Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1386506, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660492

RESUMEN

Background: Chronic obstructive pulmonary disease (COPD) is a prevalent condition that significantly impacts public health. Unfortunately, there are few effective treatment options available. Mendelian randomization (MR) has been utilized to repurpose existing drugs and identify new therapeutic targets. The objective of this study is to identify novel therapeutic targets for COPD. Methods: Cis-expression quantitative trait loci (cis-eQTL) were extracted for 4,317 identified druggable genes from genomics and proteomics data of whole blood (eQTLGen) and lung tissue (GTEx Consortium). Genome-wide association studies (GWAS) data for doctor-diagnosed COPD, spirometry-defined COPD (Forced Expiratory Volume in one second [FEV1]/Forced Vital Capacity [FVC] <0.7), and FEV1 were obtained from the cohort of FinnGen, UK Biobank and SpiroMeta consortium. We employed Summary-data-based Mendelian Randomization (SMR), HEIDI test, and colocalization analysis to assess the causal effects of druggable gene expression on COPD and lung function. The reliability of these druggable genes was confirmed by eQTL two-sample MR and protein quantitative trait loci (pQTL) SMR, respectively. The potential effects of druggable genes were assessed through the phenome-wide association study (PheWAS). Information on drug repurposing for COPD was collected from multiple databases. Results: A total of 31 potential druggable genes associated with doctor-diagnosed COPD, spirometry-defined COPD, and FEV1 were identified through SMR, HEIDI test, and colocalization analysis. Among them, 22 genes (e.g., MMP15, PSMA4, ERBB3, and LMCD1) were further confirmed by eQTL two-sample MR and protein SMR analyses. Gene-level PheWAS revealed that ERBB3 expression might reduce inflammation, while GP9 and MRC2 were associated with other traits. The drugs Montelukast (targeting the MMP15 gene) and MARIZOMIB (targeting the PSMA4 gene) may reduce the risk of spirometry-defined COPD. Additionally, an existing small molecule inhibitor of the APH1A gene has the potential to increase FEV1. Conclusions: Our findings identified 22 potential drug targets for COPD and lung function. Prioritizing clinical trials that target these identified druggable genes with existing drugs or novel medications will be beneficial for the development of COPD treatments.


Asunto(s)
Reposicionamiento de Medicamentos , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Enfermedad Pulmonar Obstructiva Crónica , Sitios de Carácter Cuantitativo , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Humanos , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple
2.
BMJ Open Respir Res ; 11(1)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39032939

RESUMEN

BACKGROUND: Impaired ventilatory efficiency during exercise is a predictor of mortality in chronic obstructive pulmonary disease. However, little is known about the clinical features and associated factors of impaired ventilatory efficiency in China. METHODS: We conducted a cross-sectional community-based study in China and collected demographic and clinical information, cardiopulmonary exercise testing, spirometry, and CT data. Impaired ventilatory efficiency was defined by a nadir ventilatory equivalent for CO2 production above the upper limit of normal. Multivariable linear and logistic regression models were used to explore the clinical features and associated factors of impaired ventilatory efficiency. RESULTS: The final analyses included 941 subjects, 702 (74.6%) of whom had normal ventilatory efficiency and 239 (25.4%) had impaired ventilatory efficiency. Participants with impaired ventilatory efficiency had more chronic respiratory symptoms, poorer lung function and exercise capacity, and more severe emphysema (natural logarithm transformation of the low-attenuation area of the lung with attenuation values below -950 Hounsfield units, logLAA-950: 0.19±0.65 vs -0.28±0.63, p<0.001) and air trapping (logLAA-856: 1.03±0.65 vs 0.68±0.70, p<0.001) than those with normal ventilatory efficiency. Older age (60-69 years, OR 3.10 (95% CI 1.33 to 7.21), p=0.009 and 70-80 years, OR 6.48 (95% CI 2.56 to 16.43), p<0.001 vs 40-49 years) and smoking (former, OR 3.19 (95% CI 1.29 to 7.86), p=0.012; current, OR 4.27 (95% CI 1.78 to 10.24), p=0.001 vs never) were identified as high risk factors of impaired ventilatory efficiency. CONCLUSIONS: Impaired ventilatory efficiency was associated with poorer respiratory characteristics. Longitudinal studies are warranted to explore the progression of individuals with impaired ventilatory efficiency.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , China/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Estudios Transversales , Anciano , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Espirometría , Prueba de Esfuerzo , Pulmón/fisiopatología , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Tolerancia al Ejercicio , Factores de Riesgo , Ventilación Pulmonar
3.
J Cancer Res Clin Oncol ; 149(10): 6999-7006, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36853385

RESUMEN

BACKGROUND: Observational studies showed associations between smoking, and airflow limitation, with lung squamous cell carcinoma (LUSC). However, the causal association of airflow limitation with LUSC and the modification by smoking status for the association remains unclear. METHODS: Genetic summary data were obtained from large genome-wide association studies (GWAS). One hundred two single nucleotide polymorphisms (SNPs) for airflow limitation (i.e., FEV1/FVC < 0.7) and 153 SNPs for smoking behavior were used as instrumental variables and the main MR analysis methods. The univariable and multivariable Mendelian Randomization (MR) in a two-sample setting were performed to assess the association of airflow limitation, and smoking behavior with LUSC. RESULTS: In the univariable MR analysis, genetic predisposition towards airflow limitation [Inverse Variance-Weighted (IVW) method Odds Ratio (OR) = 4.83, 95% Confidence Interval (CI) 1.55 to 15.06, P = 0.006], age of smoking initiation (IVW method OR = 0.10, 95%CI 0.02 to 0.36, P < 0.001), cigarettes smoked per day (IVW method OR = 3.10, 95%CI 2.07 to 4.63, P < 0.001), ex-smoking (IVW method OR = 0.47, 95%CI 0.31 to 0.69, P < 0.001), current smoking status (IVW method OR = 13.08, 95%CI 2.53 to 67.84, P = 0.002), pack-years of smoking (Weighted median method OR = 11.49, 95%CI 3.71 to 35.63, P < 0.001) were associated with LUSC. In the multivariable MR analysis, the causal effect of airflow limitation was still observed on LUSC (IVW method OR = 2.97, 95% CI 1.09 to 8.04, P = 0.032 adjusted for age of smoking initiation and cigarettes smoked per day; IVW method OR = 3.24, 95% CI 1.09 to 9.58, P = 0.033 adjusted for ex-smoking, current smoking status, and pack years of smoking; IVW method OR = 2.91, 95% CI 1.01 to 8.41, P = 0.049 adjusted for 5 smoking behaviors mentioned above). CONCLUSIONS: Our MR analysis demonstrated that airflow limitation is likely to be an independent predictor of LUSC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Análisis de la Aleatorización Mendeliana , Estudio de Asociación del Genoma Completo , Carcinoma de Células Escamosas/genética , Polimorfismo de Nucleótido Simple , Neoplasias Pulmonares/genética , Pulmón
4.
Int J Gen Med ; 15: 2003-2023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795301

RESUMEN

Stroke is a highly lethal disease and disabling illness while ischemic stroke accounts for the majority of stroke. It has been found that inflammation plays a key role in the initiation and progression of stroke, and atherosclerotic plaque rupture is considered to be the leading cause of ischemic stroke. Furthermore, chronic inflammatory diseases, such as obesity, type 2 diabetes mellitus (T2DM) and hypertension, are also considered as the high-risk factors for stroke. Recently, the topic on how gut microbiota affects human health has aroused great concern. The initiation and progression of ischemic stroke has been found to have close relation with gut microbiota dysbiosis. Hence, this manuscript briefly summarizes the roles of gut microbiota in ischemic stroke and its related risk factors, and the practicability of preventing and alleviating ischemic stroke by reconstructing gut microbiota.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA