Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cardiology ; 148(4): 310-323, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37231805

RESUMEN

INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic has led to millions of confirmed cases and deaths worldwide and has no approved therapy. Currently, more than 700 drugs are tested in the COVID-19 clinical trials, and full evaluation of their cardiotoxicity risks is in high demand. METHODS: We mainly focused on hydroxychloroquine (HCQ), one of the most concerned drugs for COVID-19 therapy, and investigated the effects and underlying mechanisms of HCQ on hERG channel via molecular docking simulations. We further applied the HEK293 cell line stably expressing hERG-wild-type channel (hERG-HEK) and HEK293 cells transiently expressing hERG-p.Y652A or hERG-p.F656A mutants to validate our predictions. Western blot analysis was used to determine the hERG channel, and the whole-cell patch clamp was utilized to record hERG current (IhERG). RESULTS: HCQ reduced the mature hERG protein in a time- and concentration-dependent manner. Correspondingly, chronic and acute treatment of HCQ decreased the hERG current. Treatment with brefeldin A (BFA) and HCQ combination reduced hERG protein to a greater extent than BFA alone. Moreover, disruption of the typical hERG binding site (hERG-p.Y652A or hERG-p.F656A) rescued HCQ-mediated hERG protein and IhERG reduction. CONCLUSION: HCQ can reduce the mature hERG channel expression and IhERG via enhancing channel degradation. The QT prolongation effect of HCQ is mediated by typical hERG binding sites involving residues Tyr652 and Phe656.


Asunto(s)
COVID-19 , Hidroxicloroquina , Humanos , Tratamiento Farmacológico de COVID-19 , Canal de Potasio ERG1/genética , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Células HEK293 , Hidroxicloroquina/farmacología , Canales Iónicos , Simulación del Acoplamiento Molecular , Mutación
2.
Molecules ; 29(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38202603

RESUMEN

Osthole, a natural coumarin found in various medicinal plants, has been previously reported to have neuroprotective effects. However, the specific mechanism by which Osthole alleviates dysmnesia associated with Alzheimer's disease (AD) remains unclear. This study aimed to investigate the neuroprotective properties of Osthole against cognitive impairment in rats induced by D-galactose and elucidate its pharmacological mechanism. The rat model was established by subcutaneously injecting D-galactose at a dose of 150 mg/kg/day for 56 days. The effect of Osthole on cognitive impairment was evaluated by behavior and biochemical analysis. Subsequently, a combination of in silico prediction and experimental validation was performed to verify the network-based predictions, using western blot, Nissl staining, and immunofluorescence. The results demonstrate that Osthole could improve memory dysfunction induced by D-galactose in Sprague Dawley male rats. A network proximity-based approach and integrated pathways analysis highlight two key AD-related pathological processes that may be regulated by Osthole, including neuronal apoptosis, i.e., neuroinflammation. Among them, the pro-apoptotic markers (Bax), anti-apoptotic protein (Bcl-2), the microgliosis (Iba-1), Astro-cytosis (GFAP), and inflammatory cytokines (TNF-R1) were evaluated in both hippocampus and cortex. The results indicated that Osthole significantly ameliorated neuronal apoptosis and neuroinflammation in D-galactose-induced cognitive impairment rats. In conclusion, this study sheds light on the pharmacological mechanism of Osthole in mitigating D-galactose-induced memory impairment and identifies Osthole as a potential drug candidate for AD treatment, targeting multiple signaling pathways through network proximity and integrated pathways analysis.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratas , Animales , Galactosa/efectos adversos , Enfermedades Neuroinflamatorias , Ratas Sprague-Dawley , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Cumarinas/farmacología , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico
3.
J Chem Inf Model ; 59(3): 1073-1084, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30715873

RESUMEN

Blockade of the human ether-à-go-go-related gene (hERG) channel by small molecules induces the prolongation of the QT interval which leads to fatal cardiotoxicity and accounts for the withdrawal or severe restrictions on the use of many approved drugs. In this study, we develop a deep learning approach, termed deephERG, for prediction of hERG blockers of small molecules in drug discovery and postmarketing surveillance. In total, we assemble 7,889 compounds with well-defined experimental data on the hERG and with diverse chemical structures. We find that deephERG models built by a multitask deep neural network (DNN) algorithm outperform those built by single-task DNN, naïve Bayes (NB), support vector machine (SVM), random forest (RF), and graph convolutional neural network (GCNN). Specifically, the area under the receiver operating characteristic curve (AUC) value for the best model of deephERG is 0.967 on the validation set. Furthermore, based on 1,824 U.S. Food and Drug Administration (FDA) approved drugs, 29.6% drugs are computationally identified to have potential hERG inhibitory activities by deephERG, highlighting the importance of hERG risk assessment in early drug discovery. Finally, we showcase several novel predicted hERG blockers on approved antineoplastic agents, which are validated by clinical case reports, experimental evidence, and the literature. In summary, this study presents a powerful deep learning-based tool for risk assessment of hERG-mediated cardiotoxicities in drug discovery and postmarketing surveillance.


Asunto(s)
Cardiotoxicidad , Biología Computacional/métodos , Aprendizaje Profundo , Antineoplásicos/efectos adversos , Relación Dosis-Respuesta a Droga , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Medición de Riesgo
4.
J Chem Inf Model ; 58(5): 943-956, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29712429

RESUMEN

Drug-induced cardiovascular complications are the most common adverse drug events and account for the withdrawal or severe restrictions on the use of multitudinous postmarketed drugs. In this study, we developed new in silico models for systematic identification of drug-induced cardiovascular complications in drug discovery and postmarketing surveillance. Specifically, we collected drug-induced cardiovascular complications covering the five most common types of cardiovascular outcomes (hypertension, heart block, arrhythmia, cardiac failure, and myocardial infarction) from four publicly available data resources: Comparative Toxicogenomics Database, SIDER, Offsides, and MetaADEDB. Using these databases, we developed a combined classifier framework through integration of five machine-learning algorithms: logistic regression, random forest, k-nearest neighbors, support vector machine, and neural network. The totality of models included 180 single classifiers with area under receiver operating characteristic curves (AUC) ranging from 0.647 to 0.809 on 5-fold cross-validations. To develop the combined classifiers, we then utilized a neural network algorithm to integrate the best four single classifiers for each cardiovascular outcome. The combined classifiers had higher performance with an AUC range from 0.784 to 0.842 compared to single classifiers. Furthermore, we validated our predicted cardiovascular complications for 63 anticancer agents using experimental data from clinical studies, human pluripotent stem cell-derived cardiomyocyte assays, and literature. The success rate of our combined classifiers reached 87%. In conclusion, this study presents powerful in silico tools for systematic risk assessment of drug-induced cardiovascular complications. This tool is relevant not only in early stages of drug discovery but also throughout the life of a drug including clinical trials and postmarketing surveillance.


Asunto(s)
Sistema Cardiovascular/efectos de los fármacos , Biología Computacional/métodos , Simulación por Computador , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Seguridad , Antineoplásicos/efectos adversos , Descubrimiento de Drogas , Humanos , Terapia Molecular Dirigida , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Células Madre Pluripotentes/citología , Vigilancia de Productos Comercializados
5.
J Chem Inf Model ; 57(11): 2657-2671, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-28956927

RESUMEN

Natural products with diverse chemical scaffolds have been recognized as an invaluable source of compounds in drug discovery and development. However, systematic identification of drug targets for natural products at the human proteome level via various experimental assays is highly expensive and time-consuming. In this study, we proposed a systems pharmacology infrastructure to predict new drug targets and anticancer indications of natural products. Specifically, we reconstructed a global drug-target network with 7,314 interactions connecting 751 targets and 2,388 natural products and built predictive network models via a balanced substructure-drug-target network-based inference approach. A high area under receiver operating characteristic curve of 0.96 was yielded for predicting new targets of natural products during cross-validation. The newly predicted targets of natural products (e.g., resveratrol, genistein, and kaempferol) with high scores were validated by various literature studies. We further built the statistical network models for identification of new anticancer indications of natural products through integration of both experimentally validated and computationally predicted drug-target interactions of natural products with known cancer proteins. We showed that the significantly predicted anticancer indications of multiple natural products (e.g., naringenin, disulfiram, and metformin) with new mechanism-of-action were validated by various published experimental evidence. In summary, this study offers powerful computational systems pharmacology approaches and tools for the development of novel targeted cancer therapies by exploiting the polypharmacology of natural products.


Asunto(s)
Productos Biológicos/metabolismo , Productos Biológicos/farmacología , Biología Computacional/métodos , Simulación por Computador , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Productos Biológicos/uso terapéutico , Neoplasias/metabolismo
6.
Mol Divers ; 21(4): 791-807, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28770474

RESUMEN

ROCK II is an important pharmacological target linked to central nervous system disorders such as Alzheimer's disease. The purpose of this research is to generate ROCK II inhibitor prediction models by machine learning approaches. Firstly, four sets of descriptors were calculated with MOE 2010 and PaDEL-Descriptor, and optimized by F-score and linear forward selection methods. In addition, four classification algorithms were used to initially build 16 classifiers with k-nearest neighbors [Formula: see text], naïve Bayes, Random forest, and support vector machine. Furthermore, three sets of structural fingerprint descriptors were introduced to enhance the predictive capacity of classifiers, which were assessed with fivefold cross-validation, test set validation and external test set validation. The best two models, MFK + MACCS and MLR + SubFP, have both MCC values of 0.925 for external test set. After that, a privileged substructure analysis was performed to reveal common chemical features of ROCK II inhibitors. Finally, binding modes were analyzed to identify relationships between molecular descriptors and activity, while main interactions were revealed by comparing the docking interaction of the most potent and the weakest ROCK II inhibitors. To the best of our knowledge, this is the first report on ROCK II inhibitors utilizing machine learning approaches that provides a new method for discovering novel ROCK II inhibitors.


Asunto(s)
Simulación por Computador , Inhibidores de Proteínas Quinasas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Conformación Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Quinasas Asociadas a rho/química , Quinasas Asociadas a rho/metabolismo
7.
J Alzheimers Dis ; 97(1): 293-307, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38043013

RESUMEN

BACKGROUND: Obesity significantly increases Alzheimer's disease (AD) and dementia risk. Understanding the link between a high body mass index (BMI) and these conditions is crucial for effective management and prevention. OBJECTIVE: We aimed to estimate the burden of AD and other dementias attributed to high BMI from 1990 to 2019 based on sex, age, and socio-demographic indicators (SDI) at global, regional, and national levels. METHODS: We collected data on deaths, disability-adjusted life years (DALYs), age-standardized mortality rates (ASMR), and age-standardized DALY rates (ASDR) from the 2019 Global Burden of Disease study for AD and dementia attributed to high BMI. We explored the correlation between SDI levels and ASDR. RESULTS: In 2019, there were 198,476.2 deaths (95% UI: 32,695.4-593,366.4) and 3,159,912.4 DALYs (848,330.5-8,042,531) attributed to high BMI. Numbers of deaths, DALYs, ASMR, and ASDR increased since 1990. Females had higher deaths, ASMR, and ASDR than males. Mortality and DALYs rates increased with age. ASMR and ASDR increased across five SDI levels, with the highest rise in Low-middle SDI. High-income North America had the most deaths [30,993.9 (5,101.7-89,912.9)], while North Africa and the Middle East had the highest ASMR [4.61 (0.79-13.64)] and ASDR [72.56 (20.98-181.16)] in 2019. CONCLUSIONS: The burden of AD and other dementias attributed to high BMI increased since 1990 globally and is still heaviest in developed regions. Females accounted predominantly for the burden than males. Timely measures are needed to against high BMI.


Asunto(s)
Enfermedad de Alzheimer , Masculino , Femenino , Humanos , Índice de Masa Corporal , Años de Vida Ajustados por Calidad de Vida , Enfermedad de Alzheimer/epidemiología , Carga Global de Enfermedades , Obesidad , Salud Global
8.
Comput Struct Biotechnol J ; 23: 506-519, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38261917

RESUMEN

Alzheimer's disease is a neurodegenerative disease that leads to dementia and poses a serious threat to the health of the elderly. Traditional Chinese medicine (TCM) presents as a promising novel therapeutic therapy for preventing and treating dementia. Studies have shown that natural products derived from kidney-tonifying herbs can effectively inhibit AD. Furthermore, endoplasmic reticulum (ER) stress is a critical factor in the pathology of AD. Regulation of ER stress is a crucial approach to prevent and treat AD. Thus, in this study, we first collected kidney-tonifying herbs, integrated chemical ingredients from multiple TCM databases, and constructed a comprehensive drug-target network. Subsequently, we employed the endophenotype network (network proximity) method to identify potential active ingredients in kidney-tonifying herbs that prevented AD via regulating ER stress. By combining the predicted outcomes, we discovered that 32 natural products could ameliorate AD pathology via regulating ER stress. After a comprehensive evaluation of the multi-network model and systematic pharmacological analyses, we further selected several promising compounds for in vitro testing in the APP-SH-SY5Y cell model. Experimental results showed that echinacoside and danthron were able to effectively reduce ER stress-mediated neuronal apoptosis by inhibiting the expression levels of BIP, p-PERK, ATF6, and CHOP in APP-SH-SY5Y cells. Overall, this study utilized the endophenotype network to preliminarily decipher the effective material basis and potential molecular mechanism of kidney-tonifying Chinese medicine for prevention and treatment of AD.

9.
BMC Complement Med Ther ; 23(1): 252, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37475019

RESUMEN

BACKGROUND: Although coronavirus disease 2019 (COVID-19) pandemic is still rage worldwide, there are still very limited treatments for human coronaviruses (HCoVs) infections. Xiaochahu decoction (XCHD), which is one of the traditional Chinese medicine (TCM) prescriptions in Qingfeipaidu decoction (QFPDD), is widely used for COVID-19 treatment in China and able to relieve the symptoms of fever, fatigue, anorexia, and sore throat. To explore the role and mechanisms of XCHD against HCoVs, we presented an integrated systems pharmacology framework in this study. METHODS: We constructed a global herb-compound-target (H-C-T) network of XCHD against HCoVs. Multi-level systems pharmacology analyses were conducted to highlight the key XCHD-regulated proteins, and reveal multiple HCoVs relevant biological functions affected by XCHD. We further utilized network-based prediction, drug-likeness analysis, combining with literature investigations to uncover the key ani-HCoV constituents in XCHD, whose effects on anit-HCoV-229E virus were validated using cytopathic effect (CPE) assay. Finally, we proposed potential molecular mechanisms of these compounds against HCoVs via subnetwork analysis. RESULTS: Based on the systems pharmacology framework, we identified 161 XCHD-derived compounds interacting with 37 HCoV-associated proteins. An integrated pathway analysis revealed that the mechanism of XCHD against HCoVs is related to TLR signaling pathway, RIG-I-like receptor signaling pathway, cytoplasmic DNA sensing pathway, and IL-6/STAT3 pro-inflammatory signaling pathway. Five compounds from XCHD, including betulinic acid, chrysin, isoliquiritigenin, schisandrin B, and (20R)-Ginsenoside Rh1 exerted inhibitory activity against HCoV-229E virus in Huh7 cells using in vitro CPE assay. CONCLUSION: Our work presented a comprehensive systems pharmacology approach to identify the effective molecules and explore the molecular mechanism of XCHD against HCoVs.


Asunto(s)
COVID-19 , Coronavirus , Humanos , Tratamiento Farmacológico de COVID-19 , Farmacología en Red
10.
Comput Struct Biotechnol J ; 21: 1907-1920, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936813

RESUMEN

Despite the massive investment in Alzheimer's disease (AD), there are still no disease-modifying treatments (DMTs) for AD. One major reason is attributed to the limitation of clinical "one-size-fits-all" approach, since the same AD treatment solely based on clinical diagnosis was unlikely to achieve good clinical efficacy. In recent years, computational approaches based on multiomics data have provided an unprecedented opportunity for drug discovery since they can substantially lower the costs and boost the efficiency. In this study, we intended to identify potential drug candidates for different pathological stages of AD by computationally repurposing Food and Drug Administration (FDA) approved drugs. First, we assembled gene expression data from three different AD pathological stages, which include mild cognitive impairment (MCI) and early and late stages of AD (EAD, LAD). We next quantified the network distances between drug target networks and AD modules by utilizing a network proximity approach, and identified 193 candidates that possessed significant associations with AD. After searching for previous literature evidence, 63 out of 193 (32.6%) predicted drugs were demonstrated to exert therapeutic effects on AD. We further explored the novel mechanism of action (MOA) for these drug candidates by determining the specific brain cells they might function on based on AD patient single cell transcriptomic data. Additionally, we selected several promising candidates that could cross the blood brain barrier together with confirmed neuroprotective effects, and subsequently determined the antioxidative activity of these compounds. Experimental results showed that azathioprine decreased the reactive oxygen species (ROS) and malondialdehyde (MDA) levels and improved the superoxide dismutase (SOD) activity in APP-SH-SY5Y cells. Finally, we deciphered the potential MOA of azathioprine against AD via network analysis and validated several apoptosis-related proteins (Caspase 3, Cleaved Caspase 3, Bax, Bcl2) through western blotting. In summary, this study presented an effective computational strategy utilizing omics data for AD drug repurposing, which provides a new perspective for drug discovery and development.

12.
Oxid Med Cell Longev ; 2022: 4691576, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186187

RESUMEN

Long-term exposure to ultraviolet light induces photoaging and may eventually increase the risk of skin carcinogenesis. Rare minor ginsenosides isolating from traditional medicine Panax (ginseng) have shown biomedical efficacy as antioxidation and antiphotodamage agents. However, due to the difficulty of component extraction and wide variety of ginsenoside, the identification of active antiphotoaging ginsenoside remains a huge challenge. In this study, we proposed a novel in silico approach to identify potential compound against photoaging from 82 ginsenosides. Specifically, we calculated the shortest distance between unknown and known antiphotoaging ginsenoside set in the chemical space and applied chemical structure similarity assessment, drug-likeness screening, and ADMET evaluation for the candidates. We highlighted three rare minor ginsenosides (C-Mc, Mx, and F2) that possess high potential as antiphotoaging agents. Among them, C-Mc deriving from American ginseng (Panax quinquefolius L.) was validated by wet-lab experimental assays and showed significant antioxidant and cytoprotective activity against UVB-induced photodamage in human dermal fibroblasts. Furthermore, system pharmacology analysis was conducted to explore the therapeutic targets and molecular mechanisms through integrating global drug-target network, high quality photoaging-related gene profile from multiomics data, and skin tissue-specific expression protein network. In combination with in vitro assays, we found that C-Mc suppressed MMP production through regulating the MAPK/AP-1/NF-κB pathway and expedited collagen synthesis via the TGF-ß/Smad pathway, as well as enhanced the expression of Nrf2/ARE to hold a balance of endogenous oxidation. Overall, this study offers an effective drug discovery framework combining in silico prediction and in vitro validation, uncovering that ginsenoside C-Mc has potential antiphotoaging properties and might be a novel natural agent for use in oral drug, skincare products, or functional food.


Asunto(s)
Ginsenósidos/uso terapéutico , Panax/química , Envejecimiento de la Piel/efectos de los fármacos , Piel/efectos de los fármacos , Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Ginsenósidos/farmacología , Humanos
13.
Front Genet ; 12: 728960, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539756

RESUMEN

Despite that several therapeutic agents have exhibited promising prevention or treatment on Coronavirus disease-2019 (COVID-19), there is no specific drug discovered for this pandemic. Targeting virus-host interactome provides a more effective strategy for antivirus drug discovery compared with targeting virus proteins. In this study, we developed a network-based infrastructure to prioritize promising drug candidates from natural products and approved drugs via targeting host proteins of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). We firstly measured the network distances between drug targets and COVID-19 disease module utilizing the network proximity approach, and identified 229 approved drugs as well as 432 natural products had significant associations with SARS-CoV-2. After searching for previous literature evidence, we found that 60.7% (139/229) of approved drugs and 39.6% (171/432) of natural products were confirmed with antivirus or anti-inflammation. We further integrated our network-based predictions and validated anti-SARS-CoV-2 activities of some compounds. Four drug candidates, including hesperidin, isorhapontigenin, salmeterol, and gallocatechin-7-gallate, have exhibited activity on SARS-COV-2 virus-infected Vero cells. Finally, we showcased the mechanism of actions of isorhapontigenin and salmeterol via network analysis. Overall, this study offers forceful approaches for in silico identification of drug candidates on COVID-19, which may facilitate the discovery of antiviral drug therapies.

14.
Front Pharmacol ; 12: 755396, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34950027

RESUMEN

Influenza A virus (IAV) is one of the major causes of seasonal endemic diseases and unpredictable periodic pandemics. Due to the high mutation rate and drug resistance, it poses a persistent threat and challenge to public health. Isatis tinctoria L. (Banlangen, BLG), a traditional herbal medicine widely used in Asian countries, has been reported to possess strong efficacy on respiratory viruses, including IAV. However, its effective anti-IAV components and the mechanism of actions (MOAs) are not yet fully elucidated. In this study, we first summarized the chemical components and corresponding contents in BLG according to current available chemical analysis literature. We then presented a network-based in silico framework for identifying potential drug candidates against IAV from BLG. A total of 269 components in BLG were initially screened by drug-likeness and ADME (absorption, distribution, metabolism, and excretion) evaluation. Thereafter, network predictive models were built via the integration of compound-target networks and influenza virus-host proteins. We highlighted 23 compounds that possessed high potential as anti-influenza virus agents. Through experimental evaluation, six compounds, namely, eupatorin, dinatin, linarin, tryptanthrin, indirubin, and acacetin, exhibited good inhibitory activity against wild-type H1N1 and H3N2. Particularly, they also exerted significant effects on drug-resistant strains. Finally, we explored the anti-IAV MOAs of BLG and showcased the potential biological pathways by systems pharmacology analysis. In conclusion, this work provides important information on BLG regarding its use in the development of anti-IAV drugs, and the network-based prediction framework proposed here also offers a powerfulful strategy for the in silico identification of novel drug candidates from complex components of herbal medicine.

15.
Phytomedicine ; 91: 153662, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34333326

RESUMEN

BACKGROUND: Medicarpin is a natural pterocarpan-type phytoalexin widely distributed in many traditional Chinese medicines, such as Astragali Radix. A previous study showed that Astragali Radix demonstrated promising protective effects in neurons. However, there is no reported study on the neuroprotective function and the underlying mechanism of Medicarpin. PURPOSE: This study aimed to demonstrate the neuroprotective effect of Medicarpin on Alzheimer's disease (AD) and explore the therapeutic mechanisms. METHOD: First, we carried out animal behavioral tests and biochemical analysis to assess the anti-AD potential of Medicarpin for ameliorating spatial learning and memory and modulating cholinergic metabolism in scopolamine-induced amnesic mice. Subsequently, network proximity prediction was used to measure the network distance between the Medicarpin target network and AD-related endophenotype module. We identified Medicarpin-regulated AD pathological processes and highlighted the key disease targets via network analysis. Finally, experimental approaches including Nissl staining and Western blotting were conducted to validate our network-based findings. RESULT: In this study, we first observed that Medicarpin can ameliorate cognitive and memory dysfunction and significantly modulate cholinergic metabolism in scopolamine-induced amnesic mice. We then proposed an endophenotype network-based framework to comprehensively explore the AD therapeutic mechanisms of Medicarpin by integrating 25 AD-related endophenotype modules, gold-standard AD seed genes, an experimentally validated drug-target network of Medicarpin, and a global human protein-protein interactome. In silico prediction revealed that the effect of Medicarpin is highly relevant to neuronal apoptosis and synaptic plasticity, which was validated by experimental assays. Network analysis and Western blotting further identified two key targets, GSK-3ß and MAPK14 (p38), in the AD-related protein regulatory network, which play key roles in the regulation of neuronal apoptosis and synaptic plasticity by Medicarpin. CONCLUSIONS: This study presented a powerful endophenotype network-based strategy to explore the mechanisms of action (MOAs) of new AD therapeutics, and first identified Medicarpin as a potential anti-AD candidate by targeting multiple pathways.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores/farmacología , Pterocarpanos , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Glucógeno Sintasa Quinasa 3 beta , Ratones , Proteína Quinasa 14 Activada por Mitógenos , Pterocarpanos/farmacología , Escopolamina
16.
Sci Rep ; 11(1): 3332, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33558586

RESUMEN

Advances in immunotherapy have revolutionized treatments in many types of cancer. Traditional Chinese Medicine (TCM), which has a long history of clinical adjuvant application against cancer, is emerging as an important medical resource for developing innovative cancer treatments, including immunotherapy. In this study, we developed a quantitative and systems pharmacology-based framework to identify TCM-derived natural products for cancer immunotherapy. Specifically, we integrated 381 cancer immune response-related genes and a compound-target interaction network connecting 3273 proteins and 766 natural products from 66 cancer-related herbs based on literature-mining. Via systems pharmacology-based prediction, we uncovered 182 TCM-derived natural products having potential anti-tumor immune responses effect. Importantly, 32 of the 49 most promising natural products (success rate = 65.31%) are validated by multiple evidence, including published experimental data from clinical studies, in vitro and in vivo assays. We further identified the mechanism-of-action of TCM in cancer immunotherapy using network-based functional enrichment analysis. We showcased that three typical natural products (baicalin, wogonin, and oroxylin A) in Huangqin (Scutellaria baicalensis Georgi) potentially overcome resistance of known oncology agents by regulating tumor immunosuppressive microenvironments. In summary, this study offers a novel and effective systems pharmacology infrastructure for potential cancer immunotherapeutic development by exploiting the medical wealth of natural products in TCM.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Simulación por Computador , Medicamentos Herbarios Chinos/uso terapéutico , Inmunoterapia , Medicina Tradicional China , Neoplasias/terapia , Humanos
17.
BMC Complement Med Ther ; 20(1): 282, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948180

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most common cause of dementia in the elderly, characterized by a progressive and irreversible loss of memory and cognitive abilities. Currently, the prevention and treatment of AD still remains a huge challenge. As a traditional Chinese medicine (TCM) prescription, Danggui-Shaoyao-san decoction (DSS) has been demonstrated to be effective for alleviating AD symptoms in animal experiments and clinical applications. However, due to the complex components and biological actions, its underlying molecular mechanism and effective substances are not yet fully elucidated. METHODS: In this study, we firstly systematically reviewed and summarized the molecular effects of DSS against AD based on current literatures of in vivo studies. Furthermore, an integrated systems pharmacology framework was proposed to explore the novel anti-AD mechanisms of DSS and identify the main active components. We further developed a network-based predictive model for identifying the active anti-AD components of DSS by mapping the high-quality AD disease genes into the global drug-target network. RESULTS: We constructed a global drug-target network of DSS consisting 937 unique compounds and 490 targets by incorporating experimental and computationally predicted drug-target interactions (DTIs). Multi-level systems pharmacology analyses revealed that DSS may regulate multiple biological pathways related to AD pathogenesis, such as the oxidative stress and inflammatory reaction processes. We further conducted a network-based statistical model, drug-likeness analysis, human intestinal absorption (HIA) and blood-brain barrier (BBB) penetration prediction to uncover the key ani-AD ingredients in DSS. Finally, we highlighted 9 key ingredients and validated their synergistic role against AD through a subnetwork. CONCLUSION: Overall, this study proposed an integrative systems pharmacology approach to disclose the therapeutic mechanisms of DSS against AD, which also provides novel in silico paradigm for investigating the effective substances of complex TCM prescription.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Modelos Moleculares , Mapas de Interacción de Proteínas , Animales , Estructura Molecular
18.
Food Chem Toxicol ; 145: 111767, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32971210

RESUMEN

Currently, coronavirus disease 2019 (COVID-19), has posed an imminent threat to global public health. Although some current therapeutic agents have showed potential prevention or treatment, a growing number of associated adverse events have occurred on patients with COVID-19 in the course of medical treatment. Therefore, a comprehensive assessment of the safety profile of therapeutic agents against COVID-19 is urgently needed. In this study, we proposed a network-based framework to identify the potential side effects of current COVID-19 drugs in clinical trials. We established the associations between 116 COVID-19 drugs and 30 kinds of human tissues based on network proximity and gene-set enrichment analysis (GSEA) approaches. Additionally, we focused on four types of drug-induced toxicities targeting four tissues, including hepatotoxicity, renal toxicity, lung toxicity, and neurotoxicity, and validated our network-based predictions by preclinical and clinical evidence available. Finally, we further performed pharmacovigilance analysis to validate several drug-tissue toxicities via data mining adverse event reporting data, and we identified several new drug-induced side effects without labeling in Food and Drug Administration (FDA) drug instructions. Overall, this study provides forceful approaches to assess potential side effects on COVID-19 drugs, which will be helpful for their safe use in clinical practice and promoting the discovery of antiviral therapeutics against SARS-CoV-2.


Asunto(s)
Antineoplásicos/efectos adversos , Antivirales/efectos adversos , Infecciones por Coronavirus/tratamiento farmacológico , Factores Inmunológicos/efectos adversos , Farmacovigilancia , Neumonía Viral/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Antivirales/uso terapéutico , Betacoronavirus/efectos de los fármacos , COVID-19 , Ensayos Clínicos como Asunto , Humanos , Factores Inmunológicos/uso terapéutico , Pandemias , SARS-CoV-2
19.
Front Pharmacol ; 11: 439, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32351388

RESUMEN

Advances in immuno-oncology (IO) are making immunotherapy a powerful tool for cancer treatment. With the discovery of an increasing number of IO targets, many herbs or ingredients from traditional Chinese medicine (TCM) have shown immunomodulatory function and antitumor effects via targeting the immune system. However, knowledge of underlying mechanisms is limited due to the complexity of TCM, which has multiple ingredients acting on multiple targets. To address this issue, we present TCMIO, a comprehensive database of Traditional Chinese Medicine on Immuno-Oncology, which can be used to explore the molecular mechanisms of TCM in modulating the cancer immune microenvironment. Over 120,000 small molecules against 400 IO targets were extracted from public databases and the literature. These ligands were further mapped to the chemical ingredients of TCM to identify herbs that interact with the IO targets. Furthermore, we applied a network inference-based approach to identify the potential IO targets of natural products in TCM. All of these data, along with cheminformatics and bioinformatics tools, were integrated into the publicly accessible database. Chemical structure mining tools are provided to explore the chemical ingredients and ligands against IO targets. Herb-ingredient-target networks can be generated online, and pathway enrichment analysis for TCM or prescription is available. This database is functional for chemical ingredient structure mining and network analysis for TCM. We believe that this database provides a comprehensive resource for further research on the exploration of the mechanisms of TCM in cancer immunity and TCM-inspired identification of novel drug leads for cancer immunotherapy. TCMIO can be publicly accessed at http://tcmio.xielab.net.

20.
Front Pharmacol ; 11: 381, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32317964

RESUMEN

Alzheimer's disease (AD) is a complex neurodegenerative disease characterized by cognitive dysfunction. Kai-Xin-San (KXS) is a traditional Chinese medicine (TCM) formula that has been used to treat AD patients for over a thousand years in China. However, the therapeutic mechanisms of KXS for treating AD have not been fully explored. Herein, we used a comprehensive network pharmacology approach to investigate the mechanism of action of KXS in the treatment of AD. This approach consists of construction of multiple networks and Gene Ontology enrichment and pathway analyses. Furthermore, animal experiments were performed to validate the predicted molecular mechanisms obtained from the systems pharmacology-based analysis. As a result, 50 chemicals in KXS and 39 AD-associated proteins were identified as major active compounds and targets, respectively. The therapeutic mechanisms of KXS in treating AD were primarily related to the regulation of four pathology modules, including amyloid beta metabolism, tau protein hyperphosphorylation process, cholinergic dysfunction, and inflammation. In scopolamine-induced cognitive dysfunction mice, we validated the anti-inflammatory effects of KXS on AD by determining the levels of inflammation cytokines including interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α. We also found cholinergic system dysfunction amelioration of KXS is correlated with upregulation of the cholinergic receptor CHRNB2. In conclusion, our work proposes a comprehensive systems pharmacology approach to explore the underlying therapeutic mechanism of KXS for the treatment of AD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA