Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(40): 24691-24700, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32968017

RESUMEN

Hypertrophic cardiomyopathy (HCM) is the most common heritable heart disease. Although the genetic cause of HCM has been linked to mutations in genes encoding sarcomeric proteins, the ability to predict clinical outcomes based on specific mutations in HCM patients is limited. Moreover, how mutations in different sarcomeric proteins can result in highly similar clinical phenotypes remains unknown. Posttranslational modifications (PTMs) and alternative splicing regulate the function of sarcomeric proteins; hence, it is critical to study HCM at the level of proteoforms to gain insights into the mechanisms underlying HCM. Herein, we employed high-resolution mass spectrometry-based top-down proteomics to comprehensively characterize sarcomeric proteoforms in septal myectomy tissues from HCM patients exhibiting severe outflow track obstruction (n = 16) compared to nonfailing donor hearts (n = 16). We observed a complex landscape of sarcomeric proteoforms arising from combinatorial PTMs, alternative splicing, and genetic variation in HCM. A coordinated decrease of phosphorylation in important myofilament and Z-disk proteins with a linear correlation suggests PTM cross-talk in the sarcomere and dysregulation of protein kinase A pathways in HCM. Strikingly, we discovered that the sarcomeric proteoform alterations in the myocardium of HCM patients undergoing septal myectomy were remarkably consistent, regardless of the underlying HCM-causing mutations. This study suggests that the manifestation of severe HCM coalesces at the proteoform level despite distinct genotype, which underscores the importance of molecular characterization of HCM phenotype and presents an opportunity to identify broad-spectrum treatments to mitigate the most severe manifestations of this genetically heterogenous disease.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Proteínas/genética , Sarcómeros/metabolismo , Cardiomiopatía Hipertrófica/metabolismo , Genotipo , Humanos , Espectrometría de Masas , Miocardio/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteómica , Sarcómeros/genética , Transducción de Señal
2.
Circ Res ; 125(11): 936-953, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31573406

RESUMEN

RATIONALE: Human pluripotent stem cell (hPSC)-derived cardiomyocytes exhibit the properties of fetal cardiomyocytes, which limits their applications. Various methods have been used to promote maturation of hPSC-cardiomyocytes; however, there is a lack of an unbiased and comprehensive method for accurate assessment of the maturity of hPSC-cardiomyocytes. OBJECTIVE: We aim to develop an unbiased proteomics strategy integrating high-throughput top-down targeted proteomics and bottom-up global proteomics for the accurate and comprehensive assessment of hPSC-cardiomyocyte maturation. METHODS AND RESULTS: Utilizing hPSC-cardiomyocytes from early- and late-stage 2-dimensional monolayer culture and 3-dimensional engineered cardiac tissue, we demonstrated the high reproducibility and reliability of a top-down proteomics method, which enabled simultaneous quantification of contractile protein isoform expression and associated post-translational modifications. This method allowed for the detection of known maturation-associated contractile protein alterations and, for the first time, identified contractile protein post-translational modifications as promising new markers of hPSC-cardiomyocytes maturation. Most notably, decreased phosphorylation of α-tropomyosin was found to be associated with hPSC-cardiomyocyte maturation. By employing a bottom-up global proteomics strategy, we identified candidate maturation-associated markers important for sarcomere organization, cardiac excitability, and Ca2+ homeostasis. In particular, upregulation of myomesin 1 and transmembrane 65 was associated with hPSC-cardiomyocyte maturation and validated in cardiac development, making these promising markers for assessing maturity of hPSC-cardiomyocytes. We have further validated α-actinin isoforms, phospholamban, dystrophin, αB-crystallin, and calsequestrin 2 as novel maturation-associated markers, in the developing mouse cardiac ventricles. CONCLUSIONS: We established an unbiased proteomics method that can provide accurate and specific assessment of the maturity of hPSC-cardiomyocytes and identified new markers of maturation. Furthermore, this integrated proteomics strategy laid a strong foundation for uncovering the molecular pathways involved in cardiac development and disease using hPSC-cardiomyocytes.


Asunto(s)
Diferenciación Celular , Cromatografía Liquida , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas/metabolismo , Proteómica/métodos , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Sesgo , Técnicas de Cultivo de Célula , Línea Celular , Ensayos Analíticos de Alto Rendimiento , Humanos , Fenotipo , Reproducibilidad de los Resultados , Factores de Tiempo
3.
Mol Cell Proteomics ; 18(3): 594-605, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30591534

RESUMEN

Determining changes in protein expression and post-translational modifications (PTMs) is crucial for elucidating cellular signal transduction and disease mechanisms. Conventional antibody-based approaches have inherent problems such as the limited availability of high-quality antibodies and batch-to-batch variation. Top-down mass spectrometry (MS)-based proteomics has emerged as the most powerful method for characterization and quantification of protein modifications. Nevertheless, robust methods to simultaneously determine changes in protein expression and PTMs remain lacking. Herein, we have developed a straightforward and robust top-down liquid chromatography (LC)/MS-based targeted proteomics platform for simultaneous quantification of protein expression and PTMs with high throughput and high reproducibility. We employed this method to analyze the sarcomeric subproteome from various muscle types of different species, which successfully revealed skeletal muscle heterogeneity and cardiac developmental changes in sarcomeric protein isoform expression and PTMs. As demonstrated, this targeted top-down proteomics platform offers an excellent 'antibody-independent' alternative for the accurate quantification of sarcomeric protein expression and PTMs concurrently in complex mixtures, which is generally applicable to different species and various tissue types.


Asunto(s)
Corazón/crecimiento & desarrollo , Músculo Esquelético/crecimiento & desarrollo , Proteómica/métodos , Sarcómeros/metabolismo , Animales , Cromatografía Liquida , Regulación del Desarrollo de la Expresión Génica , Masculino , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Procesamiento Proteico-Postraduccional , Ratas , Ovinos , Espectrometría de Masas en Tándem
4.
Stem Cells ; 37(7): 910-923, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31087611

RESUMEN

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) exhibit a fetal phenotype that limits in vitro and therapeutic applications. Strategies to promote cardiomyocyte maturation have focused interventions on differentiated hPSC-CMs, but this study tests priming of early cardiac progenitor cells (CPCs) with polyinosinic-polycytidylic acid (pIC) to accelerate cardiomyocyte maturation. CPCs were differentiated from hPSCs using a monolayer differentiation protocol with defined small molecule Wnt temporal modulation, and pIC was added during the formation of early CPCs. pIC priming did not alter the expression of cell surface markers for CPCs (>80% KDR+/PDGFRα+), expression of common cardiac transcription factors, or final purity of differentiated hPSC-CMs (∼90%). However, CPC differentiation in basal medium revealed that pIC priming resulted in hPSC-CMs with enhanced maturity manifested by increased cell size, greater contractility, faster electrical upstrokes, increased oxidative metabolism, and more mature sarcomeric structure and composition. To investigate the mechanisms of CPC priming, RNAseq revealed that cardiac progenitor-stage pIC modulated early Notch signaling and cardiomyogenic transcriptional programs. Chromatin immunoprecipitation of CPCs showed that pIC treatment increased deposition of the H3K9ac activating epigenetic mark at core promoters of cardiac myofilament genes and the Notch ligand, JAG1. Inhibition of Notch signaling blocked the effects of pIC on differentiation and cardiomyocyte maturation. Furthermore, primed CPCs showed more robust formation of hPSC-CMs grafts when transplanted to the NSGW mouse kidney capsule. Overall, epigenetic modulation of CPCs with pIC accelerates cardiomyocyte maturation enabling basic research applications and potential therapeutic uses. Stem Cells 2019;37:910-923.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Epigénesis Genética , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Poli I-C/farmacología , Receptores Notch/genética , Animales , Tamaño de la Célula , Histonas/genética , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Riñón , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Fosforilación Oxidativa , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores Notch/metabolismo , Sarcómeros/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal , Trasplante de Células Madre/métodos , Trasplante Heterotópico , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
5.
Mol Cell Proteomics ; 17(1): 134-145, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29046390

RESUMEN

Sarcopenia, the age-related loss of skeletal muscle mass and strength, is a significant cause of morbidity in the elderly and is a major burden on health care systems. Unfortunately, the underlying molecular mechanisms in sarcopenia remain poorly understood. Herein, we utilized top-down proteomics to elucidate sarcopenia-related changes in the fast- and slow-twitch skeletal muscles of aging rats with a focus on the sarcomeric proteome, which includes both myofilament and Z-disc proteins-the proteins that constitute the contractile apparatuses. Top-down quantitative proteomics identified significant changes in the post-translational modifications (PTMs) of critical myofilament proteins in the fast-twitch skeletal muscles of aging rats, in accordance with the vulnerability of fast-twitch muscles to sarcopenia. Surprisingly, age-related alterations in the phosphorylation of Cypher isoforms, proteins that localize to the Z-discs in striated muscles, were also noted in the fast-twitch skeletal muscle of aging rats. This represents the first report of changes in the phosphorylation of Z-disc proteins in skeletal muscle during aging. In addition, increased glutathionylation of slow skeletal troponin I, a novel modification that may help protect against oxidative damage, was observed in slow-twitch skeletal muscles. Furthermore, we have identified and characterized novel muscle type-specific proteoforms of myofilament proteins and Z-disc proteins, including a novel isoform of the Z-disc protein Enigma. The finding that the phosphorylation of Z-disc proteins is altered in response to aging in the fast-twitch skeletal muscles of aging rats opens new avenues for the investigation of the role of Z-discs in age-related muscle dysfunction.


Asunto(s)
Músculo Esquelético/metabolismo , Sarcómeros/metabolismo , Sarcopenia/metabolismo , Envejecimiento/metabolismo , Animales , Masculino , Procesamiento Proteico-Postraduccional , Proteómica , Ratas
6.
J Biol Chem ; 293(22): 8588-8599, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29669813

RESUMEN

The acceleration of myocardial relaxation produced by ß-adrenoreceptor stimulation is mediated in part by protein kinase A (PKA)-mediated phosphorylation of cardiac troponin-I (cTnI), which decreases myofibrillar Ca2+ sensitivity. Previous evidence suggests that phosphorylation of both Ser-23 and Ser-24 in cTnI is required for this Ca2+ desensitization. PKA-mediated phosphorylation also partially protects cTnI from proteolysis by calpain. Here we report that protein kinase D (PKD) phosphorylates only one serine of cTnI Ser-23/24. To explore the functional consequences of this monophosphorylation, we examined the Ca2+ sensitivity of force production and susceptibility of cTnI to calpain-mediated proteolysis when Ser-23/24 of cTnI in mouse cardiac myofibrils was nonphosphorylated, mono-phosphorylated, or bisphosphorylated (using sequential incubations in λ-phosphatase, PKD, and PKA, respectively). Phos-tag gels, Western blotting, and high-resolution MS revealed that PKD produced >90% monophosphorylation of cTnI, primarily at Ser-24, whereas PKA led to cTnI bisphosphorylation exclusively. PKD markedly decreased the Ca2+ sensitivity of force production in detergent-permeabilized ventricular trabeculae, whereas subsequent incubation with PKA produced only a small further fall of Ca2+ sensitivity. Unlike PKD, PKA also substantially phosphorylated myosin-binding protein-C and significantly accelerated cross-bridge kinetics (ktr). After phosphorylation by PKD or PKA, cTnI in isolated myofibrils was partially protected from calpain-mediated degradation. We conclude that cTnI monophosphorylation at Ser-23/24 decreases myofibrillar Ca2+ sensitivity and partially protects cTnI from calpain-induced proteolysis. In healthy cardiomyocytes, the basal monophosphorylation of cTnI may help tonically regulate myofibrillar Ca2+ sensitivity.


Asunto(s)
Calcio/metabolismo , Calpaína/farmacología , Miocitos Cardíacos/fisiología , Miofibrillas/fisiología , Proteolisis/efectos de los fármacos , Serina/metabolismo , Troponina I/metabolismo , Animales , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miofibrillas/efectos de los fármacos , Fosforilación , Proteína Quinasa C/metabolismo , Ratas , Serina/química
7.
Int J Mol Sci ; 20(20)2019 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-31635144

RESUMEN

Strain GA A07 was identified as an intestinal Bacillus bacterium of zebrafish, which has high efficiency to biotransform the triterpenoid, ganoderic acid A (GAA), into GAA-15-O-ß-glucoside. To date, only two known enzymes (BsUGT398 and BsUGT489) of Bacillus subtilis ATCC 6633 strain can biotransform GAA. It is thus worthwhile to identify the responsible genes of strain GA A07 by whole genome sequencing. A complete genome of strain GA A07 was successfully assembled. A phylogenomic analysis revealed the species of the GA A07 strain to be Bacillus thuringiensis. Forty glycosyltransferase (GT) family genes were identified from the complete genome, among which three genes (FQZ25_16345, FQZ25_19840, and FQZ25_19010) were closely related to BsUGT398 and BsUGT489. Two of the three candidate genes, FQZ25_16345 and FQZ25_19010, were successfully cloned and expressed in a soluble form in Escherichia coli, and the corresponding proteins, BtGT_16345 and BtGT_19010, were purified for a biotransformation activity assay. An ultra-performance liquid chromatographic analysis further confirmed that only the purified BtGT_16345 had the key biotransformation activity of catalyzing GAA into GAA-15-O-ß-glucoside. The suitable conditions for this enzyme activity were pH 7.5, 10 mM of magnesium ions, and 30 °C. In addition, BtGT_16345 showed glycosylation activity toward seven flavonoids (apigenein, quercetein, naringenein, resveratrol, genistein, daidzein, and 8-hydroxydaidzein) and two triterpenoids (GAA and antcin K). A kinetic study showed that the catalytic efficiency (kcat/KM) of BtGT_16345 was not significantly different compared with either BsUGT398 or BsUGT489. In short, this study identified BtGT_16345 from B. thuringiensis GA A07 is the catalytic enzyme responsible for the 15-O-glycosylation of GAA and it was also regioselective toward triterpenoid substrates.


Asunto(s)
Bacillus thuringiensis/enzimología , Proteínas Bacterianas/metabolismo , Genoma Bacteriano , Glicosiltransferasas/metabolismo , Ácidos Heptanoicos/química , Ácidos Heptanoicos/metabolismo , Lanosterol/análogos & derivados , Bacillus thuringiensis/genética , Proteínas Bacterianas/genética , Biotransformación , Catálisis , Glicosilación , Glicosiltransferasas/genética , Lanosterol/química , Lanosterol/metabolismo , Filogenia , Especificidad por Sustrato , Secuenciación Completa del Genoma
8.
J Mol Cell Cardiol ; 122: 11-22, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30048711

RESUMEN

Despite advancements in symptom management for heart failure (HF), this devastating clinical syndrome remains the leading cause of death in the developed world. Studies using animal models have greatly advanced our understanding of the molecular mechanisms underlying HF; however, differences in cardiac physiology and the manifestation of HF between animals, particularly rodents, and humans necessitates the direct interrogation of human heart tissue samples. Nevertheless, an ever-present concern when examining human heart tissue samples is the potential for artefactual changes related to temperature changes during tissue shipment or sample processing. Herein, we examined the effects of temperature on the post-translational modifications (PTMs) of sarcomeric proteins, the proteins responsible for muscle contraction, under conditions mimicking those that might occur during tissue shipment or sample processing. Using a powerful top-down proteomics method, we found that sarcomeric protein PTMs were differentially affected by temperature. Specifically, cardiac troponin I and enigma homolog isoform 2 showed robust increases in phosphorylation when tissue was incubated at either 4 °C or 22 °C. The observed increase is likely due to increased cyclic AMP levels and activation of protein kinase A in the tissue. On the contrary, cardiac troponin T and myosin regulatory light chain phosphorylation decreased when tissue was incubated at 4 °C or 22 °C. Furthermore, significant protein degradation was also observed after incubation at 4 °C or 22 °C. Overall, these results indicate that temperature exerts various effects on sarcomeric protein PTMs and careful tissue handling is critical for studies involving human heart samples. Moreover, these findings highlight the power of top-down proteomics for examining the integrity of cardiac tissue samples.


Asunto(s)
Miocardio/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Sarcómeros/metabolismo , Temperatura , Proteínas Adaptadoras Transductoras de Señales , Análisis de Varianza , Cromatografía de Fase Inversa , AMP Cíclico/análisis , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Insuficiencia Cardíaca/metabolismo , Humanos , Proteínas con Dominio LIM , Cadenas Ligeras de Miosina/metabolismo , Fosforilación , Isoformas de Proteínas/metabolismo , Proteolisis , Manejo de Especímenes/efectos adversos , Espectrometría de Masas en Tándem , Troponina I/metabolismo , Troponina T/metabolismo
9.
Cancer Sci ; 109(8): 2435-2445, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29890018

RESUMEN

The inhibitory checkpoint molecule programmed death (PD)-1 plays a vital role in maintaining immune homeostasis upon binding to its ligands, PD-L1 and PD-L2. Several recent studies have demonstrated that soluble PD-1 (sPD-1) can block the interaction between membrane PD-1 and PD-L1 to enhance the antitumor capability of T cells. However, the affinity of natural sPD-1 binding to PD-L1 is too low to permit therapeutic applications. Here, a PD-1 variant with approximately 3000-fold and 70-fold affinity increase to bind PD-L1 and PD-L2, respectively, was generated through directed molecular evolution and phage display technology. Structural analysis showed that mutations at amino acid positions 124 and 132 of PD-1 played major roles in enhancing the affinity of PD-1 binding to its ligands. The high-affinity PD-1 mutant could compete with the binding of antibodies specific to PD-L1 or PD-L2 on cancer cells or dendritic cells, and it could enhance the proliferation and IFN-γ release of activated lymphocytes. These features potentially qualify the high-affinity PD-1 variant as a unique candidate for the development of a new class of PD-1 immune-checkpoint blockade therapeutics.


Asunto(s)
Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Aminoácidos/metabolismo , Proliferación Celular/fisiología , Técnicas de Visualización de Superficie Celular/métodos , Células Dendríticas/metabolismo , Humanos , Interferón gamma/metabolismo , Ligandos , Activación de Linfocitos/fisiología , Unión Proteica/fisiología , Linfocitos T/metabolismo
10.
Anal Chem ; 90(8): 4935-4939, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29565561

RESUMEN

Protein phosphorylation is a ubiquitous and critical post-translational modification (PTM) involved in numerous cellular processes. Mass spectrometry (MS)-based proteomics has emerged as the preferred technology for protein identification, characterization, and quantification. Whereas ionization/detection efficiency of peptides in electrospray ionization (ESI)-MS are markedly influenced by the presence of phosphorylation, the physicochemical properties of intact proteins are assumed not to vary significantly due to the relatively smaller modification on large intact proteins. Thus, the ionization/detection efficiency of intact phosphoprotein is hypothesized not to alter appreciably for subsequent MS quantification. However, this hypothesis has never been rigorously tested. Herein, we systematically investigated the impact of phosphorylation on ESI-MS quantification of mono- and multiply phosphorylated proteins. We verified that a single phosphorylation did not appreciably affect the ESI-MS quantification of phosphoproteins as demonstrated in the enigma homolog isoform 2 (28 kDa) with monophosphorylation. Moreover, different ionization and desolvation parameters did not impact phosphoprotein quantification. In contrast to monophosphorylation, multiphosphorylation noticeably affected ESI-MS quantification of phosphoproteins likely due to differential ionization/detection efficiency between unphosphorylated and phosphorylated proteoforms as shown in the pentakis-phosphorylated ß-casein (24 kDa).


Asunto(s)
Fosfoproteínas/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Proteínas Adaptadoras Transductoras de Señales/análisis , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Caseínas/análisis , Caseínas/metabolismo , Cromatografía Líquida de Alta Presión , Humanos , Proteínas con Dominio LIM/análisis , Proteínas con Dominio LIM/metabolismo , Fosfopéptidos/análisis , Fosfoproteínas/metabolismo , Fosforilación , Proteómica
11.
Am J Physiol Heart Circ Physiol ; 314(6): H1179-H1191, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29451820

RESUMEN

Cardiac myosin-binding protein C (cMyBP-C) is a functional sarcomeric protein that regulates contractility in response to contractile demand, and many mutations in cMyBP-C lead to hypertrophic cardiomyopathy (HCM). To gain insight into the effects of disease-causing cMyBP-C missense mutations on contractile function, we expressed the pathogenic W792R mutation (substitution of a highly conserved tryptophan residue by an arginine residue at position 792) in mouse cardiomyocytes lacking endogenous cMyBP-C and studied the functional effects using three-dimensional engineered cardiac tissue constructs (mECTs). Based on complete conservation of tryptophan at this location in fibronectin type II (FnIII) domains, we hypothesized that the W792R mutation affects folding of the C6 FnIII domain, destabilizing the mutant protein. Adenoviral transduction of wild-type (WT) and W792R cDNA achieved equivalent mRNA transcript abundance, but not equivalent protein levels, with W792R compared with WT controls. mECTs expressing W792R demonstrated abnormal contractile kinetics compared with WT mECTs that were nearly identical to cMyBP-C-deficient mECTs. We studied whether common pathways of protein degradation were responsible for the rapid degradation of W792R cMyBP-C. Inhibition of both ubiquitin-proteasome and lysosomal degradation pathways failed to increase full-length mutant protein abundance to WT equivalence, suggesting rapid cytosolic degradation. Bacterial expression of WT and W792R protein fragments demonstrated decreased mutant stability with altered thermal denaturation and increased susceptibility to trypsin digestion. These data suggest that the W792R mutation destabilizes the C6 FnIII domain of cMyBP-C, resulting in decreased full-length protein expression. This study highlights the vulnerability of FnIII-like domains to mutations that alter domain stability and further indicates that missense mutations in cMyBP-C can cause disease through a mechanism of haploinsufficiency. NEW & NOTEWORTHY This study is one of the first to describe a disease mechanism for a missense mutation in cardiac myosin-binding protein C linked to hypertrophic cardiomyopathy. The mutation decreases stability of the fibronectin type III domain and results in substantially reduced mutant protein expression dissonant to transcript abundance.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Proteínas Portadoras/genética , Mutación Missense , Miocitos Cardíacos/metabolismo , Animales , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica/fisiopatología , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Células Cultivadas , Predisposición Genética a la Enfermedad , Haploinsuficiencia , Humanos , Lisosomas , Ratones de la Cepa 129 , Ratones Noqueados , Contracción Miocárdica/genética , Fenotipo , Complejo de la Endopetidasa Proteasomal/metabolismo , Dominios Proteicos , Pliegue de Proteína , Estabilidad Proteica , Proteolisis
12.
Mol Cell Proteomics ; 15(2): 703-14, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26598644

RESUMEN

Top-down mass spectrometry (MS)-based proteomics is arguably a disruptive technology for the comprehensive analysis of all proteoforms arising from genetic variation, alternative splicing, and posttranslational modifications (PTMs). However, the complexity of top-down high-resolution mass spectra presents a significant challenge for data analysis. In contrast to the well-developed software packages available for data analysis in bottom-up proteomics, the data analysis tools in top-down proteomics remain underdeveloped. Moreover, despite recent efforts to develop algorithms and tools for the deconvolution of top-down high-resolution mass spectra and the identification of proteins from complex mixtures, a multifunctional software platform, which allows for the identification, quantitation, and characterization of proteoforms with visual validation, is still lacking. Herein, we have developed MASH Suite Pro, a comprehensive software tool for top-down proteomics with multifaceted functionality. MASH Suite Pro is capable of processing high-resolution MS and tandem MS (MS/MS) data using two deconvolution algorithms to optimize protein identification results. In addition, MASH Suite Pro allows for the characterization of PTMs and sequence variations, as well as the relative quantitation of multiple proteoforms in different experimental conditions. The program also provides visualization components for validation and correction of the computational outputs. Furthermore, MASH Suite Pro facilitates data reporting and presentation via direct output of the graphics. Thus, MASH Suite Pro significantly simplifies and speeds up the interpretation of high-resolution top-down proteomics data by integrating tools for protein identification, quantitation, characterization, and visual validation into a customizable and user-friendly interface. We envision that MASH Suite Pro will play an integral role in advancing the burgeoning field of top-down proteomics.


Asunto(s)
Proteoma/genética , Proteómica/métodos , Programas Informáticos , Espectrometría de Masas en Tándem , Algoritmos , Procesamiento Proteico-Postraduccional
13.
J Mol Cell Cardiol ; 107: 13-21, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28427997

RESUMEN

Myosin is the principal component of the thick filaments that, through interactions with the actin thin filaments, mediates force production during muscle contraction. Myosin is a hexamer, consisting of two heavy chains, each associated with an essential (ELC) and a regulatory (RLC) light chain, which bind the lever-arm of the heavy chain and play important modulatory roles in striated muscle contraction. Nevertheless, a comprehensive assessment of the sequences of the ELC and RLC isoforms, as well as their post-translational modifications, in the heart remains lacking. Herein, utilizing top-down high-resolution mass spectrometry (MS), we have comprehensively characterized the sequences and N-terminal modifications of the atrial and ventricular isoforms of the myosin light chains from human and swine hearts, as well as the sites of phosphorylation in the swine proteins. In addition to the correction of disparities in the database sequences of the swine proteins, we show for the first time that, whereas the ventricular isoforms of the ELC and RLC are methylated at their N-termini, which is consistent with previous studies, the atrial isoforms of the ELC and RLC from both human and swine are Nα-methylated and Nα-acetylated, respectively. Furthermore, top-down MS with electron capture dissociation enabled localization of the sites of phosphorylation in swine RLC isoforms from the ventricles and atria to Ser14 and Ser22, respectively. Collectively, these results provide new insights into the sequences and modifications of myosin light chain isoforms in the human and swine hearts, which will pave the way for a better understanding of their functional roles in cardiac physiology and pathophysiology.


Asunto(s)
Atrios Cardíacos/metabolismo , Miocardio/metabolismo , Cadenas Ligeras de Miosina/genética , Isoformas de Proteínas/genética , Animales , Ventrículos Cardíacos/metabolismo , Humanos , Miocardio/patología , Cadenas Ligeras de Miosina/metabolismo , Fosforilación , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional/genética , Sarcómeros/metabolismo , Porcinos
14.
J Proteome Res ; 16(5): 2101-2112, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28347137

RESUMEN

Postinfarction remodeling and expansion of the peri-infarct border zone (BZ) directly correlate with mortality following myocardial infarction (MI); however, the cellular and molecular mechanisms underlying remodeling processes in the BZ remain unclear. Herein, we utilized a label-free quantitative proteomics approach in combination with immunohistochemical analyses to gain a better understanding of processes contributing to postinfarction remodeling of the peri-infarct BZ in a swine model of MI with reperfusion. Our analysis uncovered a significant down-regulation of proteins involved in energy metabolism, indicating impaired myocardial energetics and possibly mitochondrial dysfunction, in the peri-scar BZ. An increase in endothelial and vascular smooth muscles cells, as well as up-regulation of proteins implicated in vascular endothelial growth factor (VEGF) signaling and marked changes in the expression of extracellular matrix and subendothelial basement membrane proteins, is indicative of active angiogenesis in the infarct BZ. A pronounced increase in macrophages in the peri-infarct BZ was also observed, and proteomic analysis uncovered evidence of persistent inflammation in this tissue. Additional evidence suggested an increase in cellular proliferation that, concomitant with increased nestin expression, indicates potential turnover of endogenous stem cells in the BZ. A marked up-regulation of pro-apoptotic proteins, as well as the down-regulation of proteins important for adaptation to mechanical, metabolic, and oxidative stress, likely contributes to increased apoptosis in the peri-infarct BZ. The cellular processes and molecular pathways identified herein may have clinical utility for therapeutic intervention aimed at limiting remodeling and expansion of the BZ myocardium and preventing the development of heart failure post-MI.


Asunto(s)
Inmunohistoquímica/métodos , Infarto del Miocardio/metabolismo , Proteómica/métodos , Animales , Apoptosis , Metabolismo Energético , Inflamación , Neovascularización Patológica , Proteínas/análisis , Porcinos
15.
Anal Chem ; 89(9): 4922-4930, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28366003

RESUMEN

Myosin heavy chain (MHC), the major component of the myosin motor molecule, plays an essential role in force production during muscle contraction. However, a comprehensive analysis of MHC proteoforms arising from sequence variations and post-translational modifications (PTMs) remains challenging due to the difficulties in purifying MHC (∼223 kDa) and achieving complete sequence coverage. Herein, we have established a strategy to effectively purify and comprehensively characterize MHC from heart tissue by combining size-exclusion chromatography (SEC) and middle-down mass spectrometry (MS). First, we have developed a MS-compatible SEC method for purifying MHC from heart tissue with high efficiency. Next, we have optimized the Glu-C, Asp-N, and trypsin limited digestion conditions for middle-down MS. Subsequently, we have applied this strategy with optimized conditions to comprehensively characterize human MHC and identified ß-MHC as the predominant isoform in human left ventricular tissue. Full sequence coverage based on highly accurate mass measurements has been achieved using middle-down MS combining 1 Glu-C, 1 Asp-N, and 1 trypsin digestion. Three different PTMs: acetylation, methylation, and trimethylation were identified in human ß-MHC and the corresponding sites were localized to the N-terminal Gly, Lys34, and Lys129, respectively, by electron capture dissociation (ECD). Taken together, we have demonstrated this strategy is highly efficient for purification and characterization of MHC, which can be further applied to studies of the role of MHC proteoforms in muscle-related diseases. We also envision that this integrated SEC/middle-down MS strategy can be extended for the characterization of other large proteins over 200 kDa.


Asunto(s)
Miosinas Cardíacas/química , Cromatografía en Gel/métodos , Cadenas Pesadas de Miosina/química , Espectrometría de Masas en Tándem/métodos , Miosinas Cardíacas/aislamiento & purificación , Ventrículos Cardíacos/química , Humanos , Miocardio/química , Cadenas Pesadas de Miosina/aislamiento & purificación , Isoformas de Proteínas , Procesamiento Proteico-Postraduccional
16.
Anal Chem ; 89(10): 5467-5475, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28406609

RESUMEN

Mass spectrometry (MS)-based top-down proteomics is a powerful method for the comprehensive analysis of proteoforms that arise from genetic variations and post-translational modifications (PTMs). However, top-down MS analysis of high molecular weight (MW) proteins remains challenging mainly due to the exponential decay of signal-to-noise ratio with increasing MW. Size exclusion chromatography (SEC) is a favored method for size-based separation of biomacromolecules but typically suffers from low resolution. Herein, we developed a serial size exclusion chromatography (sSEC) strategy to enable high-resolution size-based fractionation of intact proteins (10-223 kDa) from complex protein mixtures. The sSEC fractions could be further separated by reverse phase chromatography (RPC) coupled online with high-resolution MS. We have shown that two-dimensional (2D) sSEC-RPC allowed for the identification of 4044 more unique proteoforms and a 15-fold increase in the detection of proteins above 60 kDa, compared to one-dimensional (1D) RPC. Notably, effective sSEC-RPC separation of proteins significantly enhanced the detection of high MW proteins up to 223 kDa and also revealed low abundance proteoforms that are post-translationally modified. This sSEC method is MS-friendly, robust, and reproducible and, thus, can be applied to both high-efficiency protein purification and large-scale proteomics analysis of cell or tissue lysate for enhanced proteome coverage, particularly for low abundance and high MW proteoforms.


Asunto(s)
Proteínas/análisis , Proteómica/métodos , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Forma MM de la Creatina-Quinasa/análisis , Forma MM de la Creatina-Quinasa/aislamiento & purificación , Forma MM de la Creatina-Quinasa/metabolismo , Humanos , Peso Molecular , Miocardio/metabolismo , Proteínas/aislamiento & purificación , Proteínas/metabolismo , Espectrometría de Masas en Tándem
17.
J Proteome Res ; 15(8): 2706-16, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27362462

RESUMEN

Sarcopenia, the loss of skeletal muscle mass and function with advancing age, is a significant cause of disability and loss of independence in the elderly and thus, represents a formidable challenge for the aging population. Nevertheless, the molecular mechanism(s) underlying sarcopenia-associated muscle dysfunction remain poorly understood. In this study, we employed an integrated approach combining top-down targeted proteomics with mechanical measurements to dissect the molecular mechanism(s) in age-related muscle dysfunction. Top-down targeted proteomic analysis uncovered a progressive age-related decline in the phosphorylation of myosin regulatory light chain (RLC), a critical protein involved in the modulation of muscle contractility, in the skeletal muscle of aging rats. Top-down tandem mass spectrometry analysis identified a previously unreported bis-phosphorylated proteoform of fast skeletal RLC and localized the sites of decreasing phosphorylation to Ser14/15. Of these sites, Ser14 phosphorylation represents a previously unidentified site of phosphorylation in RLC from fast-twitch skeletal muscle. Subsequent mechanical analysis of single fast-twitch fibers isolated from the muscles of rats of different ages revealed that the observed decline in RLC phosphorylation can account for age-related decreases in the contractile properties of sarcopenic fast-twitch muscles. These results strongly support a role for decreasing RLC phosphorylation in sarcopenia-associated muscle dysfunction and suggest that therapeutic modulation of RLC phosphorylation may represent a new avenue for the treatment of sarcopenia.


Asunto(s)
Cadenas Ligeras de Miosina/metabolismo , Proteómica/métodos , Envejecimiento , Animales , Contracción Muscular , Fibras Musculares de Contracción Rápida/metabolismo , Músculo Esquelético/fisiopatología , Fosforilación , Ratas , Sarcopenia/etiología , Espectrometría de Masas en Tándem
18.
Expert Rev Proteomics ; 13(8): 717-30, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27448560

RESUMEN

INTRODUCTION: Heart diseases are a leading cause of morbidity and mortality for both men and women worldwide, and impose significant economic burdens on the healthcare systems. Despite substantial effort over the last several decades, the molecular mechanisms underlying diseases of the heart remain poorly understood. AREAS COVERED: Altered protein post-translational modifications (PTMs) and protein isoform switching are increasingly recognized as important disease mechanisms. Top-down high-resolution mass spectrometry (MS)-based proteomics has emerged as the most powerful method for the comprehensive analysis of PTMs and protein isoforms. Here, we will review recent technology developments in the field of top-down proteomics, as well as highlight recent studies utilizing top-down proteomics to decipher the cardiac proteome for the understanding of the molecular mechanisms underlying diseases of the heart. Expert commentary: Top-down proteomics is a premier method for the global and comprehensive study of protein isoforms and their PTMs, enabling the identification of novel protein isoforms and PTMs, characterization of sequence variations, and quantification of disease-associated alterations. Despite significant challenges, continuous development of top-down proteomics technology will greatly aid the dissection of the molecular mechanisms underlying diseases of the hearts for the identification of novel biomarkers and therapeutic targets.


Asunto(s)
Cardiopatías/genética , Procesamiento Proteico-Postraduccional/genética , Proteoma/genética , Proteómica/métodos , Biomarcadores , Cardiopatías/patología , Humanos , Espectrometría de Masas , Isoformas de Proteínas/genética
19.
Mol Cell Proteomics ; 13(10): 2752-64, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24969035

RESUMEN

Heart failure (HF) is a leading cause of morbidity and mortality worldwide and is most often precipitated by myocardial infarction. However, the molecular changes driving cardiac dysfunction immediately after myocardial infarction remain poorly understood. Myofilament proteins, responsible for cardiac contraction and relaxation, play critical roles in signal reception and transduction in HF. Post-translational modifications of myofilament proteins afford a mechanism for the beat-to-beat regulation of cardiac function. Thus it is of paramount importance to gain a comprehensive understanding of post-translational modifications of myofilament proteins involved in regulating early molecular events in the post-infarcted myocardium. We have developed a novel liquid chromatography-mass spectrometry-based top-down proteomics strategy to comprehensively assess the modifications of key cardiac proteins in the myofilament subproteome extracted from a minimal amount of myocardial tissue with high reproducibility and throughput. The entire procedure, including tissue homogenization, myofilament extraction, and on-line LC/MS, takes less than three hours. Notably, enabled by this novel top-down proteomics technology, we discovered a concerted significant reduction in the phosphorylation of three crucial cardiac proteins in acutely infarcted swine myocardium: cardiac troponin I and myosin regulatory light chain of the myofilaments and, unexpectedly, enigma homolog isoform 2 (ENH2) of the Z-disc. Furthermore, top-down MS allowed us to comprehensively sequence these proteins and pinpoint their phosphorylation sites. For the first time, we have characterized the sequence of ENH2 and identified it as a phosphoprotein. ENH2 is localized at the Z-disc, which has been increasingly recognized for its role as a nodal point in cardiac signaling. Thus our proteomics discovery opens up new avenues for the investigation of concerted signaling between myofilament and Z-disc in the early molecular events that contribute to cardiac dysfunction and progression to HF.


Asunto(s)
Proteínas de Microfilamentos/metabolismo , Infarto del Miocardio/metabolismo , Miofibrillas/metabolismo , Proteómica/métodos , Animales , Sitios de Unión , Modelos Animales de Enfermedad , Humanos , Espectrometría de Masas/métodos , Proteínas de Microfilamentos/química , Infarto del Miocardio/patología , Miofibrillas/patología , Fosforilación , Porcinos
20.
Proteomics ; 15(15): 2560-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26033914

RESUMEN

Intramyocardial transplantation of cardiomyocytes (CMs), endothelial cells (ECs), and smooth muscle cells (SMCs) derived from human induced pluripotent stem cells (hiPSCs) has beneficial effects on the post-infarction heart. However, the mechanisms underlying the functional improvements remain undefined. We employed large-scale label-free quantitative proteomics to identify proteins that were differentially regulated following cellular transplantation in a swine model of myocardial infarction (MI). We identified 22 proteins that were significantly up-regulated after trilineage cell transplantation compared to both MI and Sham groups. Among them, 12 proteins, including adenylyl cyclase-associated protein 1 and tropomodulin-1, are associated with positive regulation of muscular contraction whereas 11 proteins, such as desmoplakin and zyxin, are involved in embryonic and muscular development and regeneration. Moreover, we identified 21 proteins up-regulated and another 21 down-regulated in MI, but reversed after trilineage cell transplantation. Proteins up-regulated after MI but reversed by transplantation are related to fibrosis and apoptosis. Conversely, proteins down-regulated in MI but restored after cell therapy are regulators of protein nitrosylation. Our results show that the functionally beneficial effects of trilineage cell therapy are accompanied by differential regulation of protein expression in the recipient myocardium, which may contribute to the improved cardiac function.


Asunto(s)
Células Madre Pluripotentes Inducidas/trasplante , Infarto del Miocardio/terapia , Proteómica/métodos , Trasplante de Células Madre/métodos , Animales , Western Blotting , Línea Celular , Células Cultivadas , Cromatografía Liquida/métodos , Biología Computacional/métodos , Humanos , Recién Nacido , Masculino , Ratones , Miocardio/metabolismo , Porcinos , Espectrometría de Masas en Tándem , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA