Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(1): 102781, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496074

RESUMEN

TMEM63B is a mechanosensitive cation channel activated by hypoosmotic stress and mechanic stimulation. We recently reported a brain-specific alternative splicing of exon 4 in TMEM63B. The short variant lacking exon 4, which constitutes the major isoform in the brain, exhibits enhanced responses to hypoosmotic stimulation compared to the long isoform containing exon 4. However, the mechanisms affecting this differential response are unclear. Here, we showed that the short isoform exhibited stronger cell surface expression compared to the long variant. Using mutagenesis screening of the coding sequence of exon 4, we identified an RXR-type endoplasmic reticulum (ER) retention signal (RER). We found that this motif was responsible for binding to the COPI retrieval vesicles, such that the longer TMEM63B isoforms were more likely to be retrotranslocated to the ER than the short isoforms. In addition, we demonstrated long TMEM63Bs could form heterodimers with short isoforms and reduce their surface expression. Taken together, our findings revealed an ER retention signal in the alternative splicing domain of TMEM63B that regulates the surface expression of TMEM63B protein and channel function.


Asunto(s)
Empalme Alternativo , Retículo Endoplásmico , Proteínas de la Membrana , Cationes/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Regulación de la Expresión Génica/genética
2.
J Biol Chem ; 295(52): 18199-18212, 2020 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-33100268

RESUMEN

Post-transcriptional modifications of pre-mRNAs expand the diversity of proteomes in higher eukaryotes. In the brain, these modifications diversify the functional output of many critical neuronal signal molecules. In this study, we identified a brain-specific A-to-I RNA editing that changed glutamine to arginine (Q/R) at exon 20 and an alternative splicing of exon 4 in Tmem63b, which encodes a ubiquitously expressed osmosensitive cation channel. The channel isoforms lacking exon 4 occurred in ∼80% of Tmem63b mRNAs in the brain but were not detected in other tissues, suggesting a brain-specific splicing. We found that the Q/R editing was catalyzed by Adar2 (Adarb1) and required an editing site complementary sequence located in the proximal 5' end of intron 20. Moreover, the Q/R editing was almost exclusively identified in the splicing isoform lacking exon 4, indicating a coupling between the editing and the splicing. Elimination of the Q/R editing in brain-specific Adar2 knockout mice did not affect the splicing efficiency of exon 4. Furthermore, transfection with the splicing isoform containing exon 4 suppressed the Q/R editing in primary cultured cerebellar granule neurons. Thus, our study revealed a coupling between an RNA editing and a distant alternative splicing in the Tmem63b pre-mRNA, in which the splicing plays a dominant role. Finally, physiological analysis showed that the splicing and the editing coordinately regulate Ca2+ permeability and osmosensitivity of channel proteins, which may contribute to their functions in the brain.


Asunto(s)
Adenosina Desaminasa/fisiología , Empalme Alternativo , Encéfalo/metabolismo , Canales de Calcio/genética , Exones , Edición de ARN , Precursores del ARN/genética , Proteínas de Unión al ARN/fisiología , Animales , Canales de Calcio/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
3.
Huan Jing Ke Xue ; 35(8): 3096-101, 2014 Aug.
Artículo en Zh | MEDLINE | ID: mdl-25338385

RESUMEN

As commonly used eluents, Na2EDTA (EDTA) and citric acid (CA) have been widely applied in remediation of soil contaminated by heavy metals. In order to evaluate the removal of arsenic, cadmium, copper, and lead in the contaminated soil collected in a chemical plant by compounding EDTA and CA, a series of stirring experiments were conducted. Furthermore, the changes in speciation distribution of heavy metals before and after washing were studied. The results showed that, adopting the optimal molar ratio of EDTA/CA (1:1), when the pH of the solution was 3, the stirring time was 30 min, the stirring rate was 150 r x min(-1) and the L/S was 5:1, the removal rates of arsenic, cadmium, copper and lead could reach 11.72%, 43.39%, 24.36% and 27.17%, respectively. And it was found that after washing, for arsenic and copper, the content of acid dissolved fraction rose which increased the percentage of available contents. Fe-Mn oxide fraction mainly contributed to the removal of copper. As for cadmium, the percentages of acid dissolved fraction, Fe-Mn oxide fraction and organic fraction also decreased. In practical projects, speciation changes would pose certain environmental risk after soil washing, which should be taken into consideration.


Asunto(s)
Ácido Cítrico/química , Ácido Edético/química , Restauración y Remediación Ambiental/métodos , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Arsénico/análisis , Cadmio/análisis , Quelantes , Cobre/análisis , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA