Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Am Chem Soc ; 143(27): 10088-10098, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34185506

RESUMEN

The chemical functionalization of 2D exfoliated black phosphorus (2D BP) continues to attract great interest, although a satisfactory structural characterization of the functionalized material has seldom been achieved. Herein, we provide the first complete structural characterization of 2D BP functionalized with rare discrete Pd2 units, obtained through a mild decomposition of the organometallic dimeric precursor [Pd(η3-C3H5)Cl]2. A multitechnique approach, including HAADF-STEM, solid-state NMR, XPS, and XAS, was used to study in detail the morphology of the palladated nanosheets (Pd2/BP) and to unravel the coordination of Pd2 units to phosphorus atoms of 2D BP. In particular, XAS, backed up by DFT modeling, revealed the existence of unprecedented interlayer Pd-Pd units, sandwiched between stacked BP layers. The preliminary application of Pd2/BP as a catalyst for the hydrogen evolution reaction (HER) in acidic medium highlighted an activity increase due to the presence of Pd2 units.

2.
J Chem Phys ; 154(23): 234506, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34241246

RESUMEN

Proton Field-Cycling (FC) nuclear magnetic resonance (NMR) relaxometry is applied over a wide frequency and temperature range to get insight into the dynamic processes occurring in the plastically crystalline phase of the two isomers cyanocyclohexane (CNCH) and isocyanocyclohexane. The spin-lattice relaxation rate, R1(ω), is measured in the 0.01-30 MHz frequency range and transformed into the susceptibility representation χNMR ″ω=ωR1ω. Three relaxation processes are identified, namely, a main (α-) relaxation, a fast secondary (ß-) relaxation, and a slow relaxation; they are very similar for the two isomers. Exploiting frequency-temperature superposition, master curves of χNMR ″ωτ are constructed and analyzed for different processes. The α-relaxation displays a pronounced non-Lorentzian susceptibility with a temperature independent width parameter, and the correlation times display a non-Arrhenius temperature dependence-features indicating cooperative dynamics of the overall reorientation of the molecules. The ß-relaxation shows high similarity with secondary relaxations in structural glasses. The extracted correlation times well agree with those reported by other techniques. A direct comparison of FC NMR and dielectric master curves for CNCH yields pronounced difference regarding the non-Lorentzian spectral shape as well as the relative relaxation strength of α- and ß-relaxation. The correlation times of the slow relaxation follow an Arrhenius temperature dependence with a comparatively high activation energy. As the α-process involves liquid-like isotropic molecular reorientation, the slow process has to be attributed to vacancy diffusion, which modulates intermolecular dipole-dipole interactions, possibly accompanied by chair-chair interconversion of the cyclohexane ring. However, the low frequency relaxation features characteristic of vacancy diffusion cannot be detected due to experimental limitations.

3.
Phys Chem Chem Phys ; 19(47): 31804-31812, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29171606

RESUMEN

Dielectric Spectroscopy (DS) and 1H Fast Field-Cycling (FFC) NMR relaxometry were applied for understanding the dynamic behavior of the amorphous ter-polymer poly(vinyl butyral) (PVB) across the glass transition temperature (Tg = 70 °C by Differential Scanning Calorimetry). Above Tg, main chain segmental motions (α relaxation) were detected and characterized using both DS and FFC NMR relaxometry. The correlation times extracted by the analysis of DS and FFC NMR relaxometry data agreed within a factor of three and showed a Vogel-Fulcher-Tammann temperature dependence, with an associated Tg of 69 °C and a fragility of 155 for PVB glass. Below Tg, a secondary process (ß relaxation) was revealed by DS, and was ascribed to reorientations of the vinyl alcohol dipoles due to local twisting motions with an associated activation barrier of 11 kcal mol-1. The ß process was also found to contribute to 1H NMR relaxation above Tg.

4.
Biochim Biophys Acta ; 1838(1 Pt B): 465-73, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24184423

RESUMEN

EPR spectroscopy was applied to investigate the effects of the treatment of Candida albicans cells with fluconazole (FLC) and two newly synthesized azoles (CPA18 and CPA109), in a concentration not altering yeast morphology, on the lipid organization and dynamics of the plasma membrane. Measurements were performed in the temperature range between 0°C and 40°C using 5-doxyl- (5-DSA) and 16-doxyl- (16-DSA) stearic acids as spin probes. 5-DSA spectra were typical of lipids in a highly ordered environment, whereas 16-DSA spectra consisted of two comparable components, one corresponding to a fluid bulk lipid domain in the membrane and the other to highly ordered and motionally restricted lipids interacting with integral membrane proteins. A line shape analysis allowed the relative proportion and the orientational order and dynamic parameters of the spin probes in the different environments to be determined. Smaller order parameters, corresponding to a looser lipid packing, were found for the treated samples with respect to the control one in the region close to the membrane surface probed by 5-DSA. On the other hand, data on 16-DSA indicated that azole treatments hamper the formation of ordered lipid domains hosting integral proteins and/or lead to a decrease in integral protein content in the membrane. The observed effects are mainly ascribable to the inhibition of ergosterol biosynthesis by the antifungal agents, although a direct interaction of the CPA compounds with the membrane bilayer in the region close to the lipid polar head groups cannot be excluded.


Asunto(s)
Antifúngicos/química , Azoles/química , Membrana Celular/química , Fluconazol/química , Lípidos de la Membrana/química , Proteínas de la Membrana/química , Antifúngicos/síntesis química , Antifúngicos/farmacología , Azoles/síntesis química , Azoles/farmacología , Candida albicans/química , Fraccionamiento Celular , Membrana Celular/efectos de los fármacos , Óxidos N-Cíclicos , Espectroscopía de Resonancia por Spin del Electrón , Fluconazol/farmacología , Fluidez de la Membrana/efectos de los fármacos , Marcadores de Spin , Temperatura
5.
Magn Reson Chem ; 52(10): 625-39, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25042970

RESUMEN

Fluorinated calamitic thermotropic liquid crystals represent an important class of materials for high-tech applications, especially in the field of liquid crystal displays. The investigation of orientational ordering in these systems is fundamental owing to the dependence of their applications on the anisotropic nature of macroscopic optical, dielectric, and visco-elastic properties. NMR spectroscopy is the most powerful technique for studying orientational order in liquid crystalline systems at a molecular level thanks to the possibility of exploiting different anisotropic observables (chemical shift, dipolar couplings, and quadrupolar coupling) and nuclei ((2)H, (13)C, and (19)F). In this paper, the basic theory and NMR experiments useful for the investigation of orientational order on fluorinated calamitic liquid crystals are reported, and a review of the literature published on this subject is given. Finally, orientational order parameters determined by NMR data are discussed in comparison to those obtained by optical and dielectric anisotropy measurements.

6.
J Mater Chem B ; 12(18): 4427-4440, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38629219

RESUMEN

Injectable bone substitutes (IBSs) represent a compelling choice for bone tissue regeneration, as they can be exploited to optimally fill complex bone defects in a minimally invasive manner. In this context, in situ gelling methylcellulose (MC) hydrogels may be engineered to be free-flowing injectable solutions at room temperature and gels upon exposure to body temperature. Moreover, incorporating a suitable inorganic phase can further enhance the mechanical properties of MC hydrogels and promote mineralization, thus assisting early cell adhesion to the hydrogel and effectively guiding bone tissue regeneration. In this work, thermo-responsive IBSs were designed selecting MC as the organic matrix and calcium phosphate (CaP) or CaP modified with graphene oxide (CaPGO) as the inorganic component. The resulting biocomposites displayed a transition temperature around body temperature, preserved injectability even after loading with the inorganic components, and exhibited adequate retention on an ex vivo calf femoral bone defect model. The addition of CaP and CaPGO promoted the in vitro mineralization process already 14 days after immersion in simulated body fluid. Interestingly, combined X-ray diffraction and solid state nuclear magnetic resonance characterizations revealed that the formed biomimetic phase was constituted by crystalline hydroxyapatite and amorphous calcium phosphate. In vitro biological characterization revealed the beneficial impact of CaP and CaPGO, indicating their potential in promoting cell adhesion, proliferation and osteogenic differentiation. Remarkably, the addition of GO, which is very attractive for its bioactive properties, did not negatively affect the injectability of the hydrogel nor the mineralization process, but had a positive impact on cell growth and osteogenic differentiation on both pre-differentiated and undifferentiated cells. Overall, the proposed formulations represent potential candidates for use as IBSs for application in bone regeneration both under physiological and pathological conditions.


Asunto(s)
Regeneración Ósea , Hidrogeles , Metilcelulosa , Hidrogeles/química , Hidrogeles/farmacología , Regeneración Ósea/efectos de los fármacos , Metilcelulosa/química , Animales , Inyecciones , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Grafito/química , Bovinos , Proliferación Celular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Humanos
7.
Polymers (Basel) ; 16(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38543440

RESUMEN

The replacement of synthetic and petroleum-based ingredients with greener alternatives of natural origin is an imperative issue in rubber technology for the tire industry. In this study, a glycerin-esterified maleated rosin resin, derived from natural resources, is examined as a potential tackifier in styrene-butadiene rubber (SBR) formulations. A comparison is made with two synthetic resins commonly used as tackifiers in tire manufacturing: a petroleum-derived aromatic resin and a phenolic resin. Specifically, this research investigates how these resins affect the structure, dynamics, and curing characteristics of SBR compounds, which are strictly related to the mechanical and technological properties of the final products. Moving die rheometer and equilibrium swelling experiments are employed to analyze vulcanization kinetics and crosslink density, which are differently influenced by the different resins. Information on the polymer-resin compatibility is gained by differential scanning calorimetry and dynamo-mechanical analysis, while solid-state NMR methods offer insights into the structure and dynamics of both cured and uncured SBR compounds at the molecular level. Overall, our analysis shows that the resin of vegetal origin has a comparable impact on the SBR compound to that observed for the synthetic resins and could be further tested for industrial applications.

8.
Bioact Mater ; 35: 99-121, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38283385

RESUMEN

Recently, the term theragenerative has been proposed for biomaterials capable of inducing therapeutic approaches followed by repairing/regenerating the tissue/organ. This study is focused on the design of a new theragenerative nanocomposite composed of an amphiphilic non-ionic surfactant (Pluronic F127), bioactive glass (BG), and black phosphorus (BP). The nanocomposite was prepared through a two-step synthetic strategy, including a microwave treatment that turned BP nanosheets (BPNS) into quantum dots (BPQDs) with 5 ± 2 nm dimensions in situ. The effects of surfactant and microwave treatment were assessed in vitro: the surfactant distributes the ions homogenously throughout the composite and the microwave treatment chemically stabilizes the composite. The presence of BP enhanced bioactivity and promoted calcium phosphate formation in simulated body fluid. The inherent anticancer activity of BP-containing nanocomposites was tested against osteosarcoma cells in vitro, finding that 150 µg mL-1 was the lowest concentration which prevented the proliferation of SAOS-2 cells, while the counterpart without BP did not affect the cell growth rate. Moreover, the apoptosis pathways were evaluated and a mechanism of action was proposed. NIR irradiation was applied to induce further proliferation suppression on SAOS-2 cells through hyperthermia. The inhibitory effects of bare BP nanomaterials and nanocomposites on the migration and invasion of bone cancer, breast cancer, and prostate cancer cells were assessed in vitro to determine the anticancer potential of nanomaterials against primary and secondary bone cancers. The regenerative behavior of the nanocomposites was tested with healthy osteoblasts and human mesenchymal stem cells; the BPQDs-incorporated nanocomposite significantly promoted the proliferation of osteoblast cells and induced the osteogenic differentiation of stem cells. This study introduces a new multifunctional theragenerative platform with promising potential for simultaneous bone cancer therapy and regeneration.

9.
J Antimicrob Chemother ; 68(5): 1111-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23292344

RESUMEN

OBJECTIVES: In this study we investigated the in vitro fungistatic and fungicidal activities of CPA18 and CPA109, two azole compounds with original structural features, alone and in combination with fluconazole against fluconazole-susceptible and -resistant Candida albicans strains. METHODS: Antifungal activities were measured by MIC evaluation and time-kill studies. Azole binding analysis was performed by UV-Vis spectroscopy. Hyphal growth inhibition and filipin and propidium iodide staining assays were used for morphological analysis. An analysis of membrane lipids was also performed to gauge alterations in membrane composition and integrity. Synergism was calculated using fractional inhibitory concentration indices (FICIs). Evaluation of cytotoxicity towards murine macrophages was performed to verify selective antifungal activity. RESULTS: Even though their binding affinity to C. albicans Erg11p is comparable to that of fluconazole, CPA compounds are active against resistant strains of C. albicans with a mutation in ERG11 sequences and/or overexpressing the ABC transporter genes CDR1 and CDR2, which encode ATP-dependent efflux pumps. Moreover, CPA18 is fungistatic, even against the two resistant strains, and was found to be synergistic with fluconazole. Differently from fluconazole and other related azoles, CPA compounds induced marked changes in membrane permeability and dramatic alterations in membrane lipid composition. CONCLUSIONS: Our outcomes suggest that CPA compounds are able to overcome major mechanisms of resistance in C. albicans. Also, they are promising candidates for combination treatment that could reduce the toxicity caused by high fluconazole doses, particularly in immunocompromised patients.


Asunto(s)
Antifúngicos/farmacología , Azoles/farmacología , Candida albicans/efectos de los fármacos , Animales , Antifúngicos/toxicidad , Azoles/toxicidad , Candida albicans/crecimiento & desarrollo , Candida albicans/fisiología , Membrana Celular/efectos de los fármacos , Membrana Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Filipina/metabolismo , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Hifa/fisiología , Macrófagos/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Propidio/metabolismo , Coloración y Etiquetado
10.
Nanotechnology ; 24(31): 315101, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23857963

RESUMEN

This work describes, for the first time, doping of boron nitride nanotubes (BNNTs) with gadolinium (Gd@BNNTs), a stable functionalization that permits non-invasive BNNT tracking via magnetic resonance imaging (MRI). We report the structure, Gd loading, and relaxometric properties in water suspension at 7 T of Gd@BNNTs, and show the behaviour of these nanostructures as promising T2-weighted contrast agents. Finally, we demonstrate their complete biocompatibility in vitro on human neuroblastoma cells, together with their ability to effectively label and affect contrast in MRI images at 7 T.


Asunto(s)
Compuestos de Boro , Medios de Contraste/química , Gadolinio , Imagen por Resonancia Magnética/métodos , Nanotubos/química , Medios de Contraste/toxicidad , Humanos , Nanotecnología , Nanotubos/toxicidad , Células Tumorales Cultivadas
11.
Phys Chem Chem Phys ; 15(37): 15584-94, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-23942957

RESUMEN

The effects of post-reactor functionalization with naphthoate-TEMPO on the structure and morphology of an ethylene-1-octene copolymer were investigated by means of solid-state NMR techniques and DSC measurements. Selective (13)C MAS experiments allowed the orthorhombic and the monoclinic crystalline phases and two amorphous phases with different degree of mobility to be detected and quantified. (13)C and (1)H relaxation time measurements and spin diffusion experiments gave insight into the polymer dynamics within the different phases, the crystalline domain dimensions, and the rate of chain diffusion between amorphous and crystalline phases. Comparison of the results obtained for the pristine copolymer and the functionalized samples clearly indicated that the functionalization procedure causes redistribution within the crystalline and the amorphous phases with no relevant change in the degree of crystallinity or in the crystalline domain average size, and slows down chain diffusion.

12.
J Colloid Interface Sci ; 636: 279-290, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36640549

RESUMEN

HYPOTHESIS: Sodium oleate (NaOL) self-aggregates in water forming rodlike micelles with different length depending on NaOL concentration; when KCl is added wormlike micelles form, which entangle giving rise to a viscoelastic dispersion. It is expected that aggregates with different size and shape exhibit different internal and overall molecular motions and collective dynamics. EXPERIMENTS: Two low viscosity NaOL/water and two viscoelastic NaOL/KCl/water formulations with different NaOL concentration (0.23 and 0.43 M) were investigated by 1H fast field cycling NMR relaxometry over broad temperature and Larmor frequency ranges, after a first screening by 1H and 13C NMR spectroscopy at high frequency. FINDINGS: The analysis of the collected data indicated that fast conformational isomerization and rotation of NaOL about its long molecular axis and lateral diffusion of NaOL around the axis of the cylindrical aggregates are slightly affected by the aggregate shape and length. On the other hand, fluctuations of the local order director are quite different in the fluid and viscoelastic systems, reflecting the shape and size of the aggregates. Quantitative information was obtained on activation energy for fast internal and overall motions, correlation times and activation energy for lateral diffusion, and coherence length for collective order fluctuations.

13.
J Mater Chem A Mater ; 11(11): 5568-5583, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36936468

RESUMEN

Adsorbents able to uptake large amounts of gases within a narrow range of pressure, i.e., phase-change adsorbents, are emerging as highly interesting systems to achieve excellent gas separation performances with little energy input for regeneration. A recently discovered phase-change metal-organic framework (MOF) adsorbent is F4_MIL-140A(Ce), based on CeIV and tetrafluoroterephthalate. This MOF displays a non-hysteretic step-shaped CO2 adsorption isotherm, reaching saturation in conditions of temperature and pressure compatible with real life application in post-combustion carbon capture, biogas upgrading and acetylene purification. Such peculiar behaviour is responsible for the exceptional CO2/N2 selectivity and reverse CO2/C2H2 selectivity of F4_MIL-140A(Ce). Here, we combine data obtained from a wide pool of characterisation techniques - namely gas sorption analysis, in situ infrared spectroscopy, in situ powder X-ray diffraction, in situ X-ray absorption spectroscopy, multinuclear solid state nuclear magnetic resonance spectroscopy and adsorption microcalorimetry - with periodic density functional theory simulations to provide evidence for the existence of a unique cooperative CO2 adsorption mechanism in F4_MIL-140A(Ce). Such mechanism involves the concerted rotation of perfluorinated aromatic rings when a threshold partial pressure of CO2 is reached, opening the gate towards an adsorption site where CO2 interacts with both open metal sites and the fluorine atoms of the linker.

14.
Polymers (Basel) ; 14(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35215681

RESUMEN

The characterization of the structural and dynamic properties of rubber networks is of fundamental importance in rubber science and technology to design materials with optimized mechanical properties. In this work, natural and isoprene rubber networks obtained by curing at three different temperatures (140, 150, and 170 °C) and three different sulfur contents (1, 2, and 3 phr) in the presence of a 3 phr accelerator were studied using a combination of low-field time-domain NMR (TD-NMR) techniques, including 1H multiple-quantum experiments for the measurement of residual dipolar couplings (Dres), the application of the Carr-Purcell-Meiboom-Gill pulse sequence for the measurement of the transverse magnetization decay and the extraction of 1H T2 relaxation times, and the use of field cycling NMR relaxometry for the determination of T1 relaxation times. The microscopic properties determined by TD-NMR experiments were discussed in comparison with the macroscopic properties obtained using equilibrium swelling, moving die rheometer, and calorimetric techniques. The obtained correlations between NMR observables, crosslink density values, maximum torque values, and glass transition temperatures provided insights into the effects of the vulcanization temperature and accelerator/sulfur ratio on the structure of the polymer networks, as well as on the effects of crosslinking on the segmental dynamics of elastomers. Dres and T2 were found to show linear correlations with the crosslink density determined by equilibrium swelling, while T1 depends on the local dynamics of polymer segments related to the glass transition, which is also affected by chemical modifications of the polymer chains occurring during vulcanization.

15.
J Phys Chem Lett ; 13(40): 9517-9525, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36200785

RESUMEN

Mixed-cation lead mixed-halide perovskites are the best candidates for perovskite-based photovoltaics, thanks to their higher efficiency and stability compared to the single-cation single-halide parent compounds. TripleMix (Cs0.05MA0.14FA0.81PbI2.55Br0.45 with FA = formamidinium and MA = methylammonium) is one of the most efficient and stable mixed perovskites for single-junction solar cells. The microscopic reasons why triple-cation perovskites perform so well are still under debate. In this work, we investigated the structure and dynamics of TripleMix by exploiting multinuclear solid-state nuclear magnetic resonance (SSNMR), which can provide this information at a level of detail not accessible by other techniques. 133Cs, 13C, 1H, and 207Pb SSNMR spectra confirmed the inclusion of all ions in the perovskite, without phase segregation. Complementary measurements showed a peculiar longitudinal relaxation behavior for the 1H and 207Pb nuclei in TripleMix with respect to single-cation single-halide perovskites, suggesting slower dynamics of both organic cations and halide anions, possibly related to the high photovoltaic performances.

16.
Biomacromolecules ; 12(7): 2746-54, 2011 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-21630632

RESUMEN

Eight-armed poly(ethylene glycol)-poly(trimethylene carbonate) star block copolymers (PEG-(PTMC)(8)) linked by a carbamate group between the PEG core and the PTMC blocks were synthesized by the metal-free, HCl-catalyzed ring-opening polymerization of trimethylene carbonate using an amine-terminated eight-armed star PEG in dichloromethane. Although dye solubilization experiments, nuclear magnetic resonance spectroscopy, and dynamic light scattering clearly indicated the presence of aggregates in aqueous dispersions of the copolymers, no physical gelation was observed up to high concentrations. PEG-(PTMC(9))(8) was end-group-functionalized using acryloyl chloride and photopolymerized in the presence of Irgacure 2959. When dilute aqueous dispersions of PEG-(PTMC(9))(8)-Acr were UV irradiated, chemically cross-linked PEG-PTMC nanoparticles were obtained, whereas irradiation of more concentrated PEG-(PTMC(9))(8)-Acr dispersions resulted in the formation of photo-cross-linked hydrogels. Their good mechanical properties and high stability against hydrolytic degradation make photo-cross-linked PEG-PTMC hydrogels interesting for biomedical applications such as matrices for tissue engineering and controlled drug delivery systems.


Asunto(s)
Reactivos de Enlaces Cruzados/síntesis química , Dioxanos/química , Polietilenglicoles/química , Polímeros/química , Reactivos de Enlaces Cruzados/química , Estructura Molecular , Tamaño de la Partícula , Procesos Fotoquímicos , Estereoisomerismo , Propiedades de Superficie
17.
Polymers (Basel) ; 13(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34451226

RESUMEN

Polyvinyl butyral (PVB) is an amorphous polymer employed in many technological applications. In order to highlight the relationships between macroscopic properties and dynamics at a microscopic level, motions of the main-chain and of the propyl side-chains were investigated between Tg - 288 °C and Tg + 55 °C, with Tg indicating the glass transition temperature. To this aim, a combination of solid state Nuclear Magnetic Resonance (NMR) methods was applied to two purposely synthesized PVB isotopomers: one fully protonated and the other perdeuterated on the side-chains. 1H time domain NMR and 1H field cycling NMR relaxometry experiments, performed across and above Tg, revealed that the dynamics of the main-chain corresponds to the α-relaxation associated to the glass transition, which was previously characterized by dielectric spectroscopy. A faster secondary relaxation was observed for the first time and ascribed to side-chains. The geometry and rate of motions of the different groups in the side-chains were characterized below Tg by 2H NMR spectroscopy.

18.
Polymers (Basel) ; 13(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34960933

RESUMEN

Linear polyamidoamines (PAAs) derived from the polyaddition of natural α-amino acids and N,N'-methylene bis(acrylamide) are intumescent flame retardants for cotton. Among them, the glycine-derived M-GLY extinguished the flame in horizontal flame spread tests at 4% by weight add-on. This paper reports on an extensive study aimed at understanding the molecular-level transformations of M-GLY-treated cotton upon heating in air at 300 °C, 350 °C and 420 °C. Thermogravimetric analysis (TGA) identified different thermal-oxidative decomposition stages and, coupled to Fourier transform infrared spectroscopy, allowed the volatile species released upon heating to be determined, revealing differences in the decomposition pattern of treated and untreated cotton. XPS analysis of the char residues of M-GLY-treated cotton revealed the formation of aromatic nanographitic char at lower temperature with respect to untreated cotton. Raman spectroscopy of the char residues provided indications on the degree of graphitization of treated and untreated cotton at the three reference temperatures. Solid state 13C nuclear magnetic resonance spectroscopy (NMR) provided information on the char structure as a function of the treatment temperature, clearly indicating that M-GLY favors the carbonization of cotton with the formation of more highly condensed aromatic structures.

19.
J Phys Chem B ; 125(17): 4546-4554, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33885314

RESUMEN

1H spin-lattice relaxation rate (R1) dispersions were acquired by field-cycling (FC) NMR relaxometry between 0.01 and 35 MHz over a wide temperature range on polyisoprene rubber (IR), either unfilled or filled with different amounts of carbon black, silica, or a combination of both, and sulfur cured. By exploiting the frequency-temperature superposition principle and constructing master curves for the total FC NMR susceptibility, χ″(ω) = ωR1(ω), the correlation times for glassy dynamics, τs, were determined. Moreover, the contribution of polymer dynamics, χpol″(ω), to χ″(ω) was singled out by subtracting the contribution of glassy dynamics, χglass″(ω), well represented by the Cole-Davidson spectral density. Glassy dynamics resulted moderately modified by the presence of fillers, τs values determined for the filled rubbers being slightly different from those of the unfilled one. Polymer dynamics was affected by the presence of fillers in the Rouse regime. A change in the frequency dependence of χpol″(ω) at low frequencies was observed for all filled rubbers, more pronounced for those reinforced with silica, which suggests that the presence of the filler particles can affect chain conformations, resulting in a different Rouse mode distribution, and/or interchain interactions modulated by translational motions.

20.
Langmuir ; 26(15): 12890-6, 2010 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-20666421

RESUMEN

The aggregation behavior and dynamics of poly(ethylene glycol) (PEG) and poly(lactide) (PLA) chains in a homologous series of eight-armed PEG-PLA star block copolymers ((PEG(65)-NHCO-PLA(n))(8) with n = 11, 13, and 15) in water at different concentrations and temperatures were studied by means of (1)H and (13)C NMR spectroscopy and (1)H longitudinal relaxation time analysis. The state of water in these systems was also investigated through the combined use of (1)H and (2)H longitudinal relaxation time measurement. On the basis of the NMR experimental findings and of dynamic light scattering measurements, (PEG(65)-NHCO-PLA(n))(8) in water can be described as self-aggregated systems with quite rigid hydrophobic domains made of PLA chains and aqueous domains where both PEG chains and water molecules undergo fast dynamics. A smaller number of rigid domains was found for (PEG(65)-NHCO-PLA(11))(8) with respect to the homologous copolymers with longer PLA chains. At low concentrations, the PLA domains are mainly formed by chains belonging to the same molecule, thus giving rise to unimolecular micelles. At intermediate concentrations, that is, above the critical association concentration (CAC) but below the critical gel concentration (CGC), nanogels are formed by interconnection of several PLA domains through shared unimers. Above the CGC, the network is extended to the entire system, giving rise to macroscopic gels. In all cases, a fraction of PLA chains remains quite mobile and exposed to water due to topological constraints of the star architecture.


Asunto(s)
Polietilenglicoles/química , Polietileneimina/química , Espectroscopía de Resonancia Magnética , Nanogeles , Dispersión de Radiación , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA