Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Plant J ; 119(2): 879-894, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38923085

RESUMEN

Cotton is a globally cultivated crop, producing 87% of the natural fiber used in the global textile industry. The pigment glands, unique to cotton and its relatives, serve as a defense structure against pests and pathogens. However, the molecular mechanism underlying gland formation and the specific role of pigment glands in cotton's pest defense are still not well understood. In this study, we cloned a gland-related transcription factor GhHAM and generated the GhHAM knockout mutant using CRISPR/Cas9. Phenotypic observations, transcriptome analysis, and promoter-binding experiments revealed that GhHAM binds to the promoter of GoPGF, regulating pigment gland formation in cotton's multiple organs via the GoPGF-GhJUB1 module. The knockout of GhHAM significantly reduced gossypol production and increased cotton's susceptibility to pests in the field. Feeding assays demonstrated that more than 80% of the cotton bollworm larvae preferred ghham over the wild type. Furthermore, the ghham mutants displayed shorter cell length and decreased gibberellins (GA) production in the stem. Exogenous application of GA3 restored stem cell elongation but not gland formation, thereby indicating that GhHAM controls gland morphogenesis independently of GA. Our study sheds light on the functional differentiation of HAM proteins among plant species, highlights the significant role of pigment glands in influencing pest feeding preference, and provides a theoretical basis for breeding pest-resistant cotton varieties to address the challenges posed by frequent outbreaks of pests.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium , Proteínas de Plantas , Gossypium/genética , Gossypium/parasitología , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Animales , Giberelinas/metabolismo , Gosipol/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Mariposas Nocturnas/fisiología , Larva/crecimiento & desarrollo
2.
Plant Cell ; 34(5): 1724-1744, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35137215

RESUMEN

Plant innate immunity is capable of combating diverse and ever evolving pathogens. The plasticity of innate immunity could be boosted by RNA processing. Arabidopsis thaliana CONSTITUTIVE EXPRESSER OF PATHOGENESIS-RELATED GENES 5 (CPR5), a key negative immune regulator, is a component of the nuclear pore complex. Here we further identified CPR5 as a component of RNA processing complexes. Through genetic screening, we found that RNA splicing activator NineTeen Complex and RNA polyadenylation factor CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR, coordinately function downstream of CPR5 to activate plant immunity. CPR5 and these two regulators form a complex that is localized in nuclear speckles, an RNA processing organelle. Intriguingly, we found that CPR5 is an RNA-binding protein belonging to the Transformer 2 (Tra2) subfamily of the serine/arginine-rich family. The RNA recognition motif of CPR5 protein binds the Tra2-targeted RNA sequence in vitro and is functionally replaceable by those of Tra2 subfamily proteins. In planta, it binds RNAs of CPR5-regulated alternatively spliced genes (ASGs) identified by RNA-seq. ARGONAUTE 1 (AGO1) is one of the ASGs and, consistent with this, the ago1 mutant suppresses the cpr5 phenotype. These findings reveal that CPR5 is an RNA-binding protein linking RNA processing with plant immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de la Membrana/metabolismo , Inmunidad de la Planta/genética , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
3.
Plant Physiol ; 192(2): 945-966, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36718522

RESUMEN

Verticillium wilt caused by Verticillium dahliae is a serious vascular disease in cotton (Gossypium spp.). V. dahliae induces the expression of the CAROTENOID CLEAVAGE DIOXYGENASE 7 (GauCCD7) gene involved in strigolactone (SL) biosynthesis in Gossypium australe, suggesting a role for SLs in Verticillium wilt resistance. We found that the SL analog rac-GR24 enhanced while the SL biosynthesis inhibitor TIS108 decreased cotton resistance to Verticillium wilt. Knock-down of GbCCD7 and GbCCD8b genes in island cotton (Gossypium barbadense) decreased resistance, whereas overexpression of GbCCD8b in upland cotton (Gossypium hirsutum) increased resistance to Verticillium wilt. Additionally, Arabidopsis (Arabidopsis thaliana) SL mutants defective in CCD7 and CCD8 putative orthologs were susceptible, whereas both Arabidopsis GbCCD7- and GbCCD8b-overexpressing plants were more resistant to Verticillium wilt than wild-type (WT) plants. Transcriptome analyses showed that several genes related to the jasmonic acid (JA)- and abscisic acid (ABA)-signaling pathways, such as MYELOCYTOMATOSIS 2 (GbMYC2) and ABA-INSENSITIVE 5, respectively, were upregulated in the roots of WT cotton plants in responses to rac-GR24 and V. dahliae infection but downregulated in the roots of both GbCCD7- and GbCCD8b-silenced cotton plants. Furthermore, GbMYC2 suppressed the expression of GbCCD7 and GbCCD8b by binding to their promoters, which might regulate the homeostasis of SLs in cotton through a negative feedback loop. We also found that GbCCD7- and GbCCD8b-silenced cotton plants were impaired in V. dahliae-induced reactive oxygen species (ROS) accumulation. Taken together, our results suggest that SLs positively regulate cotton resistance to Verticillium wilt through crosstalk with the JA- and ABA-signaling pathways and by inducing ROS accumulation.


Asunto(s)
Arabidopsis , Verticillium , Gossypium/genética , Gossypium/metabolismo , Verticillium/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hormonas/metabolismo , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plant Physiol ; 189(1): 264-284, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35134243

RESUMEN

In plants, long noncoding RNAs (lncRNAs) regulate disease resistance against fungi and other pathogens. However, the specific mechanism behind this regulation remains unclear. In this study, we identified disease resistance-related lncRNAs as well as their regulating genes and assessed their functions by infection of cotton (Gossypium) chromosome segment substitution lines with Verticillium dahliae. Our results demonstrated that lncRNA7 and its regulating gene Pectin methylesterase inhibitor 13 (GbPMEI13) positively regulated disease resistance via the silencing approach, while ectopic overexpression of GbPMEI13 in Arabidopsis (Arabidopsis thaliana) promoted growth and enhanced resistance to V. dahliae. In contrast, lncRNA2 and its regulating gene Polygalacturonase 12 (GbPG12) negatively regulated resistance to V. dahliae. We further found that fungal disease-related agents, including the pectin-derived oligogalacturonide (OG), could downregulate the expression of lncRNA2 and GbPG12, leading to pectin accumulation. Conversely, OG upregulated the expression of lncRNA7, which encodes a plant peptide phytosulfokine (PSK-α), which was confirmed by lncRNA7 overexpression and Ultra Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS) experiments. We showed that PSK-α promoted 3-Indoleacetic acid (IAA) accumulation and activated GbPMEI13 expression through Auxin Response Factor 5. Since it is an inhibitor of pectin methylesterase (PME), GbPMEI13 promotes pectin methylation and therefore increases the resistance to V. dahliae. Consistently, we also demonstrated that GbPMEI13 inhibits the mycelial growth and spore germination of V. dahliae in vitro. In this study, we demonstrated that lncRNA7, lncRNA2, and their regulating genes modulate cell wall defense against V. dahliae via auxin-mediated signaling, providing a strategy for cotton breeding.


Asunto(s)
Arabidopsis , ARN Largo no Codificante , Verticillium , Arabidopsis/metabolismo , Pared Celular/metabolismo , Cromatografía Liquida , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Gossypium/metabolismo , Ácidos Indolacéticos/metabolismo , Pectinas/metabolismo , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Espectrometría de Masas en Tándem , Verticillium/fisiología
5.
Genomics ; 113(6): 3872-3880, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34563615

RESUMEN

We combined traditional mRNA-seq and RNC-seq together to reveal post-transcriptional regulation events impacting gene expression and interactions between the serious fungal pathogen Verticillium dahliae and a susceptible host, Gossypium hirsutum TM-1. After screening the differentially expressed and translated genes, V. dahliae infection was observed to influence gene transcription and translation in its host. Interestingly, the asparagine synthase (ASN1) gene transcripts increased significantly with the increase of infection time, while the rate of ASN1 protein accumulation in host TM-1 was distinctly lower than that in resistant hosts. We knocked down the ASN1 gene in resistant plants (ZZM2), and found that Verticillium-resistance was significantly reduced upon knockdown of ASN1. Our study revealed both transcriptional and post-transcriptional regulation of gene expression in TM-1 cotton plants infected by V. dahliae, and showed that ASN1 functions in the V. dahliae resistance process. These insights support breeding of disease resistance in cotton.


Asunto(s)
Resistencia a la Enfermedad , Gossypium , Enfermedades de las Plantas , Verticillium , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Gossypium/microbiología , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , Ribosomas , Verticillium/patogenicidad
6.
Plant Biotechnol J ; 19(6): 1110-1124, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33369825

RESUMEN

Cotton seeds are typically covered by lint and fuzz fibres. Natural 'fuzzless' mutants are an ideal model system for identifying genes that regulate cell initiation and elongation. Here, using a genome-wide association study (GWAS), we identified a ~ 6.2 kb insertion, larINDELFZ , located at the end of chromosome 8, composed of a ~ 5.0 kb repetitive sequence and a ~ 1.2 kb fragment translocated from chromosome 12 in fuzzless Gossypium arboreum. The presence of larINDELFZ was associated with a fuzzless seed and reduced trichome phenotypes in G. arboreum. This distant insertion was predicted to be an enhancer, located ~ 18 kb upstream of the dominant-repressor GaFZ (Ga08G0121). Ectopic overexpression of GaFZ in Arabidopsis thaliana and G. hirsutum suggested that GaFZ negatively modulates fuzz and trichome development. Co-expression and interaction analyses demonstrated that GaFZ might impact fuzz fibre/trichome development by repressing the expression of genes in the very-long-chain fatty acid elongation pathway. Thus, we identified a novel regulator of fibre/trichome development while providing insights into the importance of noncoding sequences in cotton.


Asunto(s)
Gossypium , Tricomas , Fibra de Algodón , Regulación de la Expresión Génica de las Plantas/genética , Estudio de Asociación del Genoma Completo , Gossypium/genética , Tricomas/genética
7.
New Phytol ; 229(4): 2091-2103, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33129229

RESUMEN

Improving yield is a primary mission for cotton (Gossypium hirsutum) breeders; development of cultivars with suitable architecture for high planting density (HPDA) can increase yield per unit area. We characterized a natural cotton mutant, AiSheng98 (AS98), which exhibits shorter height, shorter branch length, and more acute branch angle than wild-type. A copy number variant at the HPDA locus on Chromosome D12 (HPDA-D12), encoding a dehydration-responsive element-binding (DREB) transcription factor, GhDREB1B, strongly affects plant architecture in the AS98 mutant. We found an association between a tandem duplication of a c. 13.5 kb segment in HPDA-D12 and elevated GhDREB1B expression resulting in the AS98 mutant phenotype. GhDREB1B overexpression confers a significant decrease in plant height and branch length, and reduced branch angle. Our results suggest that fine-tuning GhDREB1B expression may be a viable engineering strategy for modification of plant architecture favorable to high planting density in cotton.


Asunto(s)
Variaciones en el Número de Copia de ADN , Gossypium , Fibra de Algodón , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Fenotipo , Factores de Transcripción/genética
8.
Genomics ; 112(2): 1902-1915, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31733270

RESUMEN

In this investigation, whole-genome identification and functional characterization of the cotton dehydrin genes was carried out. A total of 16, 7, and 7 dehydrin proteins were identified in G. hirsutum, G. arboreum and G. raimondii, respectively. Through RNA sequence data and RT-qPCR validation, Gh_A05G1554 (GhDHN_03) and Gh_D05G1729 (GhDHN_04) were highly upregulated, and knockdown of the two genes, significantly reduced the ability of the plants to tolerate the effects of osmotic and salt stress. The VIGS-plants recorded significantly higher concentration levels of oxidants, hydrogen peroxide (H2O2) and malondialdehyde (MDA), furthermore, the four stress responsive genes GhLEA2, Gh_D12G2017 (CDKF4), Gh_A07G0747 (GPCR) and a transcription factor, trihelix, Gh_A05G2067, were significantly downregulated in VIGS-plants, but upregulated in wild types under osmotic and salt stress condition. The result indicated that dehydrin proteins are vital for plants and can be exploited in developing a more osmotic and salt stress-resilient germplasm to boost and improve cotton production.


Asunto(s)
Gossypium/genética , Presión Osmótica , Proteínas de Plantas/genética , Tolerancia a la Sal , Gossypium/metabolismo , Estrés Oxidativo , Proteínas de Plantas/metabolismo
9.
Plant Biotechnol J ; 18(3): 814-828, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31479566

RESUMEN

The diploid wild cotton species Gossypium australe possesses excellent traits including resistance to disease and delayed gland morphogenesis, and has been successfully used for distant breeding programmes to incorporate disease resistance traits into domesticated cotton. Here, we sequenced the G. australe genome by integrating PacBio, Illumina short read, BioNano (DLS) and Hi-C technologies, and acquired a high-quality reference genome with a contig N50 of 1.83 Mb and a scaffold N50 of 143.60 Mb. We found that 73.5% of the G. australe genome is composed of various repeat sequences, differing from those of G. arboreum (85.39%), G. hirsutum (69.86%) and G. barbadense (69.83%). The G. australe genome showed closer collinear relationships with the genome of G. arboreum than G. raimondii and has undergone less extensive genome reorganization than the G. arboreum genome. Selection signature and transcriptomics analyses implicated multiple genes in disease resistance responses, including GauCCD7 and GauCBP1, and experiments revealed induction of both genes by Verticillium dahliae and by the plant hormones strigolactone (GR24), salicylic acid (SA) and methyl jasmonate (MeJA). Experiments using a Verticillium-resistant domesticated G. barbadense cultivar confirmed that knockdown of the homologues of these genes caused a significant reduction in resistance against Verticillium dahliae. Moreover, knockdown of a newly identified gland-associated gene GauGRAS1 caused a glandless phenotype in partial tissues using G. australe. The G. australe genome represents a valuable resource for cotton research and distant relative breeding as well as for understanding the evolutionary history of crop genomes.


Asunto(s)
Resistencia a la Enfermedad , Gossypium/genética , Australia , Diploidia , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Morfogénesis , Enfermedades de las Plantas/genética
10.
BMC Plant Biol ; 19(1): 138, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30975072

RESUMEN

BACKGROUND: Gossypium hirsutum L. is grown worldwide and is the largest source of natural fiber crop. We focus on exploring the favorable alleles (FAs) for upland cotton varieties improvement, and further understanding the history of accessions selection and acumination of favorable allele during breeding. RESULTS: The genetic basis of phenotypic variation has been studied. But the accumulation of favorable alleles in cotton breeding history in unknown, and potential favorable alleles to enhance key agronomic traits in the future cotton varieties have not yet been identified. Therefore, 419 upland cotton accessions were screened, representing a diversity of phenotypic variations of 7362 G. hirsutum, and 15 major traits were investigated in 6 environments. These accessions were categorized into 3 periods (early, medium, and modern) according to breeding history. All accessions were divided into two major groups using 299 polymorphic microsatellite markers: G1 (high fiber yield and quality, late maturity) and G2 (low fiber yield and quality, early maturity). The proportion of G1 genotype gradually increased from early to modern breeding periods. Furthermore, 21 markers (71 alleles) were significantly associated (-log P > 4) with 15 agronomic traits in multiple environments. Seventeen alleles were identified as FAs; these alleles accumulated more in the modern period than in other periods, consistent with their phenotypic variation trends in breeding history. Our results demonstrate that the favorable alleles accumulated through breeding effects, especially for common favorable alleles. However, the potential elite accessions could be rapidly screened by rare favorable alleles. CONCLUSION: In our study, genetic variation and genome-wide associations for 419 upland cotton accessions were analyzed. Two favorable allele types were identified during three breeding periods, providing important information for yield/quality improvement of upland cotton germplasm.


Asunto(s)
Alelos , Variación Genética , Gossypium/genética , Agricultura , Estudio de Asociación del Genoma Completo , Genotipo , Gossypium/crecimiento & desarrollo , Fenotipo , Fitomejoramiento
11.
BMC Genomics ; 18(1): 292, 2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28403834

RESUMEN

BACKGROUND: Nucleotide binding site (NBS) genes encode a large family of disease resistance (R) proteins in plants. The availability of genomic data of the two diploid cotton species, Gossypium arboreum and Gossypium raimondii, and the two allotetraploid cotton species, Gossypium hirsutum (TM-1) and Gossypium barbadense allow for a more comprehensive and systematic comparative study of NBS-encoding genes to elucidate the mechanisms of cotton disease resistance. RESULTS: Based on the genome assembly data, 246, 365, 588 and 682 NBS-encoding genes were identified in G. arboreum, G. raimondii, G. hirsutum and G. barbadense, respectively. The distribution of NBS-encoding genes among the chromosomes was nonrandom and uneven, and was tended to form clusters. Gene structure analysis showed that G. arboreum and G. hirsutum possessed a greater proportion of CN, CNL, and N genes and a lower proportion of NL, TN and TNL genes compared to that of G. raimondii and G. barbadense, while the percentages of RN and RNL genes remained relatively unchanged. The percentage changes among them were largest for TNL genes, about 7 times. Exon statistics showed that the average exon numbers per NBS gene in G. raimondii and G. barbadense were all greater than that in G. arboretum and G. hirsutum. Phylogenetic analysis revealed that the TIR-NBS genes of G. barbadense were closely related with that of G. raimondii. Sequence similarity analysis showed that diploid cotton G. arboreum possessed a larger proportion of NBS-encoding genes similar to that of allotetraploid cotton G. hirsutum, while diploid G. raimondii possessed a larger proportion of NBS-encoding genes similar to that of allotetraploid cotton G. barbadense. The synteny analysis showed that more NBS genes in G. raimondii and G. arboreum were syntenic with that in G. barbadense and G. hirsutum, respectively. CONCLUSIONS: The structural architectures, amino acid sequence similarities and synteny of NBS-encoding genes between G. arboreum and G. hirsutum, and between G. raimondii and G. barbadense were the highest among comparisons between the diploid and allotetraploid genomes, indicating that G. hirsutum inherited more NBS-encoding genes from G. arboreum, while G. barbadense inherited more NBS-encoding genes from G. raimondii. This asymmetric evolution of NBS-encoding genes may help to explain why G. raimondii and G. barbadense are more resistant to Verticillium wilt, whereas G. arboreum and G. hirsutum are more susceptible to Verticillium wilt. The disease resistances of the allotetraploid cotton were related to their NBS-encoding genes especially in regard from which diploid progenitor they were derived, and the TNL genes may have a significant role in disease resistance to Verticillium wilt in G. raimondii and G. barbadense.


Asunto(s)
Resistencia a la Enfermedad , Gossypium/clasificación , Gossypium/genética , Proteínas de Plantas/genética , Sitios de Unión , Mapeo Cromosómico/métodos , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Análisis de Secuencia de ADN , Sintenía
12.
Plant Cell ; 25(1): 115-33, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23371951

RESUMEN

Phytochrome A (phyA) is the primary photoreceptor mediating deetiolation under far-red (FR) light, whereas phyB predominantly regulates light responses in red light. SUPPRESSOR OF PHYA-105 (SPA1) forms an E3 ubiquitin ligase complex with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), which is responsible for the degradation of various photomorphogenesis-promoting factors, resulting in desensitization to light signaling. However, the role of phyB in FR light signaling and the regulatory pathway from light-activated phytochromes to the COP1-SPA1 complex are largely unknown. Here, we confirm that PHYB overexpression causes an etiolation response with reduced ELONGATED HYPOCOTYL5 (HY5) accumulation under FR light. Notably, phyB exerts its nuclear activities and promotes seedling etiolation in both the presence and absence of phyA in response to FR light. PhyB acts upstream of SPA1 and is functionally dependent on it in FR light signaling. PhyB interacts and forms a protein complex with SPA1, enhancing its nuclear accumulation under FR light. During the dark-to-FR transition, phyB is rapidly imported into the nucleus and facilitates nuclear SPA1 accumulation. These findings support the notion that phyB plays a role in repressing FR light signaling. Activity modulation of the COP1-SPA E3 complex by light-activated phytochromes is an effective and pivotal regulatory step in light signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Fototransducción , Fitocromo B/metabolismo , Transporte Activo de Núcleo Celular , Arabidopsis/citología , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Clorofila/metabolismo , Oscuridad , Epistasis Genética , Expresión Génica , Hipocótilo/citología , Hipocótilo/genética , Hipocótilo/fisiología , Hipocótilo/efectos de la radiación , Luz , Modelos Moleculares , Mutación , Proteínas Nucleares/metabolismo , Fitocromo B/genética , Plantas Modificadas Genéticamente , Plantones/citología , Plantones/genética , Plantones/fisiología , Plantones/efectos de la radiación , Ubiquitina-Proteína Ligasas/metabolismo
13.
Yi Chuan ; 36(7): 669-78, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25076031

RESUMEN

Phylogenomics is a new phylogenetic field that aims to rebuild phylogenetic relationship of organisms using whole genome data. It can effectively eliminate the impact of horizontal gene transfer and variant evolutionary rates on phylogeny. According to the genome data type they are based on, these methods can be classified into five groups: multi-gene based, gene content based, gene order based, K-string based, and metabolic pathway based. The mechanism, speed, accuracy, applicable range and their application of these methods are summarized. The prospects of phylogenomics and challenges that it is faced with are also discussed.


Asunto(s)
Eucariontes/genética , Genómica/tendencias , Filogenia , Animales , Genoma , Genómica/instrumentación , Genómica/métodos , Humanos
14.
Mol Plant Pathol ; 25(6): e13483, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38829344

RESUMEN

As a universal second messenger, cytosolic calcium (Ca2+) functions in multifaceted intracellular processes, including growth, development and responses to biotic/abiotic stresses in plant. The plant-specific Ca2+ sensors, calmodulin and calmodulin-like (CML) proteins, function as members of the second-messenger system to transfer Ca2+ signal into downstream responses. However, the functions of CMLs in the responses of cotton (Gossypium spp.) after Verticillium dahliae infection, which causes the serious vascular disease Verticillium wilt, remain elusive. Here, we discovered that the expression level of GbCML45 was promoted after V. dahliae infection in roots of cotton, suggesting its potential role in Verticillium wilt resistance. We found that knockdown of GbCML45 in cotton plants decreased resistance while overexpression of GbCML45 in Arabidopsis thaliana plants enhanced resistance to V. dahliae infection. Furthermore, there was physiological interaction between GbCML45 and its close homologue GbCML50 by using yeast two-hybrid and bimolecular fluorescence assays, and both proteins enhanced cotton resistance to V. dahliae infection in a Ca2+-dependent way in a knockdown study. Detailed investigations indicated that several defence-related pathways, including salicylic acid, ethylene, reactive oxygen species and nitric oxide signalling pathways, as well as accumulations of lignin and callose, are responsible for GbCML45- and GbCML50-modulated V. dahliae resistance in cotton. These results collectively indicated that GbCML45 and GbCML50 act as positive regulators to improve cotton Verticillium wilt resistance, providing potential targets for exploitation of improved Verticillium wilt-tolerant cotton cultivars by genetic engineering and molecular breeding.


Asunto(s)
Calcio , Resistencia a la Enfermedad , Gossypium , Enfermedades de las Plantas , Proteínas de Plantas , Gossypium/microbiología , Gossypium/genética , Gossypium/metabolismo , Gossypium/inmunología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Calcio/metabolismo , Regulación de la Expresión Génica de las Plantas , Calmodulina/metabolismo , Calmodulina/genética , Arabidopsis/microbiología , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/metabolismo , Ascomicetos/fisiología , Ascomicetos/patogenicidad , Plantas Modificadas Genéticamente , Verticillium/fisiología , Verticillium/patogenicidad
15.
BMC Genomics ; 14: 852, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24314117

RESUMEN

BACKGROUND: Cotton Verticillium wilt is a serious soil-borne vascular disease that causes great economic loss each year. However, due to the lack of resistant varieties of upland cotton, the molecular mechanisms of resistance to this disease, especially to the pathogen Verticillium dahliae, remain unclear. RESULTS: We used the RNA-seq method to research the molecular mechanisms of cotton defence responses to different races of Verticillium dahliae by comparing infected sea-island cotton and upland cotton. A total of 77,212 unigenes were obtained, and the unigenes were subjected to BLAST searching and annotated using the GO and KO databases. Six sets of digital gene expression data were mapped to the reference transcriptome. The gene expression profiles of cotton infected with Verticillium dahliae were compared to those of uninfected cotton; 44 differentially expressed genes were identified. Regarding genes involved in the phenylalanine metabolism pathway, the hydroxycinnamoyl transferase gene (HCT) was upregulated in upland cotton whereas PAL, 4CL, CAD, CCoAOMT, and COMT were upregulated in sea-island cotton. Almost no differentially expressed genes in this pathway were identified in sea-island cotton and upland cotton when they were infected with V. dahliae V991 and V. dahliae D07038, respectively. CONCLUSIONS: Our comprehensive gene expression data at the transcription level will help elucidate the molecular mechanisms of the cotton defence response to V. dahliae. By identifying the genes involved in the defence response of each type of cotton to V. dahliae, our data not only provide novel molecular information for researchers, but also help accelerate research on genes involved in defences in cotton.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Gossypium/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Verticillium , Biología Computacional , Resistencia a la Enfermedad/genética , Gossypium/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Proteínas de Plantas/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Transducción de Señal , Transcriptoma
16.
BMC Plant Biol ; 12: 53, 2012 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-22520079

RESUMEN

BACKGROUND: Tumourous stem mustard (Brassica juncea var. tumida Tsen et Lee) is an economically and nutritionally important vegetable crop of the Cruciferae family that also provides the raw material for Fuling mustard. The genetics breeding, physiology, biochemistry and classification of mustards have been extensively studied, but little information is available on tumourous stem mustard at the molecular level. To gain greater insight into the molecular mechanisms underlying stem swelling in this vegetable and to provide additional information for molecular research and breeding, we sequenced the transcriptome of tumourous stem mustard at various stem developmental stages and compared it with that of a mutant variety lacking swollen stems. RESULTS: Using Illumina short-read technology with a tag-based digital gene expression (DGE) system, we performed de novo transcriptome assembly and gene expression analysis. In our analysis, we assembled genetic information for tumourous stem mustard at various stem developmental stages. In addition, we constructed five DGE libraries, which covered the strains Yong'an and Dayejie at various development stages. Illumina sequencing identified 146,265 unigenes, including 11,245 clusters and 135,020 singletons. The unigenes were subjected to a BLAST search and annotated using the GO and KO databases. We also compared the gene expression profiles of three swollen stem samples with those of two non-swollen stem samples. A total of 1,042 genes with significantly different expression levels occurring simultaneously in the six comparison groups were screened out. Finally, the altered expression levels of a number of randomly selected genes were confirmed by quantitative real-time PCR. CONCLUSIONS: Our data provide comprehensive gene expression information at the transcriptional level and the first insight into the understanding of the molecular mechanisms and regulatory pathways of stem swelling and development in this plant, and will help define new mechanisms of stem development in non-model plant organisms.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Planta de la Mostaza/genética , Tallos de la Planta/genética , Análisis de Secuencia de ARN/métodos , Regulación de la Expresión Génica de las Plantas , Planta de la Mostaza/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo
17.
Mol Biol Rep ; 37(7): 3319-25, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19888674

RESUMEN

To identify genes involved in pigment gland morphogenesis in cotton, gene expression was profiled using genechip (Affymetrix) during pigment gland morphogenesis in cotton variety Xiangmian-18, which has glandless seeds but glanded plants, and a glandless line, N5. The results showed that 303 genes were differentially expressed by a factor greater than two during gland morphogenesis; 59% (180) of these genes shared similarity with known genes in GenBank. These genes play roles in defense response, response to oxidative stress, peroxidase activity, and other metabolic pathways. KOBAS (KEGG Orthology-Based Annotation System) indicate that these genes are involved in 68 biochemical pathways. These findings suggest that the related defense response, gossypol biosynthesis pathway and other complex regulation may be associated with pigment gland morphogenesis in cotton. The results may provide a basis for further study and serve as a guide for related research.


Asunto(s)
Ecosistema , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Gossypium/anatomía & histología , Gossypium/genética , Morfogénesis/genética , Mutación/genética , Regulación hacia Abajo/genética , Genes de Plantas/genética , Gossypium/crecimiento & desarrollo , Redes y Vías Metabólicas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba/genética
18.
Anim Biotechnol ; 21(1): 25-35, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20024784

RESUMEN

The cDNA coding for stomach lysozyme in yak was cloned. The cloned cDNA contains a 432 bp open reading frame and encodes 143 amino acids (16.24 KDa) with a signal peptide of 18 amino acids. Further analysis revealed that its amino acid sequence shares many common properties with cow milk lysozyme. Expression of this gene was also detected in mammary gland tissue by RT-PCR. Phylogenetic relationships among yak stomach lysozyme and 8 cow lysozymes indicated that the yak enzyme is more closely related to both cow milk lysozyme and the pseudogene PsiNS4 than cow stomach lysozyme. Recombinant yak lysozyme purified by Ni(2+)-column showed a molecular weight of 33.78 kDa and exhibited lytic activity against Staphylococcus aureus, providing evidence of its antibacterial activities.


Asunto(s)
Bovinos/genética , Muramidasa/genética , Estómago de Rumiantes/enzimología , Secuencia de Aminoácidos , Animales , Antibacterianos/farmacología , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , Regulación Enzimológica de la Expresión Génica/genética , Genes/genética , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Muramidasa/farmacología , Muramidasa/fisiología , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Staphylococcus aureus/efectos de los fármacos
19.
Front Genet ; 11: 788, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33061930

RESUMEN

Respiratory burst oxidase homologs (Rbohs) play a predominant role in reactive oxygen species (ROS) production, which is crucial in plant growth, differentiation, as well as their responses to biotic and abiotic stresses. To date, however, there is little knowledge about the function of cotton Rboh genes. Here, we identified a total of 87 Rbohs from five sequenced Gossypium species (the diploids Gossypium arboreum, Gossypium raimondii, and Gossypium australe, and the allotetraploids Gossypium hirsutum and Gossypium barbadense) via BLAST searching their genomes. Phylogenetic analysis of the putative 87 cotton Rbohs revealed that they were divided into seven clades. All members within the same clade are generally similar to each other in terms of gene structure and conserved domain arrangement. In G. barbadense, the expression levels of GbRbohs in the CladeD were induced in response to a fungal pathogen and to hormones (i.e., jasmonic acid and abscisic acid), based upon which the main functional member in CladeD was discerned to be GbRboh5/18. Further functional and physiological analyses showed that the knock-down of GbRboh5/18 expression attenuates plant resistance to Verticillium dahliae infection. Combined with the molecular and biochemical analyses, we found less ROS accumulation in GbRboh5/18-VIGS plants than in control plants after V. dahliae infection. Overexpression of GbRboh5/18 in G. barbadense resulted in more ROS accumulation than in control plants. These results suggest that GbRboh5/18 enhances the cotton plants' resistance against V. dahliae by elevating the levels of ROS accumulation. By integrating phylogenetic, molecular, and biochemical approaches, this comprehensive study provides a detailed overview of the number, phylogeny, and evolution of the Rboh gene family from five sequenced Gossypium species, as well as elucidating the function of GbRboh5/18 for plant resistance against V. dahliae. This study sheds fresh light on the molecular evolutionary properties and function of Rboh genes in cotton, and provides a reference for improving cotton's responses to the pathogen V. dahliae.

20.
Zhongguo Zhong Yao Za Zhi ; 34(2): 138-42, 2009 Jan.
Artículo en Zh | MEDLINE | ID: mdl-19385170

RESUMEN

OBJECTIVE: The genetic difference among Scrophularia ningpoensis cultivars were analyzed in molecular level. METHOD: Ninety-two individuls of three S. ningpoensis cultivars were employed to be analyzed by the approach of Sequence-related Amplified Polymorphism (SRAP).The parameters were calculated by POPGENE1.31 and the relationship was constructed based on UPGMA method. RESULT: 1) A total of 227 bands were scored and 199 bands of them were polymorphic. 2) The result is showed that there is a medium level of genetic diversity among three cultivars. At species level: percentage of polymorphic loci PPB=52.42%, effective number of alleles N(e)=1.2812, Nei's gene diversity H=0.1671 and Shannon's information index H(sp)= 0.2526; At cultivar level: PPB=21.44%, N(e)=1.1216, Nei's gene diversity H=0.0725 and Shannon's information index H(pop)= 0.1083. 3) The Nei's coefficient of genetic differentiation was 0.5625, which was consistent with the Shannon's coefficient of genetic differentiation (0.5713). Most of the genetic variation existed among cultivars. 4) The gene flow (N(m)=0.3889) was less among cultivars, indicating that the degree of genetic differentiation was higher. 5) Genetic similarity coefficient were changed from 0.8082 to 0.9133. By clustering analysis, the classified result of SRAP marker between traditional modal character was almost same. CONCLUSION: The genetic diversity of samples of S. ningpoensis is medium. The genetic difference among cultivar is higher than that within cultivar.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico/métodos , Scrophularia/clasificación , Scrophularia/genética , Análisis por Conglomerados , Cartilla de ADN/genética , Flujo Génico , Marcadores Genéticos/genética , Variación Genética , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA