Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Rep ; 47(6): 4303-4309, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32418113

RESUMEN

Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a fungus that causes the devastating fungalwheat stem rust disease in wheat production. Rapid identification of the physiological races of Pgt are very importance for the prevention of wheat stem rust. In this paper we developed a molecular method to identify the most prevalent race of Pgt, as a supplement for traditionally used host-specific methods. Amplified fragment length polymorphism (AFLP) was employed as a means of analyzing DNA polymorphisms in six common physiological races of Pgt in China and Ug99. In total, 64 pairs of primers were used for AFLP screening of race-specific molecular markers. One primer pair-namely, E7/M7 (5'-GACTGCGTACCAATTCG G-3'/5'-GATGAGTCCTGAGTAACGG-3')-yielded a unique band for the race 34MKG that was purified and cloned into the pGEM-T vector for sequencing. We then designed a new primer pairs (sequence-characterized amplified region marker) to amplify the 171-bp fragment and confirmed that the marker was highly specific for 34MKG. These results provide a new tool for monitoring different races of Pgt for improved control of wheat stem rust in China.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Puccinia/genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados/métodos , Basidiomycota/genética , China , Mapeo Cromosómico/métodos , Repeticiones de Microsatélite/genética , Fenotipo , Enfermedades de las Plantas/microbiología , Polimorfismo Genético/genética , Puccinia/metabolismo , Triticum/genética , Triticum/microbiología
2.
BMC Evol Biol ; 19(1): 183, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31533625

RESUMEN

BACKGROUND: Blumeria graminis f. sp. tritici (Bgt), the causal agent of wheat powdery mildew severely affects yield security wheat production in China. Understanding the virulence structure and genetic variations of this pathogen is important for breeding wheat lines resistant to wheat powdery mildew. However, information related to genes controlling resistance remains elusive. This study analyzes the virulence structure and the genetic diversity of pathogenic Bgt populations isolated from northeastern (Liaoning, Heilongjiang) and northwestern (Gansu) China, two representative wheat producing areas, on 37 wheat cultivars each carrying a known powdery mildew resistance (Pm) gene. RESULTS: Bgt isolates from northeastern China show higher frequencies of virulence genes than populations from Gansu Province. Many of the known Pm genes failed to provide resistance in this study. However, Pm21 provided 100% resistance to all isolates from all three provinces, obtained during two consecutive years, while Pm13 provided 100% resistance in Gansu. Pm13, Pm16, Pm18, and Pm22 also showed partial resistance in northeastern China, while Pm16, Pm18, Pm22, Pm5 + 6 and Pm2 + 6 +? maintained some resistance in Gansu. Genetic diversity among populations in different regions was detected by cluster analyses using expressed sequence tag-simple sequence repeat (EST-SSR). When the genetic similarity coefficient is relatively high, populations from the same regional origin are mostly clustered into one group while populations from different regions exhibit large genetic differences. CONCLUSION: Pm21 remains the best choice for breeding programs to maintain resistance to Bgt. Only 58% of the isolates tested show a clear correlation between EST-SSR genetic polymorphisms and frequency of virulence gene data.


Asunto(s)
Ascomicetos/genética , Ascomicetos/patogenicidad , Variación Genética , Ascomicetos/aislamiento & purificación , China , Análisis por Conglomerados , Etiquetas de Secuencia Expresada , Frecuencia de los Genes , Genes Fúngicos , Repeticiones de Microsatélite/genética , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/microbiología , Virulencia/genética
3.
PLoS One ; 13(5): e0197579, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29795612

RESUMEN

Wheat stem rust was once the most destructive plant disease, but it has been largely controlled. However, to prevent future problems, the ongoing development of resistant wheat varieties requires knowledge of the changing virulence patterns for Pgt virulence of the fungus that causes wheat stem rust and the detection of new races. Surveys were conducted from 2013-2014 to determine the races of the Pgt present in China. Low levels of stem rust infections were found in China during this investigation and 11 Puccinia graminis f. sp. tritici (Pgt) samples were obtained. In addition, 22 Pgt samples collected from the alternate host (Berberis) were obtained and have been reported for the first time. Fifty-three isolates were obtained from all samples. Four race groups, including 13 physiological races, were identified. They included the most prevalent races, 34C3MTGQM and 34C6MRGQM, with 13.2% predominance, followed by 34C0MRGQM at 11.3%. Six new races that were virulent against the resistance genes, Sr5 + Sr11, were found for the first time in China, namely 34C0MRGQM, 34C3MTGQM, 34C3MKGQM, 34C3MKGSM, 34C6MTGSM, and 34C6MRGQM, with a predominance of 11.3, 13.2, 9.4, 9.4, 1.9, and 13.2%, respectively. Most of the genes studied were ineffective against one or more of the tested isolates, except Sr9e, Sr21, Sr26, Sr31, Sr33, Sr38, Sr47, and SrTt3. Genes Sr35, SrTmp, Sr30, Sr37, Sr17, and Sr36 were effective in 92.5, 86.8, 84.9, 84.9, 79.3, and 77.4% of the tested isolates, respectively. In contrast, all of the isolates were virulent against Sr6, Sr7b, Sr9a, Sr9b, Sr9d, Sr9g, and SrMcN. Our results indicate that remarkable differences exist among the categories of the races in this study (i.e., their known virulence gene spectra) and the Pgt races reported previously. In addition, the sexual cycle of Pgt may contribute to its diversity in China.


Asunto(s)
Basidiomycota/fisiología , Enfermedades de las Plantas/microbiología , Basidiomycota/aislamiento & purificación , Basidiomycota/patogenicidad , China , Resistencia a la Enfermedad/genética , Genes Fúngicos , Interacciones Huésped-Patógeno , Tallos de la Planta/microbiología , Esporas Fúngicas , Triticum/microbiología , Virulencia/genética
4.
PeerJ ; 5: e4146, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30038849

RESUMEN

Wheat stem rust, caused by Puccinia granimis f. sp. tritici, severely affects wheat production, but it has been effectively controlled in China since the 1970s. However, the appearance and spread of wheat stem rust races Ug99 (TTKSK, virulence to Sr31), TKTTF (virulence to SrTmp) and TTTTF (virulence to the cultivars carrying Sr9e and Sr13) have received attention. It is important to clarify the effectiveness of resistance genes in a timely manner, especially for the purpose of using new resistance genes in wheat cultivars for durable-resistance. However, little is known about the stem rust resistance genes present in widely used wheat cultivars from Gansu. This study aimed to determine the resistance level at the seedling stage of the main wheat cultivars in Gansu Province. A secondary objective was to assess the prevalence of Sr2, Sr24, Sr25, Sr26, Sr31, and Sr38 using molecular markers. The results of the present study indicated that 38 (50.7%) wheat varieties displayed resistance to all the tested races of Puccinia graminis f. sp. tritici. The molecular marker analysis showed that 13 out of 75 major wheat cultivars likely carried Sr2; 25 wheat cultivars likely carried Sr31; and nine wheat cultivars likely carried Sr38. No cultivar was found to have Sr25 and Sr26, as expected. Surprisingly, no wheat cultivars carried Sr24. The wheat lines with known stem rust resistance genes could be used as donor parent for further breeding programs.

5.
PLoS One ; 11(10): e0165640, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27792757

RESUMEN

Stem rust is one of the most potentially harmful wheat diseases, but has been effectively controlled in China since 1970s. However, the interest in breeding wheat with durable resistance to stem rust has been renewed with the emergence of Ug99 (TTKSK) virulent to the widely used resistance gene Sr31, and by which the wheat stem rust was controlled for 40 years in wheat production area worldwide. Yunnan Province, located on the Southwest border of China, is one of the main wheat growing regions, playing a pivotal role in the wheat stem rust epidemic in China. This study investigated the levels of resistance in key wheat cultivars (lines) of Yunnan Province. In addition, the existence of Sr25, Sr26, Sr28, Sr31, Sr32, and Sr38 genes in 119 wheat cultivars was assessed using specific DNA markers. The results indicated that 77 (64.7%) tested wheat varieties showed different levels of resistance to all the tested races of Puccinia graminis f. sp. tritici. Using molecular markers, we identified the resistance gene Sr31 in 43 samples; Sr38 in 10 samples; Sr28 in 12 samples, and one sample which was resistant against Ug99 (avirulent to Sr32). No Sr25 or Sr26 (effective against Ug99) was identified in any cultivars tested. Furthermore, 5 out of 119 cultivars tested carried both Sr31 and Sr38 and eight contained both Sr31 and Sr28. The results enable the development of appropriate strategies to breed varieties resistant to stem rust.


Asunto(s)
Basidiomycota/fisiología , Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Enfermedades de las Plantas/microbiología , Plantones/microbiología , Triticum/genética , Triticum/microbiología , Biomarcadores/metabolismo , China , Enfermedades de las Plantas/inmunología , Plantones/genética , Plantones/inmunología , Triticum/inmunología
6.
Yi Chuan ; 26(5): 689-94, 2004 Sep.
Artículo en Zh | MEDLINE | ID: mdl-15640086

RESUMEN

To identify genetically modified (GM) maize T14/T25 lines, a real-time fluorescent PCR (RTF PCR) assay was performed in this study. Primers and Taqman probes specific for inserted genes in the T14/T25 were used to conduct the real-time fluorescent (RTF) PCR and PCR assays. The RTF PCR method was established to detect and identify GM maize lines. The results show that the TaqMan probe could identify T14/T25 maize used, while other GM and NO-GM maize didn't be detected. The RTF PCR could be a new method for detecting other genetically modified organism.


Asunto(s)
Genes de Plantas , Plantas Modificadas Genéticamente/genética , Reacción en Cadena de la Polimerasa/métodos , Zea mays/genética , Cartilla de ADN , ADN de Plantas/genética , Plásmidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA