Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Fungi (Basel) ; 9(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36836290

RESUMEN

Mycoviruses widely exist in filamentous fungi and sometimes cause phenotypic changes in hosts. Trichoderma harzianum hypovirus 1 (ThHV1) and its defective RNA ThHV1-S were found in T. harzianum and exhibited high transmissibility. In our previous study, ThHV1 and ThHV1-S were transferred to an excellent biological control agent T. koningiopsis T-51 to form a derivative strain 51-13. In this study, we assessed the metabolic changes in strain 51-13 and antifungal activity of its culture filtrate (CF) and volatile organic compounds (VOCs). The antifungal activity of CF and VOCs of T-51 and 51-13 was different. Compared with the CF of T-51, that of 51-13 exhibited high inhibitory activity against B. cinerea, Sclerotinia sclerotiorum, and Stagonosporopsis cucurbitacearum but low inhibitory activity against Leptosphaeria biglobosa and Villosiclava virens. The VOCs of 51-13 exhibited high inhibitory activity against F. oxysporum but low inhibitory activity against B. cinerea. The transcriptomes of T-51 and 51-13 were compared; 5531 differentially expressed genes (DEGs) were identified in 51-13 with 2904 up- and 2627 downregulated genes. In KEGG enrichment analysis, 1127 DEGs related to metabolic pathways (57.53%) and 396 DEGs related to biosynthesis of secondary metabolites (20.21%) were clearly enriched. From the CF of T-51 and 51-13, 134 differential secondary metabolites (DSMs) were detected between T-51 and 51-13 with 39 up- and 95 downregulated metabolites. From these, 13 upregulated metabolites were selected to test their antifungal activity against B. cinerea. Among them, indole-3-lactic acid and p-coumaric acid methyl ester (MeCA) exhibited strong antifungal activity. The IC50 of MeCA was 657.35 µM and four genes possibly related to the synthesis of MeCA exhibited higher expression in 51-13 than in T-51. This study revealed the mechanism underlying the increase in antifungal activity of T-51 because of the mycovirus and provided novel insights in fungal engineering to obtain bioactive metabolites via mycoviruses.

2.
Cells ; 11(19)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36231057

RESUMEN

Seed shattering is an undesirable trait that leads to crop yield loss. Improving silique resistance to shattering is critical for grain and oil crops. In this study, we found that miR319-targeted TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL NUCLEAR ANTIGEN BINDING FACTOR (TCPs) inhibited the process of post-fertilized fruits (silique) elongation and dehiscence via regulation of FRUITFULL (FUL) expression in Arabidopsis thaliana and Brassica napus. AtMIR319a activation resulted in a longer silique with thickened and lignified replum, whereas overexpression of an miR319a-resistant version of AtTCP3 (mTCP3) led to a short silique with narrow and less lignified replum. Further genetic and expressional analysis suggested that FUL acted downstream of TCP3 to negatively regulate silique development. Moreover, hyper-activation of BnTCP3.A8, a B. napus homolog of AtTCP3, in rapeseed resulted in an enhanced silique resistance to shattering due to attenuated replum development. Taken together, our findings advance our knowledge of TCP-regulated silique development and provide a potential target for genetic manipulation to reduce silique shattering in Brassica crops.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brassica napus , Brassica , MicroARNs , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Brassica/genética , Brassica napus/genética , Brassica napus/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Semillas/genética
3.
Hortic Res ; 7(1): 160, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33082967

RESUMEN

The curd of cauliflower (Brassica oleracea L. var. botrytis) is a modified inflorescence that is consumed as a vegetable. Curd formation is proposed to be due to a mutation in the BobCAULIFLOWER (BobCAL) gene, but the genetic relationship between BobCAL variation and curd morphotypes remains obscure. To address this question, we collected and classified a collection of 78 cauliflower accessions into four subpopulations according to curd surface features: smooth, coarse, granular, and hairy curd morphotypes. Through the cDNA sequencing of BobCAL alleles, we showed that smooth and coarse accessions characterized by inflorescence meristem arrest presented a strong association with the 451T SNP (BobCAL_T), whereas granular and hairy accessions marked with floral organ arrest presented an association with 451G (BobCAL_G). Interestingly, all BobCAL alleles were alternatively spliced, resulting in a total of four alternative splice (AS) variants due to the retention of the fourth and/or seventh introns. Among accessions with BobCAL_G alleles, the total expression of all these AS variants in granular plants was almost equal to that in hairy plants; however, the expression of the individual AS variants encoding intact proteins relative to those encoding truncated proteins differed. Hairy accessions showed relatively high expression of the individual variants encoding intact proteins, whereas granular accessions displayed relatively low expression. In smooth cauliflower, the overexpression of the BobCAL_Ga variant caused an alteration in the curd morphotype from smooth to hairy, concurrent with an increase in the expression levels of downstream floral identity genes. These results reveal that alternative splicing of BobCAL transcripts is involved in the determination of cauliflower curd morphotypes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA