámicos BALB C , Miocardio/patología , Fragmentos de Péptidos/metabolismo , Condicionamiento Físico Animal , Receptor de Angiotensina Tipo 1/metabolismo , Natación , Remodelación Ventricular/fisiología
2.
OMICS ; 28(3): 103-110, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38466948

RESUMEN

Trastuzumab is a monoclonal antibody used in oncotherapy for HER2-positive tumors. However, as an adverse effect, trastuzumab elevates the risk of heart failure, implying the involvement of energy production and mitochondrial processes. Past studies with transcriptome analysis have offered insights on pathways related to trastuzumab safety and toxicity but limited study sizes hinder conclusive findings. Therefore, we meta-analyzed mitochondria-related gene expression data in trastuzumab-treated cardiomyocytes. We searched the transcriptome databases for trastuzumab-treated cardiomyocytes in the ArrayExpress, DDBJ Omics Archive, Gene Expression Omnibus, Google Scholar, PubMed, and Web of Science repositories. A subset of 1270 genes related to mitochondrial functions (biogenesis, organization, mitophagy, and autophagy) was selected from the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology Resource databases to conduct the present meta-analysis using the Metagen package (Study register at PROSPERO: CRD42021270645). Three datasets met the inclusion criteria and 1243 genes were meta-analyzed. We observed 69 upregulated genes after trastuzumab treatment which were related mainly to autophagy (28 genes) and mitochondrial organization (28 genes). We also found 37 downregulated genes which were related mainly to mitochondrial biogenesis (11 genes) and mitochondrial organization (24 genes). The present meta-analysis indicates that trastuzumab therapy causes an unbalance in mitochondrial functions, which could, in part, help explain the development of heart failure and yields a list of potential molecular targets. These findings contribute to our understanding of the molecular mechanisms underlying the cardiotoxic effects of trastuzumab and may have implications for the development of targeted therapies to mitigate such effects.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Cardiotoxicidad/genética , Cardiotoxicidad/metabolismo , Receptor ErbB-2/metabolismo , Anticuerpos Monoclonales Humanizados/efectos adversos , Trastuzumab/efectos adversos , Insuficiencia Cardíaca/metabolismo , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA