Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.129
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 84(8): 1406-1421.e8, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38490199

RESUMEN

Enhancers bind transcription factors, chromatin regulators, and non-coding transcripts to modulate the expression of target genes. Here, we report 3D genome structures of single mouse ES cells as they are induced to exit pluripotency and transition through a formative stage prior to undergoing neuroectodermal differentiation. We find that there is a remarkable reorganization of 3D genome structure where inter-chromosomal intermingling increases dramatically in the formative state. This intermingling is associated with the formation of a large number of multiway hubs that bring together enhancers and promoters with similar chromatin states from typically 5-8 distant chromosomal sites that are often separated by many Mb from each other. In the formative state, genes important for pluripotency exit establish contacts with emerging enhancers within these multiway hubs, suggesting that the structural changes we have observed may play an important role in modulating transcription and establishing new cell identities.


Asunto(s)
Células Madre Embrionarias de Ratones , Secuencias Reguladoras de Ácidos Nucleicos , Ratones , Animales , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos
2.
Mol Cell ; 84(2): 327-344.e9, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38151018

RESUMEN

Mitophagy mediated by BNIP3 and NIX critically regulates mitochondrial mass. Cellular BNIP3 and NIX levels are tightly controlled by SCFFBXL4-mediated ubiquitination to prevent excessive mitochondrial loss and lethal disease. Here, we report that knockout of PPTC7, a mitochondrial matrix protein, hyperactivates BNIP3-/NIX-mediated mitophagy and causes perinatal lethality that is rescued by NIX knockout in mice. Biochemically, the PPTC7 precursor is trapped by BNIP3 and NIX to the mitochondrial outer membrane, where PPTC7 scaffolds assembly of a substrate-PPTC7-SCFFBXL4 holocomplex to degrade BNIP3 and NIX, forming a homeostatic regulatory loop. PPTC7 possesses an unusually weak mitochondrial targeting sequence to facilitate its outer membrane retention and mitophagy control. Starvation upregulates PPPTC7 expression in mouse liver to repress mitophagy, which critically maintains hepatic mitochondrial mass, bioenergetics, and gluconeogenesis. Collectively, PPTC7 functions as a mitophagy sensor that integrates homeostatic and physiological signals to dynamically control BNIP3 and NIX degradation, thereby maintaining mitochondrial mass and cellular homeostasis.


Asunto(s)
Proteínas de la Membrana , Membranas Mitocondriales , Proteínas Mitocondriales , Mitofagia , Proteína Fosfatasa 2C , Proteolisis , Animales , Ratones , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia/genética , Proteína Fosfatasa 2C/metabolismo
3.
Mol Cell ; 82(18): 3453-3467.e14, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35961308

RESUMEN

Membrane protein clients of endoplasmic reticulum (ER)-associated degradation must be retrotranslocated from the ER membrane by the AAA-ATPase p97 for proteasomal degradation. Before direct engagement with p97, client transmembrane domains (TMDs) that have partially or fully crossed the membrane must be constantly shielded to avoid non-native interactions. How client TMDs are seamlessly escorted from the membrane to p97 is unknown. Here, we identified ER-anchored TMUB1 as a TMD-specific escortase. TMUB1 interacts with the TMD of clients within the membrane and holds ∼10-14 residues of a hydrophobic sequence that is exposed out of membrane, using its transmembrane and cytosolic regions, respectively. The ubiquitin-like domain of TMUB1 recruits p97, which can pull client TMDs from bound TMUB1 into the cytosol. The disruption of TMUB1 escortase activity impairs retrotranslocation and stabilizes retrotranslocating intermediates of client proteins within the ER membrane. Thus, TMUB1 promotes TMD segregation by safeguarding the TMD movement from the membrane to p97.


Asunto(s)
Retículo Endoplásmico , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ubiquitina/metabolismo , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo
4.
Mol Cell ; 81(2): 355-369.e10, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33321093

RESUMEN

Ferroptosis is a form of necrotic cell death caused by iron-dependent peroxidation of polyunsaturated phospholipids on cell membranes and is actively suppressed by the cellular antioxidant systems. We report here that oxidoreductases, including NADPH-cytochrome P450 reductase (POR) and NADH-cytochrome b5 reductase (CYB5R1), transfer electrons from NAD(P)H to oxygen to generate hydrogen peroxide, which subsequently reacts with iron to generate reactive hydroxyl radicals for the peroxidation of the polyunsaturated fatty acid (PUFA) chains of membrane phospholipids, thereby disrupting membrane integrity during ferroptosis. Genetic knockout of POR and CYB5R1 decreases cellular hydrogen peroxide generation, preventing lipid peroxidation and ferroptosis. Moreover, POR knockdown in mouse liver prevents ConA-induced liver damage. Ferroptosis, therefore, is a result of incidental electron transfer carried out by POR/CYB5R1 oxidoreductase and thus needs to be constitutively countered by the antioxidant systems.


Asunto(s)
Membrana Celular/química , Sistema Enzimático del Citocromo P-450/genética , Citocromo-B(5) Reductasa/genética , Ácidos Grasos Insaturados/metabolismo , Ferroptosis/genética , NADP/metabolismo , Animales , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Concanavalina A/farmacología , Sistema Enzimático del Citocromo P-450/deficiencia , Citocromo-B(5) Reductasa/deficiencia , Transporte de Electrón/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Oxígeno/metabolismo , Compuestos de Fenilurea/farmacología , Piperazinas/farmacología , Piridinas/farmacología , Sorafenib/farmacología
5.
EMBO J ; 42(13): e113033, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36896912

RESUMEN

Mitophagy is a fundamental quality control mechanism of mitochondria. Its regulatory mechanisms and pathological implications remain poorly understood. Here, via a mitochondria-targeted genetic screen, we found that knockout (KO) of FBXL4, a mitochondrial disease gene, hyperactivates mitophagy at basal conditions. Subsequent counter screen revealed that FBXL4-KO hyperactivates mitophagy via two mitophagy receptors BNIP3 and NIX. We determined that FBXL4 functions as an integral outer-membrane protein that forms an SCF-FBXL4 ubiquitin E3 ligase complex. SCF-FBXL4 ubiquitinates BNIP3 and NIX to target them for degradation. Pathogenic FBXL4 mutations disrupt SCF-FBXL4 assembly and impair substrate degradation. Fbxl4-/- mice exhibit elevated BNIP3 and NIX proteins, hyperactive mitophagy, and perinatal lethality. Importantly, knockout of either Bnip3 or Nix rescues metabolic derangements and viability of the Fbxl4-/- mice. Together, beyond identifying SCF-FBXL4 as a novel mitochondrial ubiquitin E3 ligase restraining basal mitophagy, our results reveal hyperactivated mitophagy as a cause of mitochondrial disease and suggest therapeutic strategies.


Asunto(s)
Enfermedades Mitocondriales , Mitofagia , Ratones , Animales , Mitofagia/fisiología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
6.
Mol Cell ; 75(6): 1103-1116.e9, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31420216

RESUMEN

The mitochondrial pathway of apoptosis is controlled by the ratio of anti- and pro-apoptotic members of the Bcl-2 family of proteins. The molecular events underlying how a given physiological stimulus changes this ratio to trigger apoptosis remains unclear. We report here that human 17-ß-estradiol (E2) and its related steroid hormones induce apoptosis by binding directly to phosphodiesterase 3A, which in turn recruits and stabilizes an otherwise fast-turnover protein Schlafen 12 (SLFN12). The elevated SLFN12 binds to ribosomes to exclude the recruitment of signal recognition particles (SRPs), thereby blocking the continuous protein translation occurring on the endoplasmic reticulum of E2-treated cells. These proteins include Bcl-2 and Mcl-1, whose ensuing decrease triggers apoptosis. The SLFN12 protein and an apoptosis activation marker were co-localized in syncytiotrophoblast of human placentas, where levels of estrogen-related hormones are high, and dynamic cell turnover by apoptosis is critical for successful implantation and placenta development.


Asunto(s)
Apoptosis/efectos de los fármacos , Estradiol/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Trofoblastos/metabolismo , Adulto , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Femenino , Células HeLa , Humanos , Células MCF-7 , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ribosomas/metabolismo
7.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38561979

RESUMEN

Peptide binding to major histocompatibility complex (MHC) proteins plays a critical role in T-cell recognition and the specificity of the immune response. Experimental validation such peptides is extremely resource-intensive. As a result, accurate computational prediction of binding peptides is highly important, particularly in the context of cancer immunotherapy applications, such as the identification of neoantigens. In recent years, there is a significant need to continually improve the existing prediction methods to meet the demands of this field. We developed ConvNeXt-MHC, a method for predicting MHC-I-peptide binding affinity. It introduces a degenerate encoding approach to enhance well-established panspecific methods and integrates transfer learning and semi-supervised learning methods into the cutting-edge deep learning framework ConvNeXt. Comprehensive benchmark results demonstrate that ConvNeXt-MHC outperforms state-of-the-art methods in terms of accuracy. We expect that ConvNeXt-MHC will help us foster new discoveries in the field of immunoinformatics in the distant future. We constructed a user-friendly website at http://www.combio-lezhang.online/predict/, where users can access our data and application.


Asunto(s)
Péptidos , Péptidos/metabolismo , Unión Proteica
8.
Circ Res ; 134(4): 371-389, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38264909

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a common but poorly understood form of heart failure, characterized by impaired diastolic function. It is highly heterogeneous with multiple comorbidities, including obesity and diabetes, making human studies difficult. METHODS: Metabolomic analyses in a mouse model of HFpEF showed that levels of indole-3-propionic acid (IPA), a metabolite produced by gut bacteria from tryptophan, were reduced in the plasma and heart tissue of HFpEF mice as compared with controls. We then examined the role of IPA in mouse models of HFpEF as well as 2 human HFpEF cohorts. RESULTS: The protective role and therapeutic effects of IPA were confirmed in mouse models of HFpEF using IPA dietary supplementation. IPA attenuated diastolic dysfunction, metabolic remodeling, oxidative stress, inflammation, gut microbiota dysbiosis, and intestinal epithelial barrier damage. In the heart, IPA suppressed the expression of NNMT (nicotinamide N-methyl transferase), restored nicotinamide, NAD+/NADH, and SIRT3 (sirtuin 3) levels. IPA mediates the protective effects on diastolic dysfunction, at least in part, by promoting the expression of SIRT3. SIRT3 regulation was mediated by IPA binding to the aryl hydrocarbon receptor, as Sirt3 knockdown diminished the effects of IPA on diastolic dysfunction in vivo. The role of the nicotinamide adenine dinucleotide circuit in HFpEF was further confirmed by nicotinamide supplementation, Nnmt knockdown, and Nnmt overexpression in vivo. IPA levels were significantly reduced in patients with HFpEF in 2 independent human cohorts, consistent with a protective function in humans, as well as mice. CONCLUSIONS: Our findings reveal that IPA protects against diastolic dysfunction in HFpEF by enhancing the nicotinamide adenine dinucleotide salvage pathway, suggesting the possibility of therapeutic management by either altering the gut microbiome composition or supplementing the diet with IPA.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Propionatos , Sirtuina 3 , Humanos , Ratones , Animales , Insuficiencia Cardíaca/metabolismo , Volumen Sistólico/fisiología , NAD , Sirtuina 3/genética , Indoles/farmacología , Niacinamida
9.
Chem Rev ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137296

RESUMEN

Self-driving laboratories (SDLs) promise an accelerated application of the scientific method. Through the automation of experimental workflows, along with autonomous experimental planning, SDLs hold the potential to greatly accelerate research in chemistry and materials discovery. This review provides an in-depth analysis of the state-of-the-art in SDL technology, its applications across various scientific disciplines, and the potential implications for research and industry. This review additionally provides an overview of the enabling technologies for SDLs, including their hardware, software, and integration with laboratory infrastructure. Most importantly, this review explores the diverse range of scientific domains where SDLs have made significant contributions, from drug discovery and materials science to genomics and chemistry. We provide a comprehensive review of existing real-world examples of SDLs, their different levels of automation, and the challenges and limitations associated with each domain.

10.
Nature ; 584(7820): 215-220, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32788735

RESUMEN

Two-dimensional atomic crystals can radically change their properties in response to external influences, such as substrate orientation or strain, forming materials with novel electronic structure1-5. An example is the creation of weakly dispersive, 'flat' bands in bilayer graphene for certain 'magic' angles of twist between the orientations of the two layers6. The quenched kinetic energy in these flat bands promotes electron-electron interactions and facilitates the emergence of strongly correlated phases, such as superconductivity and correlated insulators. However, the very accurate fine-tuning required to obtain the magic angle in twisted-bilayer graphene poses challenges to fabrication and scalability. Here we present an alternative route to creating flat bands that does not involve fine-tuning. Using scanning tunnelling microscopy and spectroscopy, together with numerical simulations, we demonstrate that graphene monolayers placed on an atomically flat substrate can be forced to undergo a buckling transition7-9, resulting in a periodically modulated pseudo-magnetic field10-14, which in turn creates a 'post-graphene' material with flat electronic bands. When we introduce the Fermi level into these flat bands using electrostatic doping, we observe a pseudogap-like depletion in the density of states, which signals the emergence of a correlated state15-17. This buckling of two-dimensional crystals offers a strategy for creating other superlattice systems and, in particular, for exploring interaction phenomena characteristic of flat bands.

11.
Brief Bioinform ; 24(6)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37833839

RESUMEN

Microsatellite instability (MSI) is a hypermutator phenotype caused by DNA mismatch repair deficiency. MSI has been reported in various human cancers, particularly colorectal, gastric and endometrial cancers. MSI is a promising biomarker for cancer prognosis and immune checkpoint blockade immunotherapy. Several computational methods have been developed for MSI detection using DNA- or RNA-based approaches based on next-generation sequencing. Epigenetic mechanisms, such as DNA methylation, regulate gene expression and play critical roles in the development and progression of cancer. We here developed MSI-XGNN, a new computational framework for predicting MSI status using bulk RNA-sequencing and DNA methylation data. MSI-XGNN is an explainable deep learning model that combines a graph neural network (GNN) model to extract features from the gene-methylation probe network with a CatBoost model to classify MSI status. MSI-XGNN, which requires tumor-only samples, exhibited comparable performance with two well-known methods that require tumor-normal paired sequencing data, MSIsensor and MANTIS and better performance than several other tools. MSI-XGNN also showed good generalizability on independent validation datasets. MSI-XGNN identified six MSI markers consisting of four methylation probes (EPM2AIP1|MLH1:cg14598950, EPM2AIP1|MLH1:cg27331401, LNP1:cg05428436 and TSC22D2:cg15048832) and two genes (RPL22L1 and MSH4) constituting the optimal feature subset. All six markers were significantly associated with beneficial tumor microenvironment characteristics for immunotherapy, such as tumor mutation burden, neoantigens and immune checkpoint molecules such as programmed cell death-1 and cytotoxic T-lymphocyte antigen-4. Overall, our study provides a powerful and explainable deep learning model for predicting MSI status and identifying MSI markers that can potentially be used for clinical MSI evaluation.


Asunto(s)
Neoplasias Colorrectales , Inestabilidad de Microsatélites , Humanos , Neoplasias Colorrectales/genética , Repeticiones de Microsatélite , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Metilación de ADN , Redes Neurales de la Computación , ADN/metabolismo , ARN/metabolismo , Microambiente Tumoral , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo
12.
PLoS Pathog ; 19(10): e1011740, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37851691

RESUMEN

The Toll receptor signaling pathway is an important innate immune response of insects to pathogen infection; its extracellular signal transduction involves serine protease cascade activation. However, excessive or constitutive activation of the Toll pathway can be detrimental. Hence, the balance between activation and inhibition of the extracellular protease cascade must be tightly regulated to achieve favorable outcomes. Previous studies have shown that serpins-serine protease inhibitors-negatively regulate insect innate immunity by inhibiting extracellular protease cascade signaling. Although the roles of serpins in insect innate immunity are well described, the physiological mechanisms underlying their synergistic effects remain poorly understand. Here, we characterize the molecular mechanism by which serpin-1a and serpin-6 synergistically maintain immune homeostasis of the silkworm Toll pathway under physiological and pathological conditions. Through in vitro biochemical assays and in vivo bioassays, we demonstrate that clip-domain serine protease 2 (CLIP2), as the Toll cascade-activating terminal protease, is responsible for processing proSpätzle1 to induce the expression of antimicrobial peptides. Further biochemical and genetic analyses indicate that constitutively expressed serpin-1a and inducible serpin-6 synergistically target CLIP2 to maintain homeostasis of the silkworm Toll pathway under physiological and pathological conditions. Taken together, this study provides new insights into the precise regulation of Toll cascade activation signals in insect innate immune responses and highlights the importance and complexity of insect immune homeostasis regulation.


Asunto(s)
Bombyx , Serpinas , Animales , Serpinas/metabolismo , Bombyx/genética , Proteínas de Insectos/metabolismo , Serina Proteasas/metabolismo , Homeostasis
13.
Nucleic Acids Res ; 51(W1): W17-W24, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37207341

RESUMEN

The utilization of high-throughput sequencing (HTS) for B-cell receptor (BCR) immune repertoire analysis has become widespread in the fields of adaptive immunity and antibody drug development. However, the sheer volume of sequences generated by these experiments presents a challenge in data processing. Specifically, multiple sequence alignment (MSA), a critical aspect of BCR analysis, remains inadequate for handling massive BCR sequencing data and lacks the ability to provide immunoglobulin-specific information. To address this gap, we introduce Abalign, a standalone program specifically designed for ultrafast MSA of BCR/antibody sequences. Benchmark tests demonstrate that Abalign achieves comparable or even better accuracy than state-of-the-art MSA tools, and shows remarkable advantages in terms of speed and memory consumption, reducing the time required for high-throughput analysis from weeks to hours. In addition to its alignment capabilities, Abalign offers a broad range of BCR analysis features, including extracting BCRs, constructing lineage trees, assigning VJ genes, analyzing clonotypes, profiling mutations, and comparing BCR immune repertoires. With its user-friendly graphic interface, Abalign can be easily run on personal computers instead of computing clusters. Overall, Abalign is an easy-to-use and effective tool that enables researchers to analyze massive BCR/antibody sequences, leading to new discoveries in the field of immunoinformatics. The software is freely available at http://cao.labshare.cn/abalign/.


Asunto(s)
Anticuerpos , Programas Informáticos , Alineación de Secuencia , Anticuerpos/genética , Inmunidad Adaptativa , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Receptores de Antígenos de Linfocitos B/genética
14.
Nano Lett ; 24(29): 9004-9010, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38995696

RESUMEN

Multiprincipal element alloys usually exhibit earlier pop-in events than pure metals and dilute solid solutions during nanoindentation experiments. To understand the origin of this phenomenon, large-scale atomic simulations of nanoindentation were performed on a series of metallic materials to investigate the underlying physics of incipient plasticity at the nanoscale. Statistical result shows that lattice distortion δ and normalized critical pressure pc/Es follow a power-law relationship. Via quantitative analysis on the relative positions of the atoms within the nearest neighbor shell, the physical origin of premature incipient plasticity is revealed as severe lattice distortion induces large relative atomic displacement, so only a small indentation strain is required to meet the critical displacement threshold that triggers incipient plasticity. Therefore, for perfect crystals, lattice distortion is an intrinsic and determinative factor that affects the first pop-in event.

15.
J Mol Cell Cardiol ; 195: 55-67, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39089571

RESUMEN

Acute lung injury (ALI) including acute respiratory distress syndrome (ARDS) is a major complication and increase the mortality of patients with cardiac surgery. We previously found that the protein cargoes enriched in circulating extracellular vesicles (EVs) are closely associated with cardiopulmonary disease. We aimed to evaluate the implication of EVs on cardiac surgery-associated ALI/ARDS. The correlations between "oncoprotein-induced transcript 3 protein (OIT3) positive" circulating EVs and postoperative ARDS were assessed. The effects of OIT3-overexpressed EVs on the cardiopulmonary bypass (CPB) -induced ALI in vivo and inflammation of human bronchial epithelial cells (BEAS-2B) were detected. OIT3 enriched in circulating EVs is reduced after cardiac surgery with CPB, especially with postoperative ARDS. The "OIT3 positive" EVs negatively correlate with lung edema, hypoxemia and CPB time. The OIT3-overexpressed EVs can be absorbed by pulmonary epithelial cells and OIT3 transferred by EVs triggered K48- and K63-linked polyubiquitination to inactivate NOD-like receptor protein 3 (NLRP3) inflammasome, and restrains pro-inflammatory cytokines releasing and immune cells infiltration in lung tissues, contributing to the alleviation of CPB-induced ALI. Overexpression of OIT3 in human bronchial epithelial cells have similar results. OIT3 promotes the E3 ligase Cbl proto-oncogene B associated with NLRP3 to induce the ubiquitination of NLRP3. Immunofluorescence tests reveal that OIT3 is reduced in the generation from the liver sinusoids endothelial cells (LSECs) and secretion in liver-derived EVs after CPB. In conclusion, OIT3 enriched in EVs is a promising biomarker of postoperative ARDS and a therapeutic target for ALI after cardiac surgery.

16.
J Cell Mol Med ; 28(8): e18248, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520220

RESUMEN

Tumour-induced immunosuppressive microenvironments facilitate oncogenesis, with regulatory T cells (Tregs) serving as a crucial component. The significance of Treg-associated genes within the context of ovarian cancer (OC) remains elucidated insufficiently. Utilizing single-cell RNA sequencing (scRNA-Seq) for the identification of Treg-specific biomarkers, this investigation employed single-sample gene set enrichment analysis (ssGSEA) for the derivation of a Treg signature score. Weighted gene co-expression network analysis (WGCNA) facilitated the identification of Treg-correlated genes. Machine learning algorithms were employed to determine an optimal prognostic model, subsequently exploring disparities across risk strata in terms of survival outcomes, immunological infiltration, pathway activation and responsiveness to immunotherapy. Through WGCNA, a cohort of 365 Treg-associated genes was discerned, with 70 implicated in the prognostication of OC. A Tregs-associated signature (TAS), synthesized from random survival forest (RSF) and Least Absolute Shrinkage and Selection Operator (LASSO) algorithms, exhibited robust predictive validity across both internal and external cohorts. Low TAS OC patients demonstrated superior survival outcomes, augmented by increased immunological cell infiltration, upregulated immune checkpoint expression, distinct pathway enrichment and differential response to immunotherapeutic interventions. The devised TAS proficiently prognosticates patient outcomes and delineates the immunological milieu within OC, offering a strategic instrument for the clinical stratification and selection of patients.


Asunto(s)
Neoplasias Ováricas , Linfocitos T Reguladores , Humanos , Femenino , Pronóstico , Neoplasias Ováricas/genética , Neoplasias Ováricas/terapia , Algoritmos , Inmunoterapia , Microambiente Tumoral/genética
17.
J Cell Physiol ; 239(6): e31283, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38651182

RESUMEN

The long noncoding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) plays a crucial role in tumorigenesis and is frequently employed as a prognostic biomarker. However, its involvement in the osteogenic differentiation of oral stem cells, particularly human dental follicle stem cells (hDFSCs), remains unclear. Our investigation revealed that the absence of SNHG1 enhances the osteogenic differentiation of hDFSCs. Furthermore, the downregulation of SNHG1 induces autophagy in hDFSCs, leading to a reduction in intracellular oxidative stress levels. Notably, this effect is orchestrated through the epigenetic regulation of EZH2. Our study unveils a novel function of SNHG1 in governing the osteogenic differentiation of hDFSCs, offering fresh insights for an in-depth exploration of the molecular mechanisms underlying dental follicle development. These findings not only provide a foundation for advancing the understanding of SNHG1 but also present innovative perspectives for promoting the repair and regeneration of periodontal supporting tissue, ultimately contributing to the restoration of periodontal health and tooth function.


Asunto(s)
Autofagia , Diferenciación Celular , Saco Dental , Proteína Potenciadora del Homólogo Zeste 2 , Osteogénesis , Estrés Oxidativo , ARN Largo no Codificante , Células Madre , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Autofagia/genética , Estrés Oxidativo/genética , Osteogénesis/genética , Diferenciación Celular/genética , Células Madre/metabolismo , Saco Dental/metabolismo , Saco Dental/citología , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Epigénesis Genética , Células Cultivadas , Técnicas de Silenciamiento del Gen
18.
BMC Genomics ; 25(1): 465, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741087

RESUMEN

BACKGROUND: The early 2 factor (E2F) family is characterized as a kind of transcription factor that plays an important role in cell division, DNA damage repair, and cell size regulation. However, its stress response has not been well revealed. RESULTS: In this study, ZmE2F members were comprehensively identified in the maize genome, and 21 ZmE2F genes were identified, including eight E2F subclade members, seven DEL subfamily genes, and six DP genes. All ZmE2F proteins possessed the DNA-binding domain (DBD) characterized by conserved motif 1 with the RRIYD sequence. The ZmE2F genes were unevenly distributed on eight maize chromosomes, showed diversity in gene structure, expanded by gene duplication, and contained abundant stress-responsive elements in their promoter regions. Subsequently, the ZmE2F6 gene was cloned and functionally verified in drought response. The results showed that the ZmE2F6 protein interacted with ZmPP2C26, localized in the nucleus, and responded to drought treatment. The overexpression of ZmE2F6 enhanced drought tolerance in transgenic Arabidopsis with longer root length, higher survival rate, and biomass by upregulating stress-related gene transcription. CONCLUSIONS: This study provides novel insights into a greater understanding and functional study of the E2F family in the stress response.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Estrés Fisiológico , Factores de Transcripción , Zea mays , Zea mays/genética , Zea mays/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Filogenia , Plantas Modificadas Genéticamente , Arabidopsis/genética , Regiones Promotoras Genéticas , Cromosomas de las Plantas/genética
19.
J Am Chem Soc ; 146(23): 16306-16313, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38804633

RESUMEN

Transaminases are choice biocatalysts for the synthesis of chiral primary amines, including amino acids bearing contiguous stereocenters. In this study, we employ lysine as a "smart" amine donor in transaminase-catalyzed dynamic kinetic resolution reactions to access ß-branched noncanonical arylalanines. Our mechanistic investigation demonstrates that, upon transamination, the lysine-derived ketone byproduct readily cyclizes to a six-membered imine, driving the equilibrium in the desired direction and thus alleviating the need to load superstoichiometric quantities of the amine donor or deploy a multienzyme cascade. Lysine also shows good overall compatibility with a panel of wild-type transaminases, a promising hint of its application as a smart donor more broadly. Indeed, by this approach, we furnished a broad scope of ß-branched arylalanines, including some bearing hitherto intractable cyclopropyl and isopropyl substituents, with high yields and excellent selectivities.


Asunto(s)
Aminas , Aminoácidos , Lisina , Transaminasas , Transaminasas/metabolismo , Transaminasas/química , Aminas/química , Lisina/química , Aminoácidos/química , Aminoácidos/síntesis química , Biocatálisis , Estructura Molecular
20.
Br J Haematol ; 204(4): 1414-1421, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38272453

RESUMEN

We conducted a retrospective, multicentre study to compare consolidation therapy with or without first-line autologous stem cell transplant (ASCT) for peripheral T-cell lymphoma (PTCL) patients in a real-world setting. We enrolled 347 PTCL patients who achieved complete response after first-line treatment. Of these, 257 received consolidation chemotherapy (non-ASCT group) and 90 received ASCT (ASCT group). Clinical outcomes were comparable between ASCT and non-ASCT groups. After propensity score matching, the 2-year cumulative incidence of treatment-related mortality and relapse remained similar between groups (1.9% vs. 2.0%, p = 0.985; 24.7% vs. 47.1%, p = 0.021). However, significant differences emerged in progression-free survival and overall survival probabilities. Within the T-cell lymphoma subgroup, ASCT patients exhibited favourable outcomes compared to non-ASCT patients: 2-year progression-free survival (73.4% vs. 50.8%, p = 0.024) and overall survival (92.1% vs. 73.5%, p = 0.021). Notably, no significant differences were observed for patients with NK/T-cell lymphoma. These real-world data suggest that up-front ASCT is a safe and effective consolidation option for PTCL patients in remission, particularly those with T-cell lymphoma.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Linfoma de Células T Periférico , Linfoma de Células T , Humanos , Estudios Retrospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Recurrencia Local de Neoplasia , Trasplante de Células Madre , Respuesta Patológica Completa , Trasplante Autólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA