Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 20(2): e3001502, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35113852

RESUMEN

Mounting epidemiologic and scientific evidence indicates that many psychiatric disorders originate from a complex interplay between genetics and early life experiences, particularly in the womb. Despite decades of research, our understanding of the precise prenatal and perinatal experiences that increase susceptibility to neurodevelopmental disorders remains incomplete. Sleep apnea (SA) is increasingly common during pregnancy and is characterized by recurrent partial or complete cessations in breathing during sleep. SA causes pathological drops in blood oxygen levels (intermittent hypoxia, IH), often hundreds of times each night. Although SA is known to cause adverse pregnancy and neonatal outcomes, the long-term consequences of maternal SA during pregnancy on brain-based behavioral outcomes and associated neuronal functioning in the offspring remain unknown. We developed a rat model of maternal SA during pregnancy by exposing dams to IH, a hallmark feature of SA, during gestational days 10 to 21 and investigated the consequences on the offspring's forebrain synaptic structure, synaptic function, and behavioral phenotypes across multiples stages of development. Our findings represent a rare example of prenatal factors causing sexually dimorphic behavioral phenotypes associated with excessive (rather than reduced) synapse numbers and implicate hyperactivity of the mammalian target of rapamycin (mTOR) pathway in contributing to the behavioral aberrations. These findings have implications for neuropsychiatric disorders typified by superfluous synapse maintenance that are believed to result, at least in part, from largely unknown insults to the maternal environment.


Asunto(s)
Conducta Animal , Hipoxia/fisiopatología , Efectos Tardíos de la Exposición Prenatal/etiología , Sinapsis/patología , Animales , Trastorno Autístico/etiología , Modelos Animales de Enfermedad , Femenino , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/fisiopatología , Ratas Sprague-Dawley , Caracteres Sexuales , Síndromes de la Apnea del Sueño , Serina-Treonina Quinasas TOR
2.
J Biol Chem ; 299(7): 104925, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37328105

RESUMEN

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) infection by reducing the intracellular dNTP pool. We have shown that SAMHD1 suppresses nuclear factor kappa-B activation and type I interferon (IFN-I) induction by viral infection and inflammatory stimuli. However, the mechanism by which SAMHD1 inhibits IFN-I remains unclear. Here, we show that SAMHD1 inhibits IFN-I activation induced by the mitochondrial antiviral-signaling protein (MAVS). SAMHD1 interacted with MAVS and suppressed MAVS aggregation in response to Sendai virus infection in human monocytic THP-1 cells. This resulted in increased phosphorylation of TANK binding kinase 1 (TBK1), inhibitor of nuclear factor kappa-B kinase epsilon (IKKε), and IFN regulatory factor 3 (IRF3). SAMHD1 suppressed IFN-I activation induced by IKKε and prevented IRF7 binding to the kinase domain of IKKε. We found that SAMHD1 interaction with the inhibitory domain (ID) of IRF7 (IRF7-ID) was necessary and sufficient for SAMHD1 suppression of IRF7-mediated IFN-I activation in HEK293T cells. Computational docking and molecular dynamics simulations revealed possible binding sites between IRF7-ID and full-length SAMHD1. Individual substitution of F411, E416, or V460 in IRF7-ID significantly reduced IRF7 transactivation activity and SAMHD1 binding. Furthermore, we investigated the role of SAMHD1 inhibition of IRF7-mediated IFN-I induction during HIV-1 infection. We found that THP-1 cells lacking IRF7 expression had reduced HIV-1 infection and viral transcription compared to control cells, indicating a positive role of IRF7 in HIV-1 infection. Our findings suggest that SAMHD1 suppresses IFN-I induction through the MAVS, IKKε, and IRF7 signaling axis.


Asunto(s)
Infecciones por VIH , Interferón Tipo I , Proteína 1 que Contiene Dominios SAM y HD , Humanos , Células HEK293 , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Inmunidad Innata , Factor 3 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Infecciones por VIH/metabolismo , Transducción de Señal
3.
PLoS Pathog ; 17(3): e1009421, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33690734

RESUMEN

N6-methyladenosine (m6A) is a prevalent RNA modification that plays a key role in regulating eukaryotic cellular mRNA functions. RNA m6A modification is regulated by two groups of cellular proteins, writers and erasers that add or remove m6A, respectively. HIV-1 RNA contains m6A modifications that modulate viral infection and gene expression in CD4+ T cells. However, it remains unclear whether m6A modifications of HIV-1 RNA modulate innate immune responses in myeloid cells that are important for antiviral immunity. Here we show that m6A modification of HIV-1 RNA suppresses the expression of antiviral cytokine type-I interferon (IFN-I) in differentiated human monocytic cells and primary monocyte-derived macrophages. Transfection of differentiated monocytic U937 cells with HIV-1 RNA fragments containing a single m6A-modification significantly reduced IFN-I mRNA expression relative to their unmodified RNA counterparts. We generated HIV-1 with altered m6A levels of RNA by manipulating the expression of the m6A erasers (FTO and ALKBH5) or pharmacological inhibition of m6A addition in virus-producing cells, or by treating HIV-1 RNA with recombinant FTO in vitro. HIV-1 RNA transfection or viral infection of differentiated U937 cells and primary macrophages demonstrated that HIV-1 RNA with decreased m6A levels enhanced IFN-I expression, whereas HIV-1 RNA with increased m6A modifications had opposite effects. Our mechanistic studies indicated that m6A of HIV-1 RNA escaped retinoic acid-induced gene I (RIG-I)-mediated RNA sensing and activation of the transcription factors IRF3 and IRF7 that drive IFN-I gene expression. Together, these findings suggest that m6A modifications of HIV-1 RNA evade innate immune sensing in myeloid cells.


Asunto(s)
Infecciones por VIH/inmunología , VIH-1/metabolismo , Interferón Tipo I/biosíntesis , Células Mieloides/virología , Procesamiento Postranscripcional del ARN/inmunología , ARN Viral/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Regulación de la Expresión Génica/inmunología , VIH-1/inmunología , Humanos , Inmunidad Innata/inmunología , Macrófagos/metabolismo , Macrófagos/virología , Monocitos/metabolismo , Monocitos/virología , Células Mieloides/inmunología , Células Mieloides/metabolismo , ARN Viral/inmunología
4.
Proc Natl Acad Sci U S A ; 117(20): 10989-10999, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32354997

RESUMEN

Staphylococcus aureus infections can lead to diseases that range from localized skin abscess to life-threatening toxic shock syndrome. The SrrAB two-component system (TCS) is a global regulator of S. aureus virulence and critical for survival under environmental conditions such as hypoxic, oxidative, and nitrosative stress found at sites of infection. Despite the critical role of SrrAB in S. aureus pathogenicity, the mechanism by which the SrrAB TCS senses and responds to these environmental signals remains unknown. Bioinformatics analysis showed that the SrrB histidine kinase contains several domains, including an extracellular Cache domain and a cytoplasmic HAMP-PAS-DHp-CA region. Here, we show that the PAS domain regulates both kinase and phosphatase enzyme activity of SrrB and present the structure of the DHp-CA catalytic core. Importantly, this structure shows a unique intramolecular cysteine disulfide bond in the ATP-binding domain that significantly affects autophosphorylation kinetics. In vitro data show that the redox state of the disulfide bond affects S. aureus biofilm formation and toxic shock syndrome toxin-1 production. Moreover, with the use of the rabbit infective endocarditis model, we demonstrate that the disulfide bond is a critical regulatory element of SrrB function during S. aureus infection. Our data support a model whereby the disulfide bond and PAS domain of SrrB sense and respond to the cellular redox environment to regulate S. aureus survival and pathogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cisteína/metabolismo , Proteínas Represoras/metabolismo , Staphylococcus aureus/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas , Secuencia de Bases , Biopelículas , Dominio Catalítico , Modelos Animales de Enfermedad , Endocarditis , Enterotoxinas , Femenino , Regulación Bacteriana de la Expresión Génica , Histidina Quinasa/metabolismo , Masculino , Modelos Moleculares , Mutación , Oxidación-Reducción , Dominios Proteicos , Conejos , Proteínas Represoras/química , Proteínas Represoras/genética , Sepsis , Infecciones Estafilocócicas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Superantígenos , Thermotoga maritima , Virulencia/genética , Virulencia/fisiología
5.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37047353

RESUMEN

Sigma-2 receptor (S2R) is a S2R ligand-binding site historically associated with reportedly 21.5 kDa proteins that have been linked to several diseases, such as cancer, Alzheimer's disease, and schizophrenia. The S2R is highly expressed in various tumors, where it correlates with the proliferative status of the malignant cells. Recently, S2R was reported to be the transmembrane protein TMEM97. Prior to that, we had been investigating the translocator protein (TSPO) as a potential 21.5 kDa S2R candidate protein with reported heme and sterol associations. Here, we investigate the contributions of TMEM97 and TSPO to S2R activity in MCF7 breast adenocarcinoma and MIA PaCa-2 (MP) pancreatic carcinoma cells. Additionally, the role of the reported S2R-interacting partner PGRMC1 was also elucidated. Proximity ligation assays and co-immunoprecipitation show a functional association between S2R and TSPO. Moreover, a close physical colocalization of TMEM97 and TSPO was found in MP cells. In MCF7 cells, co-immunoprecipitation only occurred with TMEM97 but not with PGRMC1, which was further confirmed by confocal microscopy experiments. Treatment with the TMEM97 ligand 20-(S)-hydroxycholesterol reduced co-immunoprecipitation of both TMEM97 and PGRMC1 in immune pellets of immunoprecipitated TSPO in MP cells. To the best of our knowledge, this is the first suggestion of a (functional) interaction between TSPO and TMEM97 that can be affected by S2R ligands.


Asunto(s)
Receptores sigma , Humanos , Ligandos , Unión Proteica , Receptores sigma/metabolismo , Sitios de Unión , Receptores de GABA/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Progesterona/metabolismo
6.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33177202

RESUMEN

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) restricts HIV-1 replication by limiting the intracellular deoxynucleoside triphosphate (dNTP) pool. SAMHD1 also suppresses the activation of NF-κB in response to viral infections and inflammatory stimuli. However, the mechanisms by which SAMHD1 negatively regulates this pathway remain unclear. Here, we show that SAMHD1-mediated suppression of NF-κB activation is modulated by two key mediators of NF-κB signaling, tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and transforming growth factor ß-activated kinase 1 (TAK1). We compared NF-κB activation stimulated by interleukin (IL)-1ß in monocytic THP-1 control and SAMHD1 knockout (KO) cells with and without partial TRAF6 knockdown (KD), or in cells treated with TAK1 inhibitors. Relative to control cells, IL-1ß-treated SAMHD1 KO cells showed increased phosphorylation of the inhibitor of NF-κB (IκBα), an indication of pathway activation, and elevated levels of TNF-α mRNA. Moreover, SAMHD1 KO combined with TRAF6 KD or pharmacological TAK1 inhibition reduced IκBα phosphorylation and TNF-α mRNA to the level of control cells. SAMHD1 KO cells infected with single-cycle HIV-1 showed elevated infection and TNF-α mRNA levels compared to control cells, and the effects were significantly reduced by TRAF6 KD or TAK1 inhibition. We further demonstrated that overexpressed SAMHD1 inhibited TRAF6-stimulated NF-κB reporter activity in HEK293T cells in a dose-dependent manner. SAMHD1 contains a nuclear localization signal (NLS), but an NLS-defective SAMHD1 exhibited a suppressive effect similar to the wild-type protein. Our data suggest that the TRAF6-TAK1 axis contributes to SAMHD1-mediated suppression of NF-κB activation and HIV-1 infection.IMPORTANCE Cells respond to pathogen infection by activating a complex innate immune signaling pathway, which culminates in the activation of transcription factors and secretion of a family of functionally and genetically related cytokines. However, excessive immune activation may cause tissue damage and detrimental effects on the host. Therefore, in order to maintain host homeostasis, the innate immune response is tightly regulated during viral infection. We have reported SAMHD1 as a novel negative regulator of the innate immune response. Here, we provide new insights into SAMHD1-mediated negative regulation of the NF-κB pathway at the TRAF6-TAK1 checkpoint. We show that SAMHD1 inhibits TAK1 activation and TRAF6 signaling in response to proinflammatory stimuli. Interestingly, TRAF6 knockdown in SAMHD1-deficient cells significantly inhibited HIV-1 infection and activation of NF-κB induced by virus infection. Our research reveals a new negative regulatory mechanism by which SAMHD1 participates in the maintenance of cellular homeostasis during HIV-1 infection and inflammation.


Asunto(s)
Regulación de la Expresión Génica , Infecciones por VIH/inmunología , Inmunidad Innata/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , FN-kappa B/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Células HEK293 , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Quinasas Quinasa Quinasa PAM/genética , FN-kappa B/genética , Proteína 1 que Contiene Dominios SAM y HD/genética , Transducción de Señal
7.
J Sport Rehabil ; 31(6): 785-791, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35413684

RESUMEN

OBJECTIVE: The purpose of this study was to investigate the injury rate in NBA players following return to play during the post-COVID-19 shutdown 2019-2020 NBA season. METHODS: This study was a retrospective review of all NBA players who were placed on the injury report during the preseason and first 4 weeks of the regular season as well as playoffs from the 2017-2018 through 2020-2021 NBA seasons. The data were compiled using publicly available injury reports. All injuries were recorded, and injury rates were calculated per 1000 athletic exposures. Risk ratio with 95% confidence intervals compared injury rates between the 2 cohorts. RESULTS: Over the course of the study period, 399 injuries were reported. The highest injury rate per athletic exposure was observed to have occurred during the first month of the regular season in the 2 seasons prior to the COVID-19 pandemic. There was no significant difference in the average number of games missed before and after the pandemic for the preseason (P = .95), first month of regular season (P = .62), and playoffs (P = .69). There was no significant difference in the rate of injury when comparing injury rates before and after the pandemic for the preseason (P = .25), first month of the regular season (P = .11), and playoffs (P = .3). CONCLUSION: The rate of injury in NBA players following the COVID-19 pandemic was not significantly higher than 2 recent past NBA seasons.


Asunto(s)
Rendimiento Atlético , Baloncesto , COVID-19 , Baloncesto/lesiones , COVID-19/epidemiología , Humanos , Estudios Retrospectivos , Volver al Deporte
8.
Cereb Cortex ; 30(1): 59-71, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31220216

RESUMEN

While research has identified alterations in dorsolateral prefrontal cortical function as a key factor to the etiology of bipolar disorder, few studies have uncovered robust changes in protein signal transduction pathways in this disorder. Given the direct relevance of protein-based expressional alterations to cellular functions and because many of the key regulatory mechanisms for the disease pathogenesis likely include alterations in protein activity rather than changes in expression alone, the identification of alterations in discrete signal transduction pathways in bipolar disorder would have broad implications for understanding the disease pathophysiology. As prior microarray data point to a previously unrecognized involvement of the RhoA network in bipolar disorder, here we investigate the protein expression and activity of key components of a RhoA signal transduction pathway in dorsolateral prefrontal cortical homogenates from subjects with bipolar disorder. The results of this investigation implicate overactivation of prefrontal cortical RhoA signaling in specific subtypes of bipolar disorder. The specificity of these findings is demonstrated by a lack of comparable changes in schizophrenia; however, our findings do identify convergence between both disorders at the level of activity-mediated actin cytoskeletal regulation. These findings have implications for understanding the altered cortical synaptic connectivity of bipolar disorder.


Asunto(s)
Trastorno Bipolar/metabolismo , Corteza Prefrontal/metabolismo , Trastornos Psicóticos/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Adulto , Trastorno Bipolar/complicaciones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Trastornos Psicóticos/complicaciones , Transducción de Señal
9.
J Neurosci ; 39(29): 5634-5646, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31092585

RESUMEN

Addictive behaviors, including relapse, are thought to depend in part on long-lasting drug-induced adaptations in dendritic spine signaling and morphology in the nucleus accumbens (NAc). While the influence of activity-dependent actin remodeling in these phenomena has been studied extensively, the role of microtubules and associated proteins remains poorly understood. We report that pharmacological inhibition of microtubule polymerization in the NAc inhibited locomotor sensitization to cocaine and contextual reward learning. We then investigated the roles of microtubule end-binding protein 3 (EB3) and SRC kinase in the neuronal and behavioral responses to volitionally administered cocaine. In synaptoneurosomal fractions from the NAc of self-administering male rats, the phosphorylation of SRC at an activating site was induced after 1 d of withdrawal, while EB3 levels were increased only after 30 d of withdrawal. Blocking SRC phosphorylation during early withdrawal by virally overexpressing SRCIN1, a negative regulator of SRC activity known to interact with EB3, abolished the incubation of cocaine craving in both male and female rats. Conversely, mimicking the EB3 increase observed after prolonged withdrawal increased the motivation to consume cocaine in male rats. In mice, the overexpression of either EB3 or SRCIN1 increased dendritic spine density and altered the spine morphology of NAc medium spiny neurons. Finally, a cocaine challenge after prolonged withdrawal recapitulated most of the synaptic protein expression profiles observed at early withdrawal. These findings suggest that microtubule-associated signaling proteins such as EB3 cooperate with actin remodeling pathways, notably SRC kinase activity, to establish and maintain long-lasting cellular and behavioral alterations following cocaine self-administration.SIGNIFICANCE STATEMENT Drug-induced morphological restructuring of dendritic spines of nucleus accumbens neurons is thought to be one of the cellular substrates of long-lasting drug-associated memories. The molecular basis of these persistent changes has remained incompletely understood. Here we implicate for the first time microtubule function in this process, together with key players such as microtubule-bound protein EB3 and synaptic SRC phosphorylation. We propose that microtubule and actin remodeling cooperate during withdrawal to maintain the plastic structural changes initially established by cocaine self-administration. This work opens new translational avenues for further characterization of microtubule-associated regulatory molecules as putative drug targets to tackle relapse to drug taking.


Asunto(s)
Cocaína/administración & dosificación , Locomoción/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Oncogénica pp60(v-src)/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Sinapsis/metabolismo , Animales , Trastornos Relacionados con Cocaína/metabolismo , Trastornos Relacionados con Cocaína/patología , Femenino , Locomoción/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Microtúbulos/patología , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Ratas , Autoadministración , Síndrome de Abstinencia a Sustancias/patología , Sinapsis/efectos de los fármacos , Sinapsis/patología
10.
Biochem Biophys Res Commun ; 524(1): 64-69, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-31980178

RESUMEN

PGRMC1 is a protein from the MAPR family with a range of cellular functions. PGRMC1 has been described to play a role in fertility, neuroprotection, steroidogenesis, membrane trafficking and in cancer cell biology. PGRMC1 represents a likely key regulator of cell metabolism and proliferation, as well as a potential target for anti-cancer therapies. To further understand the functions of PGRMC1 and the mechanism of the small molecule inhibitor of PGRMC1, AG-205, proteins differentially bound to PGRMC1 were identified following AG-205 treatment of MIA PaCa-2 cells. Our results suggest that AG-205 influences PGRMC1 interactions with the actin cytoskeleton. The binding of two PGRMC1-associated proteins that support this, RACK1 and alpha-Actinin-1, was reduced following AG-205 treatment. The biology associated with PGRMC1 binding partners identified here merits further investigation.


Asunto(s)
Actinas/metabolismo , Indoles/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Receptores de Progesterona/antagonistas & inhibidores , Citoesqueleto de Actina/metabolismo , Línea Celular Tumoral , Humanos , Espectrometría de Masas , Unión Proteica , Receptores de Cinasa C Activada/metabolismo
11.
Mol Phylogenet Evol ; 148: 106814, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32278076

RESUMEN

The membrane-associated progesterone receptor (MAPR) family consists of heme-binding proteins containing a cytochrome b5 (cytb5) domain characterized by the presence of a MAPR-specific interhelical insert region (MIHIR) between helices 3 and 4 of the canonical cytb5-domain fold. Animals possess three MAPR genes (PGRMC-like, Neuferricin and Neudesin). Here we show that all three animal MAPR genes were already present in the common ancestor of the opisthokonts (comprising animals and fungi as well as related single-celled taxa). All three MAPR genes acquired extensions C-terminal to the cytb5 domain, either before or with the evolution of animals. The archetypical MAPR protein, progesterone receptor membrane component 1 (PGRMC1), contains phosphorylated tyrosines Y139 and Y180. The combination of Y139/Y180 appeared in the common ancestor of cnidarians and bilaterians, along with an early embryological organizer and synapsed neurons, and is strongly conserved in all bilaterian animals. A predicted protein interaction motif in the PGRMC1 MIHIR is potentially regulated by Y139 phosphorylation. A multilayered model of animal MAPR function acquisition includes some pre-metazoan functions (e.g., heme binding and cytochrome P450 interactions) and some acquired animal-specific functions that involve regulation of strongly conserved protein interaction motifs acquired by animals (Metazoa). This study provides a conceptual framework for future studies, against which especially PGRMC1's multiple functions can perhaps be stratified and functionally dissected.


Asunto(s)
Eucariontes/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Progesterona/metabolismo , Secuencia de Aminoácidos , Animales , Evolución Molecular , Proteínas de la Membrana/química , Filogenia , Unión Proteica , Dominios Proteicos , Receptores de Progesterona/química , Receptores de Progesterona/genética
12.
Proc Natl Acad Sci U S A ; 114(6): 1395-1400, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28115704

RESUMEN

Wiskott-Aldrich syndrome protein (WASP) family verprolin homologous protein 1 (WAVE1) regulates actin-related protein 2/3 (Arp2/3) complex-mediated actin polymerization. Our previous studies have found WAVE1 to be inhibited by Cdk5-mediated phosphorylation in brain and to play a role in the regulation of dendritic spine morphology. Here we report that mice in which WAVE1 was knocked out (KO) in neurons expressing the D1 dopamine receptor (D1-KO), but not mice where WAVE1 was knocked out in neurons expressing the D2 dopamine receptor (D2-KO), exhibited a significant decrease in place preference associated with cocaine. In contrast to wild-type (WT) and WAVE1 D2-KO mice, cocaine-induced sensitized locomotor behavior was not maintained in WAVE1 D1-KO mice. After chronic cocaine administration and following withdrawal, an acute cocaine challenge induced WAVE1 activation in striatum, which was assessed by dephosphorylation. The cocaine-induced WAVE1 dephosphorylation was attenuated by coadministration of either a D1 dopamine receptor or NMDA glutamate receptor antagonist. Upon an acute challenge of cocaine following chronic cocaine exposure and withdrawal, we also observed in WT, but not in WAVE1 D1-KO mice, a decrease in dendritic spine density and a decrease in the frequency of excitatory postsynaptic AMPA receptor currents in medium spiny projection neurons expressing the D1 dopamine receptor (D1-MSNs) in the nucleus accumbens. These results suggest that WAVE1 is involved selectively in D1-MSNs in cocaine-evoked neuronal activity-mediated feedback regulation of glutamatergic synapses.


Asunto(s)
Cocaína/farmacología , Neuronas/metabolismo , Receptores de Dopamina D1/metabolismo , Conducta Espacial/efectos de los fármacos , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Animales , Inhibidores de Captación de Dopamina/farmacología , Fenómenos Electrofisiológicos/genética , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Ratones Noqueados , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiología , Fosforilación/efectos de los fármacos , Receptores de Dopamina D1/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética
13.
Eur J Neurosci ; 49(9): 1091-1101, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30565792

RESUMEN

Synapse degeneration and dendritic spine dysgenesis are believed to be crucial early steps in Alzheimer's disease (AD), and correlate with cognitive deficits in AD patients. Soluble amyloid beta (Aß)-derived oligomers, also termed Aß-derived diffusible ligands (ADDLs), accumulate in the brain of AD patients and play a crucial role in AD pathogenesis. ADDLs bind to mature hippocampal neurons, induce structural changes in dendritic spines and contribute to neuronal death. However, mechanisms underlying structural and toxic effects are not fully understood. Here, we report that ADDLs bind to cultured mature cortical pyramidal neurons and induce spine dysgenesis. ADDL treatment induced the rapid depletion of kalirin-7, a brain-specific guanine-nucleotide exchange factor for the small GTPase Rac1, from spines. Kalirin-7 is a key regulator of dendritic spine morphogenesis and maintenance in forebrain pyramidal neurons and here we show that overexpression of kalirin-7 prevents ADDL-induced spine degeneration. Taken together, our results suggest that kalirin-7 may play a role in the early events leading to synapse degeneration, and its pharmacological activation may prevent or delay synapse pathology in AD.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Animales , Células Cultivadas , Degeneración Nerviosa , Células Piramidales/metabolismo , Células Piramidales/patología , Ratas , Ratas Sprague-Dawley
14.
Proc Natl Acad Sci U S A ; 113(34): 9623-8, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27506785

RESUMEN

Repeated cocaine exposure regulates transcriptional regulation within the nucleus accumbens (NAc), and epigenetic mechanisms-such as histone acetylation and methylation on Lys residues-have been linked to these lasting actions of cocaine. In contrast to Lys methylation, the role of histone Arg (R) methylation remains underexplored in addiction models. Here we show that protein-R-methyltransferase-6 (PRMT6) and its associated histone mark, asymmetric dimethylation of R2 on histone H3 (H3R2me2a), are decreased in the NAc of mice and rats after repeated cocaine exposure, including self-administration, and in the NAc of cocaine-addicted humans. Such PRMT6 down-regulation occurs selectively in NAc medium spiny neurons (MSNs) expressing dopamine D2 receptors (D2-MSNs), with opposite regulation occurring in D1-MSNs, and serves to protect against cocaine-induced addictive-like behavioral abnormalities. Using ChIP-seq, we identified Src kinase signaling inhibitor 1 (Srcin1; also referred to as p140Cap) as a key gene target for reduced H3R2me2a binding, and found that consequent Srcin1 induction in the NAc decreases Src signaling, cocaine reward, and the motivation to self-administer cocaine. Taken together, these findings suggest that suppression of Src signaling in NAc D2-MSNs, via PRMT6 and H3R2me2a down-regulation, functions as a homeostatic brake to restrain cocaine action, and provide novel candidates for the development of treatments for cocaine addiction.


Asunto(s)
Proteínas Portadoras/genética , Trastornos Relacionados con Cocaína/metabolismo , Cocaína/administración & dosificación , Histonas/metabolismo , Núcleo Accumbens/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Animales , Proteínas Portadoras/metabolismo , Trastornos Relacionados con Cocaína/genética , Trastornos Relacionados con Cocaína/patología , Histonas/genética , Humanos , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Núcleo Accumbens/patología , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
15.
J Neurochem ; 147(1): 84-98, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30071134

RESUMEN

The nucleus accumbens (NAc) is a critical brain reward region that mediates the rewarding effects of drugs of abuse, including those of morphine and other opiates. Drugs of abuse induce widespread alterations in gene transcription and dendritic spine morphology in medium spiny neurons (MSNs) of the NAc that ultimately influence NAc excitability and hence reward-related behavioral responses. Growing evidence indicates that within the NAc small GTPases are common intracellular targets of drugs of abuse where these molecules regulate drug-mediated transcriptional and spine morphogenic effects. The RhoA small GTPase is among the most well-characterized members of the Ras superfamily of small GTPases, and recent work highlights an important role for hippocampal RhoA in morphine-facilitated reward behavior. Despite this, it remains unclear how RhoA pathway signaling in the NAc is affected by withdrawal from morphine. To investigate this question, using subcellular fractionation and subsequent protein profiling we examined the expression of key components of the RhoA pathway in NAc nuclear, cytoplasmic, and synaptosomal compartments during multiple withdrawal periods from repeated morphine administration. Furthermore, using in vivo viral-mediated gene transfer, we determined the consequences of revealed RhoA pathway alterations on NAc MSN dendritic spine morphology. Our findings reveal an important role for RhoA signaling cascades in mediating the effects of long-term morphine withdrawal on NAc MSN dendritic spine elimination. OPEN PRACTICES: Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.


Asunto(s)
Morfina , Narcóticos , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patología , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/patología , Sinapsis/metabolismo , Sinapsis/patología , Proteínas de Unión al GTP rho/biosíntesis , Animales , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/efectos de los fármacos , Recompensa , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Proteínas de Unión al GTP rho/genética , Proteína de Unión al GTP rhoA
16.
Bioorg Med Chem ; 26(14): 4209-4224, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30026041

RESUMEN

Synthesis and biological evaluation of a series of novel indole derivatives as anticancer agents is described. A bisindolylmaleimide template has been derived as a versatile pharmacophore with which to pursue chemical diversification. Starting from maleimide, the introduction of an oxygen to the headgroup (hydroxymaleimide) was initially investigated and the bioactivity assessed by screening of kinase inhibitory activity, identifying substituent derived selectivity. Extension of the hydroxymaleimide template to incorporate substitution of the indole nitrogens was next completed and assessed again by kinase inhibition identifying unique selectivity patterns with respect to GSK-3 and CDK kinases. Subsequently, the anticancer activity of bisindolylmaleimides were assessed using the NCI-60 cell screen, disclosing the discovery of growth inhibitory profiles towards a number of cell lines, such as SNB-75 CNS cancer, A498 and UO-31 renal, MDA MB435 melanoma and a panel of leukemia cell lines. The potential for selective kinase inhibition by modulation of this template is evident and will inform future selective clinical candidates.


Asunto(s)
Antineoplásicos/farmacología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Maleimidas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Maleimidas/síntesis química , Maleimidas/química , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
17.
Biochim Biophys Acta ; 1866(2): 339-349, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27452206

RESUMEN

Progesterone receptor membrane component 1 (PGRMC1) is a multi-functional protein with a heme-binding moiety related to that of cytochrome b5, which is a putative progesterone receptor. The recently solved PGRMC1 structure revealed that heme-binding involves coordination by a tyrosinate ion at Y113, and induces dimerization which is stabilized by hydrophobic stacking of heme on adjacent monomers. Dimerization is required for association with cytochrome P450 (cyP450) enzymes, which mediates chemoresistance to doxorubicin and may be responsible for PGRMC1's anti-apoptotic activity. Here we review the multiple attested involvement of PGRMC1 in diverse functions, including regulation of cytochrome P450, steroidogenesis, vesicle trafficking, progesterone signaling and mitotic spindle and cell cycle regulation. Its wide range of biological functions is attested to particularly by its emerging association with cancer and progesterone-responsive female reproductive tissues. PGRMC1 exhibits all the hallmarks of a higher order nexus signal integration hub protein. It appears capable of acting as a detector that integrates information from kinase/phosphatase pathways with heme and CO levels and probably redox status.


Asunto(s)
Proteínas de la Membrana/fisiología , Neoplasias/metabolismo , Receptores de Progesterona/fisiología , Ciclo Celular , Proliferación Celular , Humanos , Proteínas de la Membrana/química , Neoplasias/patología , Multimerización de Proteína , Receptores de Progesterona/química , Receptores sigma/fisiología
18.
Transfusion ; 57(5): 1299-1303, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28205241

RESUMEN

BACKGROUND: Contamination of platelet concentrates (PCs) with Staphylococcus aureus is one of the most significant ongoing transfusion safety risks in developed countries. CASE REPORT: This report describes a transfusion reaction in an elderly patient diagnosed with acute myeloid leukemia, transfused with a 4-day-old buffy coat PC through a central venous catheter. The transfusion was interrupted when a large fibrous clot in the PC obstructed infusion pump flow. Shortly afterward, a red blood cell (RBC) unit transfusion started. After septic symptoms were developed, the RBC transfusion was also interrupted. While the RBC unit tested negative for bacterial contamination, the PC and the patient samples were found to be contaminated with a S. aureus strain that exhibited the same phenotypic and genome sequencing profiles. The isolated S. aureus forms biofilms and produces the superantigen enterotoxin-like U, which was detected in a sample of the transfused PCs. The patient received posttransfusion antibiotic treatment and had her original central line removed and replaced. DISCUSSION: As the implicated PC had been tested for bacterial contamination during routine screening yielding negative results, this is a false-negative transfusion sepsis case. Using a point-of-care test could have prevented the transfusion reaction. This report highlights the increasing incidence of S. aureus as a major PC contaminant with grave clinical implications. Importantly, S. aureus is able to interact with platelet components resulting in visible changes in PCs. CONCLUSION: Visual inspection of blood components before transfusion is an essential safety practice to interdict the transfusion of bacterially contaminated units.


Asunto(s)
Transfusión de Plaquetas/efectos adversos , Sepsis/etiología , Infecciones Estafilocócicas/transmisión , Staphylococcus aureus , Reacción a la Transfusión/microbiología , Anciano , Antibacterianos/uso terapéutico , Catéteres Venosos Centrales/microbiología , Transfusión de Eritrocitos/efectos adversos , Femenino , Humanos , Leucemia Mieloide Aguda/terapia
19.
J Neurosci ; 34(11): 3878-87, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24623766

RESUMEN

Decreased medial prefrontal cortex (mPFC) neuronal activity is associated with social defeat-induced depression- and anxiety-like behaviors in mice. However, the molecular mechanisms underlying the decreased mPFC activity and its prodepressant role remain unknown. We show here that induction of the transcription factor ΔFosB in mPFC, specifically in the prelimbic (PrL) area, mediates susceptibility to stress. ΔFosB induction in PrL occurred selectively in susceptible mice after chronic social defeat stress, and overexpression of ΔFosB in this region, but not in the nearby infralimbic (IL) area, enhanced stress susceptibility. ΔFosB produced these effects partly through induction of the cholecystokinin (CCK)-B receptor: CCKB blockade in mPFC induces a resilient phenotype, whereas CCK administration into mPFC mimics the anxiogenic- and depressant-like effects of social stress. We previously found that optogenetic stimulation of mPFC neurons in susceptible mice reverses several behavioral abnormalities seen after chronic social defeat stress. Therefore, we hypothesized that optogenetic stimulation of cortical projections would rescue the pathological effects of CCK in mPFC. After CCK infusion in mPFC, we optogenetically stimulated mPFC projections to basolateral amygdala or nucleus accumbens, two subcortical structures involved in mood regulation. Stimulation of corticoamygdala projections blocked the anxiogenic effect of CCK, although no effect was observed on other symptoms of social defeat. Conversely, stimulation of corticoaccumbens projections reversed CCK-induced social avoidance and sucrose preference deficits but not anxiogenic-like effects. Together, these results indicate that social stress-induced behavioral deficits are mediated partly by molecular adaptations in mPFC involving ΔFosB and CCK through cortical projections to distinct subcortical targets.


Asunto(s)
Trastornos de Ansiedad/fisiopatología , Colecistoquinina/fisiología , Trastorno Depresivo/fisiopatología , Corteza Prefrontal/fisiología , Proteínas Proto-Oncogénicas c-fos/fisiología , Receptor de Colecistoquinina B/fisiología , Animales , Ansiolíticos/farmacología , Trastornos de Ansiedad/patología , Mapeo Encefálico , Enfermedad Crónica , Trastorno Depresivo/patología , Indoles/farmacología , Sistema Límbico/citología , Sistema Límbico/efectos de los fármacos , Sistema Límbico/fisiología , Masculino , Meglumina/análogos & derivados , Meglumina/farmacología , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Corteza Prefrontal/citología , Corteza Prefrontal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/genética , Receptor de Colecistoquinina B/antagonistas & inhibidores , Receptor de Colecistoquinina B/genética , Predominio Social , Estrés Psicológico/patología , Estrés Psicológico/fisiopatología
20.
J Neurosci ; 33(27): 11012-22, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23825406

RESUMEN

It is well established that behavioral sensitization to cocaine is accompanied by increased spine density and AMPA receptor (AMPAR) transmission in the nucleus accumbens (NAc), but two major questions remain unanswered. Are these adaptations mechanistically coupled? And, given that they can be dissociated from locomotor sensitization, what is their functional significance? We tested the hypothesis that the guanine-nucleotide exchange factor Kalirin-7 (Kal-7) couples cocaine-induced AMPAR and spine upregulation and that these adaptations underlie sensitization of cocaine's incentive-motivational properties-the properties that make it "wanted." Rats received eight daily injections of saline or cocaine. On withdrawal day 14, we found that Kal-7 levels and activation of its downstream effectors Rac-1 and PAK were increased in the NAc of cocaine-sensitized rats. Furthermore, AMPAR surface expression and spine density were increased, as expected. To determine whether these changes require Kal-7, a lentiviral vector expressing Kal-7 shRNA was injected into the NAc core before cocaine exposure. Knocking down Kal-7 abolished the AMPAR and spine upregulation normally seen during cocaine withdrawal. Despite the absence of these adaptations, rats with reduced Kal-7 levels developed locomotor sensitization. However, incentive sensitization, which was assessed by how rapidly rats learned to self-administer a threshold dose of cocaine, was severely impaired. These results identify a signaling pathway coordinating AMPAR and spine upregulation during cocaine withdrawal, demonstrate that locomotor and incentive sensitization involve divergent mechanisms, and link enhanced excitatory transmission in the NAc to incentive sensitization.


Asunto(s)
Cocaína/administración & dosificación , Espinas Dendríticas/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Animales , Espinas Dendríticas/efectos de los fármacos , Técnicas de Silenciamiento del Gen/métodos , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Plasticidad Neuronal/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Autoadministración , Síndrome de Abstinencia a Sustancias/metabolismo , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA