Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 154(3): 651-63, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23911327

RESUMEN

Vessel sprouting by migrating tip and proliferating stalk endothelial cells (ECs) is controlled by genetic signals (such as Notch), but it is unknown whether metabolism also regulates this process. Here, we show that ECs relied on glycolysis rather than on oxidative phosphorylation for ATP production and that loss of the glycolytic activator PFKFB3 in ECs impaired vessel formation. Mechanistically, PFKFB3 not only regulated EC proliferation but also controlled the formation of filopodia/lamellipodia and directional migration, in part by compartmentalizing with F-actin in motile protrusions. Mosaic in vitro and in vivo sprouting assays further revealed that PFKFB3 overexpression overruled the pro-stalk activity of Notch, whereas PFKFB3 deficiency impaired tip cell formation upon Notch blockade, implying that glycolysis regulates vessel branching.


Asunto(s)
Células Endoteliales/metabolismo , Glucólisis , Neovascularización Fisiológica , Fosfofructoquinasa-2/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Células Endoteliales/citología , Femenino , Eliminación de Gen , Silenciador del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfofructoquinasa-2/genética , Seudópodos/metabolismo , Pez Cebra
2.
Rev Physiol Biochem Pharmacol ; 182: 111-137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-32809072

RESUMEN

Calcium (Ca2+)-permeable channels are key players in different processes leading to blood vessel formation via sprouting angiogenesis, including endothelial cell (EC) proliferation and migration, as well as in controlling vascular features which are typical of the tumor vasculature.In this review we present an up-to-date and critical view on the role of Ca2+-permeable channels in tumor vascularization, emphasizing on the dual communication between growth factors (mainly VEGF) and Ca2+ signals. Due to the complexity of the tumor microenvironment (TME) as a source of multiple stimuli acting on the endothelium, we aim to discuss the close interaction between chemical and physical challenges (hypoxia, oxidative stress, mechanical stress) and endothelial Ca2+-permeable channels, focusing on transient receptor potential (TRP), store-operated Ca2+ channels (SOCs), and mechanosensitive Piezo channels. This approach will depict their crucial contribution in regulating key properties of tumor blood vessels, such as recruitment of endothelial progenitors cells (EPCs) in the early steps of tumor vascularization, abnormal EC migration and proliferation, and increased vascular permeability. Graphical abstract depicting the functional role of Ca2+-permeable TRP, SOCs and Piezo channels in the biological processes regulating tumor angiogenesis in presence of both chemical (oxidative stress and oxygen levels) and mechanical stimuli (ECM stiffness). SOCs store-operated Ca2+ channels, TRPA transient receptor potential ankyrin, TRPV transient receptor potential vanilloid, TRPC transient receptor potential canonical, TRPM transient receptor potential melastatin, TRPM transient receptor potential vanilloid, O2 oxygen, ECM extracellular matrix.


Asunto(s)
Neoplasias , Canales Catiónicos TRPM , Canales de Potencial de Receptor Transitorio , Calcio/metabolismo , Canales de Calcio/metabolismo , Señales (Psicología) , Humanos , Oxígeno/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Microambiente Tumoral
3.
Nature ; 561(7721): 63-69, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30158707

RESUMEN

Glutamine synthetase, encoded by the gene GLUL, is an enzyme that converts glutamate and ammonia to glutamine. It is expressed by endothelial cells, but surprisingly shows negligible glutamine-synthesizing activity in these cells at physiological glutamine levels. Here we show in mice that genetic deletion of Glul in endothelial cells impairs vessel sprouting during vascular development, whereas pharmacological blockade of glutamine synthetase suppresses angiogenesis in ocular and inflammatory skin disease while only minimally affecting healthy adult quiescent endothelial cells. This relies on the inhibition of endothelial cell migration but not proliferation. Mechanistically we show that in human umbilical vein endothelial cells GLUL knockdown reduces membrane localization and activation of the GTPase RHOJ while activating other Rho GTPases and Rho kinase, thereby inducing actin stress fibres and impeding endothelial cell motility. Inhibition of Rho kinase rescues the defect in endothelial cell migration that is induced by GLUL knockdown. Notably, glutamine synthetase palmitoylates itself and interacts with RHOJ to sustain RHOJ palmitoylation, membrane localization and activation. These findings reveal that, in addition to the known formation of glutamine, the enzyme glutamine synthetase shows unknown activity in endothelial cell migration during pathological angiogenesis through RHOJ palmitoylation.


Asunto(s)
Células Endoteliales/enzimología , Células Endoteliales/patología , Glutamato-Amoníaco Ligasa/metabolismo , Glutamina/biosíntesis , Neovascularización Patológica , Actinas/metabolismo , Animales , Movimiento Celular , Células Endoteliales/metabolismo , Femenino , Glutamato-Amoníaco Ligasa/deficiencia , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/fisiología , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/enzimología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Lipoilación , Ratones , Ácido Palmítico/metabolismo , Procesamiento Proteico-Postraduccional , Fibras de Estrés/metabolismo , Proteínas de Unión al GTP rho/química , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo
4.
Circ Res ; 127(4): 466-482, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32404031

RESUMEN

RATIONALE: Endothelial cells (ECs) are highly glycolytic and generate the majority of their energy via the breakdown of glucose to lactate. At the same time, a main role of ECs is to allow the transport of glucose to the surrounding tissues. GLUT1 (glucose transporter isoform 1/Slc2a1) is highly expressed in ECs of the central nervous system (CNS) and is often implicated in blood-brain barrier (BBB) dysfunction, but whether and how GLUT1 controls EC metabolism and function is poorly understood. OBJECTIVE: We evaluated the role of GLUT1 in endothelial metabolism and function during postnatal CNS development as well as at the adult BBB. METHODS AND RESULTS: Inhibition of GLUT1 decreases EC glucose uptake and glycolysis, leading to energy depletion and the activation of the cellular energy sensor AMPK (AMP-activated protein kinase), and decreases EC proliferation without affecting migration. Deletion of GLUT1 from the developing postnatal retinal endothelium reduces retinal EC proliferation and lowers vascular outgrowth, without affecting the number of tip cells. In contrast, in the brain, we observed a lower number of tip cells in addition to reduced brain EC proliferation, indicating that within the CNS, organotypic differences in EC metabolism exist. Interestingly, when ECs become quiescent, endothelial glycolysis is repressed, and GLUT1 expression increases in a Notch-dependent fashion. GLUT1 deletion from quiescent adult ECs leads to severe seizures, accompanied by neuronal loss and CNS inflammation. Strikingly, this does not coincide with BBB leakiness, altered expression of genes crucial for BBB barrier functioning nor reduced vascular function. Instead, we found a selective activation of inflammatory and extracellular matrix related gene sets. CONCLUSIONS: GLUT1 is the main glucose transporter in ECs and becomes uncoupled from glycolysis during quiescence in a Notch-dependent manner. It is crucial for developmental CNS angiogenesis and adult CNS homeostasis but does not affect BBB barrier function.


Asunto(s)
Barrera Hematoencefálica/fisiología , Encéfalo/irrigación sanguínea , Células Endoteliales/metabolismo , Transportador de Glucosa de Tipo 1/fisiología , Neovascularización Fisiológica , Vasos Retinianos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Encéfalo/citología , Movimiento Celular , Proliferación Celular , Células Endoteliales/fisiología , Endotelio , Endotelio Vascular/fisiología , Metabolismo Energético , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Glucólisis , Humanos , Ratones , Retina/citología
5.
Nature ; 520(7546): 192-197, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25830893

RESUMEN

The metabolism of endothelial cells during vessel sprouting remains poorly studied. Here we report that endothelial loss of CPT1A, a rate-limiting enzyme of fatty acid oxidation (FAO), causes vascular sprouting defects due to impaired proliferation, not migration, of human and murine endothelial cells. Reduction of FAO in endothelial cells did not cause energy depletion or disturb redox homeostasis, but impaired de novo nucleotide synthesis for DNA replication. Isotope labelling studies in control endothelial cells showed that fatty acid carbons substantially replenished the Krebs cycle, and were incorporated into aspartate (a nucleotide precursor), uridine monophosphate (a precursor of pyrimidine nucleoside triphosphates) and DNA. CPT1A silencing reduced these processes and depleted endothelial cell stores of aspartate and deoxyribonucleoside triphosphates. Acetate (metabolized to acetyl-CoA, thereby substituting for the depleted FAO-derived acetyl-CoA) or a nucleoside mix rescued the phenotype of CPT1A-silenced endothelial cells. Finally, CPT1 blockade inhibited pathological ocular angiogenesis in mice, suggesting a novel strategy for blocking angiogenesis.


Asunto(s)
Carbono/metabolismo , Células Endoteliales/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Nucleótidos/biosíntesis , Ácido Acético/farmacología , Adenosina Trifosfato/metabolismo , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Carnitina O-Palmitoiltransferasa/deficiencia , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclo del Ácido Cítrico , ADN/biosíntesis , Modelos Animales de Enfermedad , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Silenciador del Gen , Glucosa/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Ratones , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Nucleótidos/química , Nucleótidos/farmacología , Oxidación-Reducción/efectos de los fármacos , Retinopatía de la Prematuridad/tratamiento farmacológico , Retinopatía de la Prematuridad/metabolismo , Retinopatía de la Prematuridad/patología
6.
Curr Opin Oncol ; 32(1): 44-53, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31609741

RESUMEN

PURPOSE OF REVIEW: Recently, the combination of antiangiogenic agents, chemotherapy and immunotherapy has shown synergistic anticancer effects in non-small cell lung cancer (NSCLC). The future for this approach appears bright in lung cancer treatment; however, many challenges remain to be overcome regarding its true potential, optimal sequence and timing of therapy, and safety profile. In this review, we will discuss the current status and future direction of antiangiogenic therapy for the treatment of NSCLC, and highlight emerging strategies, such as tumor vessel normalization (TVN). RECENT FINDINGS: Bevacizumab was the first antiangiogenic agent approved for the treatment of advanced NSCLC. Recently, the combination of chemotherapy/antiangiogenic therapy with immunotherapy showed high efficacy in first-line settings. A subgroup of patients with liver metastasis and driver mutation-addicted tumors benefited most, suggesting that the metastatic location, as well as the genetic background of the tumor, are key determinants for therapy responses. SUMMARY: The efficacy of antiangiogenic therapies in unselected patients is rather limited. The tumor microenvironment has appeared to be more complex and heterogeneous than previously assumed. Only a contextual rather than a cell-specific approach might provide valuable insights towards the clinical validation of combinational therapies.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/irrigación sanguínea , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de la Angiogénesis/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/terapia , Ensayos Clínicos Fase III como Asunto , Terapia Combinada , Humanos , Inmunoterapia/métodos , Neoplasias Pulmonares/terapia , Neovascularización Patológica/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto
7.
Angiogenesis ; 20(4): 599-613, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28875379

RESUMEN

Blockade of the glycolytic activator PFKFB3 in cancer cells (using a maximum tolerable dose of 70 mg/kg of the PFKFB3 blocker 3PO) inhibits tumor growth in preclinical models and is currently being tested as a novel anticancer treatment in phase I clinical trials. However, a detailed preclinical analysis of the effects of such maximum tolerable dose of a PFKFB3 blocker on the tumor vasculature is lacking, even though tumor endothelial cells are hyper-glycolytic. We report here that a high dose of 3PO (70 mg/kg), which inhibits cancer cell proliferation and reduces primary tumor growth, causes tumor vessel disintegration, suppresses endothelial cell growth for protracted periods, (model-dependently) aggravates tumor hypoxia, and compromises vascular barrier integrity, thereby rendering tumor vessels more leaky and facilitating cancer cell intravasation and dissemination. These findings contrast to the effects of a low dose of 3PO (25 mg/kg), which induces tumor vessel normalization, characterized by vascular barrier tightening and maturation, but reduces cancer cell intravasation and metastasis. Our findings highlight the importance of adequately dosing a glycolytic inhibitor for anticancer treatment.


Asunto(s)
Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Fosfofructoquinasa-2/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Melanoma Experimental/irrigación sanguínea , Melanoma Experimental/patología , Melanoma Experimental/ultraestructura , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Neoplasias/patología , Neovascularización Patológica/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Fosfofructoquinasa-2/metabolismo , Piridinas/farmacología
9.
Cancer Treat Res ; 159: 401-26, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24114493

RESUMEN

In addition to aberrant transformed cells, tumors are tissues that contain host components, including stromal cells, vascular cells (ECs) and their precursors, and immune cells. All these constituents interact with each other at the cellular and molecular levels, resulting in the production of an intricate and heterogeneous complex of cells and matrix defined as the tumor microenvironment. Several pathways involved in these interactions have been investigated both in pathological and physiological scenarios, and diverse molecules are currently targets of chemotherapeutic and preventive drugs. Many phytochemicals and their derivatives show the ability to inhibit tumor progression, angiogenesis, and metastasis, exerting effects on the tumor microenvironment. In this review, we will outline the principal players and mechanisms involved in the tumor microenvironment network and we will discuss some interesting compounds aimed at interrupting these interactions and blocking tumor insurgence and progression. The considerations provided will be crucial for the design of new preventive approaches to the reduction in cancer risk that need to be applied to large populations composed of apparently healthy individuals.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Inflamación/tratamiento farmacológico , Neoplasias/prevención & control , Neovascularización Patológica/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , Animales , Humanos , Inflamación/complicaciones , Neoplasias/irrigación sanguínea , Neoplasias/etiología , Neovascularización Patológica/complicaciones
10.
Cancers (Basel) ; 14(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35565390

RESUMEN

Emerging evidence indicates that the TRPM8 channel plays an important role in prostate cancer (PCa) progression, by impairing the motility of these cancer cells. Here, we reveal a novel facet of PCa motility control via direct protein-protein interaction (PPI) of the channel with the small GTPase Rap1A. The functional interaction of the two proteins was assessed by active Rap1 pull-down assays and live-cell imaging experiments. Molecular modeling analysis allowed the identification of four putative residues involved in TRPM8-Rap1A interaction. Point mutations of these sites impaired PPI as shown by GST-pull-down, co-immunoprecipitation, and PLA experiments and revealed their key functional role in the adhesion and migration of PC3 prostate cancer cells. More precisely, TRPM8 inhibits cell migration and adhesion by trapping Rap1A in its GDP-bound inactive form, thus preventing its activation at the plasma membrane. In particular, residues E207 and Y240 in the sequence of TRPM8 and Y32 in that of Rap1A are critical for the interaction between the two proteins not only in PC3 cells but also in cervical (HeLa) and breast (MCF-7) cancer cells. This study deepens our knowledge of the mechanism through which TRPM8 would exert a protective role in cancer progression and provides new insights into the possible use of TRPM8 as a new therapeutic target in cancer treatment.

11.
STAR Protoc ; 3(4): 101691, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36173713

RESUMEN

Tumor vessel co-option, a process in which cancer cells "hijack" pre-existing blood vessels to grow and invade healthy tissue, is poorly understood but is a proposed resistance mechanism against anti-angiogenic therapy (AAT). Here, we describe protocols for establishing murine renal (RENCA) and breast (4T1) cancer lung vessel co-option metastases models. Moreover, we outline a reproducible protocol for single-cell isolation from murine lung metastases using magnetic-activated cell sorting as well as immunohistochemical stainings to distinguish vessel co-option from angiogenesis. For complete details on the use and execution of this protocol, please refer to Teuwen et al. (2021).


Asunto(s)
Neoplasias Pulmonares , Neovascularización Patológica , Ratones , Animales , Neovascularización Patológica/patología , Células Endoteliales , Neoplasias Pulmonares/patología , Modelos Animales de Enfermedad
12.
Cancer Sci ; 102(7): 1329-36, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21477072

RESUMEN

Hepatocyte growth factor (HGF) is involved in the pathogenesis of Kaposi's sarcoma (KS), the most frequent neoplasia in patients with AIDS, characterized by proliferating spindle cells, infiltrating inflammatory cells, angiogenesis, edema, and invasiveness. In vitro, this factor sustains the biological behavior of KS derived cells, after activation of its receptor and the downstream MAPK and AKT signals. In other cell types, namely endothelial and epithelial cells, movement, proliferation, and survival stimulated by HGF and other growth factors and cytokines depend on diacylglycerol kinases (DGK). In an effort to identify new intracellular transducers operative in KS cells, which could represent therapeutic targets, we investigated the role of DGK in KS cell movement and proliferation by treating cells with the DGK pharmacological inhibitor R59949. We report that R59949 strongly inhibits HGF-induced KS motility, proliferation, and anchorage-independent growth with only a partial effect on cell adhesion and spreading. R59949 does not affect cell survival, HGF receptor activation, or the classical MAPK and AKT signalling pathways. Furthermore, we carried out an siRNA screen to characterize the DGK isoforms involved in KS motility and anchorage independent growth. Our data indicate a strong involvement of DGK-δ in KS motility and of DGK-ι in anchorage-independent growth. These results indicate that DGK inhibition is sufficient to impair in vitro KS cell proliferation and movement and suggest that selected DGK represent new pharmacological targets to interfere with the malignant properties of KS, independently from the well-known RAS/MAPK and PI3K/AKT pathways.


Asunto(s)
Diacilglicerol Quinasa/fisiología , Factor de Crecimiento de Hepatocito/farmacología , Sarcoma de Kaposi/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Diacilglicerol Quinasa/antagonistas & inhibidores , Humanos , Piperidinas/farmacología , Proteínas Proto-Oncogénicas c-met/fisiología , Quinazolinonas/farmacología , Transducción de Señal
13.
Cell Rep ; 35(11): 109253, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34133923

RESUMEN

Tumor vessel co-option is poorly understood, yet it is a resistance mechanism against anti-angiogenic therapy (AAT). The heterogeneity of co-opted endothelial cells (ECs) and pericytes, co-opting cancer and myeloid cells in tumors growing via vessel co-option, has not been investigated at the single-cell level. Here, we use a murine AAT-resistant lung tumor model, in which VEGF-targeting induces vessel co-option for continued growth. Single-cell RNA sequencing (scRNA-seq) of 31,964 cells reveals, unexpectedly, a largely similar transcriptome of co-opted tumor ECs (TECs) and pericytes as their healthy counterparts. Notably, we identify cell types that might contribute to vessel co-option, i.e., an invasive cancer-cell subtype, possibly assisted by a matrix-remodeling macrophage population, and another M1-like macrophage subtype, possibly involved in keeping or rendering vascular cells quiescent.


Asunto(s)
Neoplasias/irrigación sanguínea , Neoplasias/patología , Análisis de la Célula Individual , Animales , Línea Celular Tumoral , Células Endoteliales/patología , Femenino , Neoplasias Renales/patología , Neoplasias Pulmonares/secundario , Macrófagos/patología , Ratones Endogámicos BALB C , Células Mieloides/patología , Pericitos/patología
14.
Front Cell Dev Biol ; 8: 573747, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33282859

RESUMEN

Calcium ion (Ca2+) signaling is critical to many physiological processes, and its kinetics and subcellular localization are tightly regulated in all cell types. All Ca2+ flux perturbations impact cell function and may contribute to various diseases, including cancer. Several modulators of Ca2+ signaling are attractive pharmacological targets due to their accessibility at the plasma membrane. Despite this, the number of specific inhibitors is still limited, and to date there are no anticancer drugs in the clinic that target Ca2+ signaling. Ca2+ dynamics are impacted, in part, by modifications of cellular metabolic pathways. Conversely, it is well established that Ca2+ regulates cellular bioenergetics by allosterically activating key metabolic enzymes and metabolite shuttles or indirectly by modulating signaling cascades. A coordinated interplay between Ca2+ and metabolism is essential in maintaining cellular homeostasis. In this review, we provide a snapshot of the reciprocal interaction between Ca2+ and metabolism and discuss the potential consequences of this interplay in cancer cells. We highlight the contribution of Ca2+ to the metabolic reprogramming observed in cancer. We also describe how the metabolic adaptation of cancer cells influences this crosstalk to regulate protumorigenic signaling pathways. We suggest that the dual targeting of these processes might provide unprecedented opportunities for anticancer strategies. Interestingly, promising evidence for the synergistic effects of antimetabolites and Ca2+-modulating agents is emerging.

15.
Biomater Sci ; 8(21): 5911-5919, 2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-32996926

RESUMEN

A myriad of topical therapies and dressings are available to the clinicians for wound healing skin, but only a very few have shown their effectiveness in promoting wound repair due to challenges in controlling drug release. To address this issue, in this work, a near infrared (NIR)-light activable cryogel based on butyl methacrylate (BuMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) incorporated with reduced graphene oxide (rGO) was fabricated. The obtained cryogel provides the required hydrophilicity beneficial for wound treatment. The excellent photo-thermal properties of rGO allow for heating the cryogel, which results in subsequent swelling of the cryogel (CG) followed by release of the encapsulated drug load, cefepime in our case. Without photothermal activation, no release of payload was observed. The potential of this bandage for wound healing was examined using an ex vivo human skin model infected with Staphylococcus aureus (S. aureus). Apart from the efficacy of the cryogel based wound healing system, our results also suggest that the ex vivo wound model evaluated here provides a rapid and valuable tool to study superficial skin infections in humans and test the efficacy of antimicrobial agents.


Asunto(s)
Criogeles , Infección de Heridas , Antibacterianos , Humanos , Piel , Staphylococcus aureus
16.
Tumori ; 94(4): 505-10, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18822686

RESUMEN

AIMS AND BACKGROUND: The prognosis of each individual patient affected by sarcoma, including those with low histopathologic grading, cannot be reliably predicted at the time of surgery. We have developed an in vitro cell invasion assay on early primary cell cultures derived from surgically removed sarcomas. METHODS: Primary cell cultures were subjected to in vitro cell invasion assays by using Boyden chambers, filters coated with matrigel and fetal bovine serum as a source of chemoattractant. For each primary cell culture, the sarcoma cell invasion index was determined in comparison with the percentage of human fibrosarcoma HT1080 cell invasion extent. The cell invasion index of 7 different sarcomas was evaluated in respect to the outcome of the disease, after a follow-up ranging from 14 to 48 months. RESULTS: Data evidenced that a low cell invasion index (39.7% +/- 8.9) was retained by tumor cells derived from patients with no progression of the disease and with a longer interval of disease-free survival (21 +/- 0.8 months). However, an increase in cell invasion index (61% +/- 5) was retained by tumor cells derived from patients with progression of the disease and with a shorter disease-free survival (9 +/- 3 months). Overall, although only 7 cases were analyzed, a statistically significant correlation was found between disease-free survival and cell invasion index (P = 0.003). CONCLUSIONS: Our data support the possibility that cell invasion assays performed in vitro on cells derived from human sarcomas may be predictive of a more aggressive form of the disease.


Asunto(s)
Sarcoma/patología , Adolescente , Adulto , Anciano , Condrosarcoma/patología , Colágeno , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Combinación de Medicamentos , Femenino , Fibroma/patología , Fibrosarcoma/patología , Humanos , Inmunohistoquímica , Laminina , Liposarcoma Mixoide/patología , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Valor Predictivo de las Pruebas , Pronóstico , Proteoglicanos , Sarcoma/mortalidad , Sarcoma/cirugía , Células Tumorales Cultivadas
17.
Cell Metab ; 28(6): 866-880.e15, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30146486

RESUMEN

The role of fatty acid synthesis in endothelial cells (ECs) remains incompletely characterized. We report that fatty acid synthase knockdown (FASNKD) in ECs impedes vessel sprouting by reducing proliferation. Endothelial loss of FASN impaired angiogenesis in vivo, while FASN blockade reduced pathological ocular neovascularization, at >10-fold lower doses than used for anti-cancer treatment. Impaired angiogenesis was not due to energy stress, redox imbalance, or palmitate depletion. Rather, FASNKD elevated malonyl-CoA levels, causing malonylation (a post-translational modification) of mTOR at lysine 1218 (K1218). mTOR K-1218 malonylation impaired mTOR complex 1 (mTORC1) kinase activity, thereby reducing phosphorylation of downstream targets (p70S6K/4EBP1). Silencing acetyl-CoA carboxylase 1 (an enzyme producing malonyl-CoA) normalized malonyl-CoA levels and reactivated mTOR in FASNKD ECs. Mutagenesis unveiled the importance of mTOR K1218 malonylation for angiogenesis. This study unveils a novel role of FASN in metabolite signaling that contributes to explaining the anti-angiogenic effect of FASN blockade.


Asunto(s)
Acido Graso Sintasa Tipo I/fisiología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Malonil Coenzima A/metabolismo , Neovascularización Retiniana/patología , Serina-Treonina Quinasas TOR/metabolismo , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Proliferación Celular , Acido Graso Sintasa Tipo I/antagonistas & inhibidores , Acido Graso Sintasa Tipo I/genética , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Orlistat/uso terapéutico , Procesamiento Proteico-Postraduccional , Neovascularización Retiniana/tratamiento farmacológico
18.
Cell Metab ; 28(6): 881-894.e13, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30146488

RESUMEN

Little is known about the metabolism of quiescent endothelial cells (QECs). Nonetheless, when dysfunctional, QECs contribute to multiple diseases. Previously, we demonstrated that proliferating endothelial cells (PECs) use fatty acid ß-oxidation (FAO) for de novo dNTP synthesis. We report now that QECs are not hypometabolic, but upregulate FAO >3-fold higher than PECs, not to support biomass or energy production but to sustain the tricarboxylic acid cycle for redox homeostasis through NADPH regeneration. Hence, endothelial loss of FAO-controlling CPT1A in CPT1AΔEC mice promotes EC dysfunction (leukocyte infiltration, barrier disruption) by increasing endothelial oxidative stress, rendering CPT1AΔEC mice more susceptible to LPS and inflammatory bowel disease. Mechanistically, Notch1 orchestrates the use of FAO for redox balance in QECs. Supplementation of acetate (metabolized to acetyl-coenzyme A) restores endothelial quiescence and counters oxidative stress-mediated EC dysfunction in CPT1AΔEC mice, offering therapeutic opportunities. Thus, QECs use FAO for vasculoprotection against oxidative stress-prone exposure.


Asunto(s)
Carnitina O-Palmitoiltransferasa/metabolismo , Metabolismo Energético , Ácidos Grasos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , NADP/metabolismo , Receptor Notch1/metabolismo , Animales , Proliferación Celular , Células HEK293 , Homeostasis , Humanos , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Estrés Oxidativo
19.
Expert Opin Ther Targets ; 21(3): 239-247, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28081641

RESUMEN

INTRODUCTION: Antiangiogenic drugs were originally designed to starve tumors by cutting off their vascular supply. Unfortunately, when these agents are used as monotherapy or in combination with chemotherapy, they provide only modest survival benefits in the order of weeks to months in most cancer patients. Strategies normalizing the disorganized tumor vasculature offer the potential to increase tumor perfusion and oxygenation, and to improve the efficacy of radio-, chemo- and immunotherapy, while reducing metastasis. Areas covered: This review discusses tumor vascular normalization (TVN) as an alternative strategy for anti-angiogenic cancer treatment. We summarize (pre)-clinical strategies that have been developed to normalize tumor vessels as well as their potential to enhance standard therapy. Notably, we describe how targeting endothelial cell metabolism offers new possibilities for antiangiogenic therapy through evoking TVN. Expert opinion: Several drugs targeting VEGF signaling are now clinically used for antiangiogenic cancer treatment. However, excessive blood vessel pruning impedes perfusion and causes tumor hypoxia, known to promote cancer cell dissemination and impair radio-, chemo- and immunotherapy. Normalized vessels lessen tumor hypoxia, impair cancer cell intravasation and enhance anticancer treatment. New data indicate that targeting endothelial cell metabolism is an alternative strategy of antiangiogenic cancer treatment via promotion of TVN.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Animales , Células Endoteliales/metabolismo , Humanos , Terapia Molecular Dirigida , Neoplasias/irrigación sanguínea , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA