Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 174(4): 1038-1038.e1, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30096304

RESUMEN

MicroRNAs (miRNAs) are synonymous with post-transcriptional repression of target genes. A number of studies, however, have reported miRNAs functioning outside this paradigm, and this SnapShot outlines these unconventional ways in which miRNAs can exert regulatory functions. To view this SnapShot, open or download the PDF.


Asunto(s)
Núcleo Celular/genética , Regulación de la Expresión Génica , Redes Reguladoras de Genes , MicroARNs/genética , ARN Mensajero/metabolismo , Humanos , ARN Mensajero/genética
2.
Mol Ther ; 32(1): 152-167, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37990493

RESUMEN

Metastatic melanoma poses significant challenges as a highly lethal disease. Despite the success of molecular targeting using BRAFV600E inhibitors (BRAFis) and immunotherapy, the emergence of early recurrence remains an issue and there is the need for novel therapeutic approaches. This study aimed at creating a targeted delivery system for the oncosuppressor microRNA 126 (miR126) and testing its effectiveness in combination with a phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT) inhibitor for treating metastatic melanoma resistant to BRAFis. To achieve this, we synthesized chitosan nanoparticles containing a chemically modified miR126 sequence. These nanoparticles were further functionalized with an antibody specific to the chondroitin sulfate proteoglycan 4 (CSPG4) melanoma marker. After evaluation in vitro, the efficacy of this treatment was evaluated through an in vivo experiment using mice bearing resistant human melanoma. The co-administration of miR126 and the PI3K/AKT inhibitor in these experiments significantly reduced tumor growth and inhibited the formation of liver and lung metastases. These results provide evidence for a strategy to target an oncosuppressive nucleic acid sequence to tumor cells while simultaneously protecting it from plasma degradation. The system described in this study exhibits encouraging potential for the effective treatment of therapy-resistant metastatic melanoma while also presenting a prospective approach for other forms of cancer.


Asunto(s)
Melanoma , MicroARNs , Humanos , Animales , Ratones , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Línea Celular Tumoral , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , MicroARNs/farmacología
3.
Gut ; 72(4): 624-637, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36002248

RESUMEN

OBJECTIVE: Many cancers engage embryonic genes for rapid growth and evading the immune system. SOX9 has been upregulated in many tumours, yet the role of SOX9 in mediating immunosuppressive tumour microenvironment is unclear. Here, we aim to dissect the role of SOX9-mediated cancer stemness attributes and immunosuppressive microenvironment in advanced gastric adenocarcinoma (GAC) for novel therapeutic discoveries. METHODS: Bulk RNAseq/scRNA-seq, patient-derived cells/models and extensive functional studies were used to identify the expression and functions of SOX9 and its target genes in vitro and in vivo. Immune responses were studied in PBMCs or CD45+ immune cells cocultured with tumour cells with SOX9high or knockout and the KP-Luc2 syngeneic models were used for efficacy of combinations. RESULTS: SOX9 is one of the most upregulated SOX genes in GAC and highly expressed in primary and metastatic tissues and associated with poor prognosis. Depletion of SOX9 in patient-derived GAC cells significantly decreased cancer stemness attributes, tumour formation and metastases and consistently increased CD8+ T cell responses when cocultured with PBMCs/CD45+ cells from GAC patients. RNA sequencing identified the leukaemia inhibitory factor (LIF) as the top secreted molecule regulated by SOX9 in tumour cells and was enriched in malignant ascites and mediated SOX9-induced M2 macrophage repolarisation and inhibited T cell function. CONCLUSION: Epithelial SOX9 is critical in suppressing CD8+ T cell responses and modified macrophage function in GAC through the paracrine LIF factor. Cotargeting LIF/LIFR and CSF1R has great potential in targeting SOX9-mediated cancer stemness, T cell immunosuppression and metastases suggesting the novel combination therapy against advanced GAC.


Asunto(s)
Adenocarcinoma , Neoplasias Gástricas , Humanos , Microambiente Tumoral , Adenocarcinoma/genética , Adenocarcinoma/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Inmunosupresores , Terapia de Inmunosupresión , Factor de Transcripción SOX9/genética
4.
Int J Cancer ; 152(5): 822-834, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36082440

RESUMEN

The view of long noncoding RNAs as nonfunctional "garbage" has been definitely outdated by the large body of evidence indicating this class of ncRNAs as "golden junk", especially in precision oncology. Indeed, in light of their oncogenic role and the higher expression in multiple cancer types compared with paired adjacent tissues, the clinical interest for lncRNAs as diagnostic and/or prognostic biomarkers has been rapidly increasing. The emergence of large-scale sequencing technologies, their subsequent diffusion even in small research and clinical centers, the technological advances for the detection of low-copy lncRNAs in body fluids, coupled to the huge reduction of operating costs, have nowadays made possible to rapidly and comprehensively profile them in multiple tumors and large cohorts. In this review, we first summarize some relevant data about the oncogenic role of well-studied lncRNAs having a clinical relevance. Then, we focus on the description of their potential use as diagnostic/prognostic biomarkers, including an updated overview about licensed patents or clinical trials on lncRNAs in oncology.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , ARN Largo no Codificante/genética , Biomarcadores de Tumor/genética , Medicina de Precisión , ARN no Traducido , Pronóstico , Regulación Neoplásica de la Expresión Génica
5.
Cell Mol Life Sci ; 79(7): 391, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776213

RESUMEN

The RNA-binding protein ALYREF (THOC4) is involved in transcriptional regulation and nuclear mRNA export, though its role and molecular mode of action in breast carcinogenesis are completely unknown. Here, we identified high ALYREF expression as a factor for poor survival in breast cancer patients. ALYREF significantly influenced cellular growth, apoptosis and mitochondrial energy metabolism in breast cancer cells as well as breast tumorigenesis in orthotopic mouse models. Transcriptional profiling, phenocopy and rescue experiments identified the short isoform of the lncRNA NEAT1 as a molecular trigger for ALYREF effects in breast cancer. Mechanistically, we found that ALYREF binds to the NEAT1 promoter region to enhance the global NEAT1 transcriptional activity. Importantly, by stabilizing CPSF6, a protein that selectively activates the post-transcriptional generation of the short isoform of NEAT1, as well as by direct binding and stabilization of the short isoform of NEAT1, ALYREF selectively fine-tunes the expression of the short NEAT1 isoform. Overall, our study describes ALYREF as a novel factor contributing to breast carcinogenesis and identifies novel molecular mechanisms of regulation the two isoforms of NEAT1.


Asunto(s)
Neoplasias de la Mama , Proteínas Nucleares , ARN Largo no Codificante , Proteínas de Unión al ARN , Factores de Transcripción , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Transformación Celular Neoplásica , Femenino , Humanos , Ratones , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de ARN , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo
6.
Gut ; 70(1): 55-66, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32345613

RESUMEN

OBJECTIVE: Peritoneal carcinomatosis (PC; malignant ascites or implants) occurs in approximately 45% of advanced gastric adenocarcinoma (GAC) patients and associated with a poor survival. The molecular events leading to PC are unknown. The yes-associated protein 1 (YAP1) oncogene has emerged in many tumour types, but its clinical significance in PC is unclear. Here, we investigated the role of YAP1 in PC and its potential as a therapeutic target. METHODS: Patient-derived PC cells, patient-derived xenograft (PDX) and patient-derived orthotopic (PDO) models were used to study the function of YAP1 in vitro and in vivo. Immunofluorescence and immunohistochemical staining, RNA sequencing (RNA-Seq) and single-cell RNA-Seq (sc-RNA-Seq) were used to elucidate the expression of YAP1 and PC cell heterogeneity. LentiCRISPR/Cas9 knockout of YAP1 and a YAP1 inhibitor were used to dissect its role in PC metastases. RESULTS: YAP1 was highly upregulated in PC tumour cells, conferred cancer stem cell (CSC) properties and appeared to be a metastatic driver. Dual staining of YAP1/EpCAM and sc-RNA-Seq revealed that PC tumour cells were highly heterogeneous, YAP1high PC cells had CSC-like properties and easily formed PDX/PDO tumours but also formed PC in mice, while genetic knockout YAP1 significantly slowed tumour growth and eliminated PC in PDO model. Additionally, pharmacologic inhibition of YAP1 specifically reduced CSC-like properties and suppressed tumour growth in YAP1high PC cells especially in combination with cytotoxics in vivo PDX model. CONCLUSIONS: YAP1 is essential for PC that is attenuated by YAP1 inhibition. Our data provide a strong rationale to target YAP1 in clinic for GAC patients with PC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Adenocarcinoma/secundario , Neoplasias Peritoneales/secundario , Neoplasias Gástricas/patología , Animales , Técnicas de Cultivo de Célula , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Señalizadoras YAP
7.
Gut ; 70(11): 2055-2065, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33334899

RESUMEN

OBJECTIVE: Prognosis of patients with advanced oesophagogastric adenocarcinoma (mEGAC) is poor and molecular determinants of shorter or longer overall survivors are lacking. Our objective was to identify molecular features and develop a prognostic model by profiling the genomic features of patients with mEGAC with widely varying outcomes. DESIGN: We profiled 40 untreated mEGACs (20 shorter survivors <13 months and 20 longer survivors >36 months) with whole-exome sequencing (WES) and RNA sequencing and performed an integrated analysis of exome, transcriptome, immune profile and pathological phenotypes to identify the molecular determinants, developing an integrated model for prognosis and comparison with The Cancer Genome Atlas (TCGA) cohorts. RESULTS: KMT2C alterations were exclusively observed in shorter survivors together with high level of intratumour heterogeneity and complex clonal architectures, whereas the APOBEC mutational signatures were significantly enriched in longer survivors. Notably, the loss of heterozygosity in chromosome 4 (Chr4) was associated with shorter survival and 'cold' immune phenotype characterised by decreased B, CD8, natural killer cells and interferon-gamma responses. Unsupervised transcriptomic clustering revealed a shorter survivor subtype with distinct expression features (eg, upregulated druggable targets JAK2, MAP3K13 and MECOM). An integrated model was then built based on clinical variables and the identified molecular determinants, which significantly segregated shorter and longer survivors. All the above features and the integrated model have been validated independently in multiple TCGA cohorts. CONCLUSION: This study discovered novel molecular features prognosticating overall survival in patients with mEGAC and identified potential novel targets in shorter survivors.


Asunto(s)
Adenocarcinoma/genética , Neoplasias Esofágicas/genética , Perfil Genético , Neoplasias Gástricas/genética , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Masculino , Pronóstico , Medición de Riesgo , Análisis de Secuencia de ARN , Secuenciación del Exoma
8.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34830370

RESUMEN

Colon cancer-associated transcript 2 (CCAT2) is an intensively studied lncRNA with important regulatory roles in cancer. As such, cumulative studies indicate that CCAT2 displays a high functional versatility due to its direct interaction with multiple RNA binding proteins, transcription factors, and other species of non-coding RNA, especially microRNA. The definitory mechanisms of CCAT2 are its role as a regulator of the TCF7L2 transcription factor, enhancer of MYC expression, and activator of the WNT/ß-catenin pathway, as well as a role in promoting and maintaining chromosome instability through the BOP1-AURKB pathway. Additionally, we highlight how the encompassing rs6983267 SNP has been shown to confer CCAT2 with allele-specific functional and structural particularities, such as the allelic-specific reprogramming of glutamine metabolism. Additionally, we emphasize CCAT2's role as a competitive endogenous RNA (ceRNA) for multiple tumor suppressor miRNAs, such as miR-4496, miR-493, miR-424, miR-216b, miR-23b, miR-34a, miR-145, miR-200b, and miR-143 and the pro-tumorigenic role of the altered regulatory axis. Additionally, due to its upregulation in tumor tissues, wide distribution across cancer types, and presence in serum samples, we outline CCAT2's potential as a biomarker and disease indicator and its implications for the development of resistance against current cancer therapy regiments and metastasis.


Asunto(s)
Carcinogénesis/genética , Neoplasias/genética , ARN Largo no Codificante/genética , Proteína 2 Similar al Factor de Transcripción 7/genética , Apoptosis/genética , Biomarcadores de Tumor/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , MicroARNs/genética , Neoplasias/patología , Vía de Señalización Wnt/genética
9.
Gut ; 69(4): 748-763, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32034004

RESUMEN

One of the most unexpected discoveries in molecular oncology, in the last decades, was the identification of a new layer of protein coding gene regulation by transcripts that do not codify for proteins, the non-coding RNAs. These represent a heterogeneous category of transcripts that interact with many types of genetic elements, including regulatory DNAs, coding and other non-coding transcripts and directly to proteins. The final outcome, in the malignant context, is the regulation of any of the cancer hallmarks. Non-coding RNAs represent the most abundant type of hormones that contribute significantly to cell-to cell communication, revealing a complex interplay between tumour cells, tumour microenvironment cells and immune cells. Consequently, profiling their abundance in bodily fluids became a mainstream of biomarker identification. Therapeutic targeting of non-coding RNAs represents a new option for clinicians that is currently under development. This review will present the biology and translational value of three of the most studied categories on non-coding RNAs, the microRNAs, the long non-coding RNAs and the circular RNAs. We will also focus on some aspirational concepts that can help in the development of clinical applications related to non-coding RNAs, including using pyknons to discover new non-coding RNAs, targeting human-specific transcripts which are expressed specifically in the tumour cell and using non-coding RNAs to increase the efficiency of immunotherapy.


Asunto(s)
Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/patología , ARN Largo no Codificante/fisiología , Neoplasias Gastrointestinales/terapia , Humanos , MicroARNs/fisiología
10.
Gut ; 69(1): 18-31, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31171626

RESUMEN

OBJECTIVE: Peritoneal carcinomatosis (PC) occurs frequently in patients with gastric adenocarcinoma (GAC) and confers a poor prognosis. Multiplex profiling of primary GACs has been insightful but the underpinnings of PC's development/progression remain largely unknown. We characterised exome/transcriptome/immune landscapes of PC cells from patients with GAC aiming to identify novel therapeutic targets. DESIGN: We performed whole-exome sequencing (WES) and whole transcriptome sequencing (RNA-seq) on 44 PC specimens (43 patients with PC) including an integrative analysis of WES, RNA-seq, immune profile, clinical and pathological phenotypes to dissect the molecular pathogenesis, identifying actionable targets and/or biomarkers and comparison with TCGA primary GACs. RESULTS: We identified distinct alterations in PC versus primary GACs, such as more frequent CDH1 and TAF1 mutations, 6q loss and chr19 gain. Alterations associated with aggressive PC phenotypes emerged with increased mutations in TP53, CDH1, TAF1 and KMT2C, higher level of 'clock-like' mutational signature, increase in whole-genome doublings, chromosomal instability (particularly, copy number losses), reprogrammed microenvironment, enriched cell cycle pathways, MYC activation and impaired immune response. Integrated analysis identified two main molecular subtypes: 'mesenchymal-like' and 'epithelial-like' with discriminating response to chemotherapy (31% vs 71%). Patients with the less responsive 'mesenchymal-like' subtype had high expression of immune checkpoint T-Cell Immunoglobulin And Mucin Domain-Containing Protein 3 (TIM-3), its ligand galectin-9, V-domain Ig suppressor of T cell activation (VISTA) and transforming growth factor-ß as potential therapeutic immune targets. CONCLUSIONS: We have uncovered the unique mutational landscape, copy number alteration and gene expression profile of PC cells and defined PC molecular subtypes, which correlated with PC therapy resistance/response. Novel targets and immune checkpoint proteins have been identified with a potential to be translated into clinics.


Asunto(s)
Adenocarcinoma/secundario , Neoplasias Peritoneales/secundario , Neoplasias Gástricas/genética , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos/uso terapéutico , Inestabilidad Cromosómica , Variaciones en el Número de Copia de ADN/genética , ADN de Neoplasias/genética , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida/métodos , Mutación , Neoplasias Peritoneales/tratamiento farmacológico , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/inmunología , Ploidias , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/inmunología , Secuenciación del Exoma/métodos
11.
Gut ; 69(10): 1818-1831, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31988194

RESUMEN

OBJECTIVE: To investigate the function of a novel primate-specific long non-coding RNA (lncRNA), named FLANC, based on its genomic location (co-localised with a pyknon motif), and to characterise its potential as a biomarker and therapeutic target. DESIGN: FLANC expression was analysed in 349 tumours from four cohorts and correlated to clinical data. In a series of multiple in vitro and in vivo models and molecular analyses, we characterised the fundamental biological roles of this lncRNA. We further explored the therapeutic potential of targeting FLANC in a mouse model of colorectal cancer (CRC) metastases. RESULTS: FLANC, a primate-specific lncRNA feebly expressed in normal colon cells, was significantly upregulated in cancer cells compared with normal colon samples in two independent cohorts. High levels of FLANC were associated with poor survival in two additional independent CRC patient cohorts. Both in vitro and in vivo experiments demonstrated that the modulation of FLANC expression influenced cellular growth, apoptosis, migration, angiogenesis and metastases formation ability of CRC cells. In vivo pharmacological targeting of FLANC by administration of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine nanoparticles loaded with a specific small interfering RNA, induced significant decrease in metastases, without evident tissue toxicity or pro-inflammatory effects. Mechanistically, FLANC upregulated and prolonged the half-life of phosphorylated STAT3, inducing the overexpression of VEGFA, a key regulator of angiogenesis. CONCLUSIONS: Based on our findings, we discovered, FLANC as a novel primate-specific lncRNA that is highly upregulated in CRC cells and regulates metastases formation. Targeting primate-specific transcripts such as FLANC may represent a novel and low toxic therapeutic strategy for the treatment of patients.


Asunto(s)
Carcinogénesis , Proliferación Celular , Neoplasias Colorrectales , Neovascularización Patológica , ARN Largo no Codificante , Factor de Transcripción STAT3/metabolismo , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Descubrimiento de Drogas , Regulación Neoplásica de la Expresión Génica , Marcadores Genéticos , Terapia Genética , Humanos , Ratones , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Pruebas de Farmacogenómica , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
12.
Breast Cancer Res ; 21(1): 20, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30709367

RESUMEN

BACKGROUND: Non-coding RNAs and especially microRNAs have been discovered to act as master regulators of cancer initiation and progression. The aim of our study was to discover and characterize the function of yet functionally uncharacterized microRNAs in human breast carcinogenesis. METHODS: In an unbiased approach, we utilized an established model system for breast cancer (BC) stem cell formation ("mammosphere assay") to identify whole miRNome alterations in breast carcinogenesis. Clinical samples of BC patients were used to evaluate the human relevance of the newly identified miRNA candidates. One promising candidate, miR-1287-5p, was further explored on its impact on several hallmarks of cancer. The molecular mode of action was characterized by whole transcriptome analysis, in silico prediction tools, miRNA-interaction assays, pheno-copy assays, and drug sensitivity assays. RESULTS: Among several other microRNAs, miR-1287-5p was significantly downregulated in mammospheres and human BC tissue compared to normal breast tissue (p < 0.0001). Low expression levels were significantly associated with poor prognosis in BC patients. MiR-1287-5p significantly decreased cellular growth, cells in S phase of cell cycle, anchorage-independent growth, and tumor formation in vivo. In addition, we identified PIK3CB as a direct molecular interactor of miR-1287-5p and a novel prognostic factor in BC. Finally, PI3Kinase pathway chemical inhibitors combined with miR-1287-5p mimic increased the pharmacological growth inhibitory potential in triple negative BC cells. CONCLUSION: Our data identified for the first time the involvement of miR-1287-5p in human BC and suggest a potential for therapeutic interventions in difficult to treat triple negative BC.


Asunto(s)
Carcinogénesis/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Animales , Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Regulación hacia Abajo , Femenino , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Desnudos , Persona de Mediana Edad , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Pronóstico , Análisis de Supervivencia , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/mortalidad , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Int J Mol Sci ; 17(9)2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27608009

RESUMEN

Breast cancer represents a major health burden in Europe and North America, as recently published data report breast cancer as the second leading cause of cancer related death in women worldwide. Breast cancer is regarded as a highly heterogeneous disease in terms of clinical course and biological behavior and can be divided into several molecular subtypes, with different prognosis and treatment responses. The discovery of numerous non-coding RNAs has dramatically changed our understanding of cell biology, especially the pathophysiology of cancer. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts >200 nucleotides in length. Several studies have demonstrated their role as key regulators of gene expression, cell biology and carcinogenesis. Deregulated expression levels of lncRNAs have been observed in various types of cancers including breast cancer. lncRNAs are involved in cancer initiation, progression, and metastases. In this review, we summarize the recent literature to highlight the current status of this class of long non-coding lncRNAs in breast cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Carcinoma/genética , ARN Largo no Codificante/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinoma/metabolismo , Carcinoma/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , ARN Largo no Codificante/metabolismo
14.
Curr Genomics ; 16(5): 336-48, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27047254

RESUMEN

MicroRNAs are 19-24 nucleotides noncoding RNAs which silence modulate the expression of target genes by binding to the messenger RNAs. Myeloid malignancies include a broad spectrum of acute and chronic disorders originating from from the clonal transformation of a hematopoietic stem cell. Specific genetic abnormalities may define myeloid malignancies, such as translocation t(9;22) that represent the hallmark of chronic myeloid leukemia. Although next-generation sequencing pro-vided new insights in the genetic characterization and pathogenesis of myeloid neoplasms, the molecular mechanisms underlying myeloid neoplasms are lacking in most cases. Recently, several studies have demonstrated that the expression levels of specific miRNAs may vary among patients with myeloid malignancies compared with healthy individuals and partially unveiled how miRNAs participate in the leukemic transformation process. Finally, in vitro experiments and pre-clinical model provided preliminary data of the safety and efficacy of miRNA inhibitory molecules, opening new avenue in the treatment of myeloid hematological malignancies.

15.
Proc Natl Acad Sci U S A ; 109(4): 1133-8, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22228303

RESUMEN

We investigated the expression of microRNAs (miRNAs) associated with replicative senescence in human primary keratinocytes. A cohort of miRNAs up-regulated in senescence was identified by genome-wide miRNA profiling, and their change in expression was validated in proliferative versus senescent cells. Among these, miRNA (miR)-138, -181a, -181b, and -130b expression increased with serial passages. miR-138, -181a, and -181b, but not miR-130b, overexpression in proliferating cells was sufficient per se to induce senescence, as evaluated by inhibition of BrdU incorporation and quantification of senescence-activated ß-galactosidase staining. We identified Sirt1 as a direct target of miR-138, -181a, and -181b, whereas ΔNp63 expression was inhibited by miR-130b. We also found that ΔNp63α inhibits miR-138, -181a, -181b, and -130b expression by binding directly to p63-responsive elements located in close proximity to the genomic loci of these miRNAs in primary keratinocytes. These findings suggest that changes in miRNA expression, by modulating the levels of regulatory proteins such as p63 and Sirt1, strongly contribute to induction of senescence in primary human keratinocytes, thus linking these two proteins. Our data also indicate that suppression of miR-138, -181a, -181b, and -130b expression is part of a growth-promoting strategy of ΔNp63α in epidermal proliferating cells.


Asunto(s)
Senescencia Celular/fisiología , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Queratinocitos/citología , MicroARNs/metabolismo , Sirtuina 1/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Western Blotting , Bromodesoxiuridina , Ciclo Celular/fisiología , Línea Celular , Proliferación Celular , Inmunoprecipitación de Cromatina , Biología Computacional , Citometría de Flujo , Humanos , Queratinocitos/metabolismo , Luciferasas , Reacción en Cadena en Tiempo Real de la Polimerasa , beta-Galactosidasa
16.
Crit Rev Clin Lab Sci ; 51(6): 344-57, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25123609

RESUMEN

Long non-coding RNAs (lncRNAs) are transcripts without protein-coding capacity; initially regarded as "transcriptional noise", lately they have emerged as essential factors in both cell biology and mechanisms of disease. In this article, we present basic knowledge of lncRNA molecular mechanisms, associated physiological processes and cancer association, as well as their diagnostic and therapeutic value in the form of a decalog: (1) Non-coding RNAs (ncRNAs) are transcripts without protein-coding capacity divided by size (short and long ncRNAs), function (housekeeping RNA and regulatory RNA) and direction of transcription (sense/antisense, bidirectional, intronic and intergenic), containing a broad range of molecules with diverse properties and functions, such as messenger RNA, transfer RNA, microRNA and long non-coding RNAs. (2) Long non-coding RNAs are implicated in many molecular mechanisms, such as transcriptional regulation, post-transcriptional regulation and processing of other short ncRNAs. (3) Long non-coding RNAs play an important role in many physiological processes such as X-chromosome inactivation, cell differentiation, immune response and apoptosis. (4) Long non-coding RNAs have been linked to hallmarks of cancer: (a) sustaining proliferative signaling; (b) evading growth suppressors; (c) enabling replicative immortality; (d) activating invasion and metastasis; (e) inducing angiogenesis; (f) resisting cell death; and (g) reprogramming energy metabolism. (5) Regarding their impact on cancer cells, lncRNAs are divided into two groups: oncogenic and tumor-suppressor lncRNAs. (6) Studies of lncRNA involvement in cancer usually analyze deregulated expression patterns at the RNA level as well as the effects of single nucleotide polymorphisms and copy number variations at the DNA level. (7) Long non-coding RNAs have potential as novel biomarkers due to tissue-specific expression patterns, efficient detection in body fluids and high stability. (8) LncRNAs serve as novel biomarkers for diagnostic, prognostic and monitoring purposes. (9) Tissue specificity of lncRNAs enables the development of selective therapeutic options. (10) Long non-coding RNAs are emerging as commercial biomarkers and therapeutic agents.


Asunto(s)
Biomarcadores de Tumor , Neoplasias/diagnóstico , Neoplasias/genética , ARN no Traducido , Animales , Humanos , Ratones
17.
Cancer Cell ; 9(3): 189-98, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16530703

RESUMEN

MicroRNA (miRNA) expression profiles for lung cancers were examined to investigate miRNA's involvement in lung carcinogenesis. miRNA microarray analysis identified statistical unique profiles, which could discriminate lung cancers from noncancerous lung tissues as well as molecular signatures that differ in tumor histology. miRNA expression profiles correlated with survival of lung adenocarcinomas, including those classified as disease stage I. High hsa-mir-155 and low hsa-let-7a-2 expression correlated with poor survival by univariate analysis as well as multivariate analysis for hsa-mir-155. The miRNA expression signature on outcome was confirmed by real-time RT-PCR analysis of precursor miRNAs and cross-validated with an independent set of adenocarcinomas. These results indicate that miRNA expression profiles are diagnostic and prognostic markers of lung cancer.


Asunto(s)
Adenocarcinoma/genética , Biomarcadores de Tumor/genética , Neoplasias Pulmonares/genética , MicroARNs/análisis , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Anciano , Femenino , Perfilación de la Expresión Génica , Humanos , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Pronóstico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Supervivencia
18.
Ann Gastroenterol Surg ; 7(3): 458-470, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37152770

RESUMEN

Background: Studies have shown that cancer stemness and the endoplasmic reticulum (ER) stress response are inversely regulated in colorectal cancer (CRC), but the mechanism has not been fully clarified. Long noncoding RNAs (lncRNAs) play key roles in cancer progression and metastasis. In this study we investigated lncRNA 01534 (LINC01534) as a possible modulator between cancer stemness and ER stress response. Methods: In vitro experiments using CRC cell lines were performed to explore a possible role of LINC01534. The expression of LINC01534 in clinical CRC samples was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and in situ hybridization. Results: Silencing LINC01534 led to suppression of cell proliferation, invasiveness, and cell cycle progression at the G2-M phase, and promoted apoptosis. Moreover, we found that silencing LINC01534 suppressed cancer stemness, while it activated the ER stress response, especially through the PERK/eIF2α signaling pathway. In situ hybridization revealed LINC01534 was expressed in tumor cells and upregulated in CRC tissues compared with normal epithelium. A survival survey indicated that high LINC01534 expression was significantly associated with shorter overall survival in 187 CRC patients. Conclusion: This is the first report on LINC01534 in human cancer. Our findings suggest that LINC01534 may be an important modulator of the maintenance of cancer stemness and suppression of the ER stress response, and that it could be a novel prognostic factor in CRC.

19.
Recent Results Cancer Res ; 195: 151-61, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22527502

RESUMEN

MicroRNAs (miRNAs) are master regulators of gene expression. By degrading or blocking translation of messenger RNA targets, these non-coding RNAs can modulate the expression of more than half the protein-coding genes in mammalian genomes. MiRNAs play important regulatory roles in a variety of cellular functions and in several diseases, including cancer. Aberrant miRNA expression has been well characterized in cancer, with implications for progression and prognosis. Recently, the discovery of miRNAs in body fluids, such as serum and plasma, opens up the possibility of using them as noninvasive biomarkers of disease and therapy response. In this chapter, we discuss the use of circulating miRNAs as biomarkers of disease and therapy response and as diagnostic and prognostic markers in breast cancer. We also discuss the main issues related to establishing circulating miRNAs as biomarkers in cancer.


Asunto(s)
Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Neoplasias de la Mama/sangre , Neoplasias de la Mama/genética , MicroARNs/sangre , Femenino , Humanos
20.
Stem Cell Rev Rep ; 18(8): 2549-2565, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35841518

RESUMEN

Stem cells are at the basis of tissue homeostasis, hematopoiesis and various regenerative processes. Epigenetic changes in their somatically imprinted genes, prolonged exposure to mutagens/carcinogens or alteration of their niche can lead to the development of an enabling environment for tumor growth and progression. The involvement of stem cells in both health and disease becomes even more compelling with ontogeny as embryonic and extraembryonic stem cells which persist into adulthood in well established and specific niche may have distinct implications in tumorigenesis. Immune surveillance plays an important role in this interplay since the response of immune cells toward the oncogenic process can range from reactivity to placidity and even complicity, being orchestrated by intercellular molecular dialogues with the other key players of the tumor microenvironment. With the current understanding that every developing and adult tissue contains inherent stem and progenitor cells, in this manuscript we review the most relevant interactions carried out between the stem cells, tumor cells and immune cells in a bottom-up incursion through the tumor microenvironment beginning from the perivascular niche and going through the tumoral parenchyma and the related stroma. With the exploitation of various factors that influence the behavior of immune effectors toward stem cells and other resting cells in their niche, new therapeutic strategies to tackle the polarization of immune effectors toward a more immunogenic phenotype may arise.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Neoplasias/genética , Hematopoyesis , Células Madre , Epigénesis Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA