Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; : e202403605, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39422676

RESUMEN

Herein we demonstrate the formation of new stimuli-responsive aqueous biphasic systems (ABS), able to respond simultaneously to temperature and pH, or just to one stimulus, therefore allowing the design of more sustainable separation processes. This dual behavior is achieved with ABS formed by mono or dicationic protic ionic liquids as phase-forming components, being defined by the ionic liquid cation chemical structure or its basicity. While ABS comprising monocationic ionic liquids only respond to the effect of temperature, systems comprising dicationic ionic liquids are simultaneously affected by both temperature and pH variations. Dicationic ionic liquids are here identified as the key to unlock a double response to stimuli, which is due to the presence of two pKa values afforded by the cation. The reported findings contribute to increase the customizability of double stimuli-responsive ABS based on ionic liquids, whose development was up to date limited to ionic liquids bearing pH-responsive anions, opening the door towards the development of more sustainable separation processes.

2.
Molecules ; 26(21)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34771021

RESUMEN

Cholinium-based ionic liquids ([Ch]-based ILs) were investigated as electrolytes in the formation of aqueous biphasic systems (ABS) composed of polyethylene glycol (PEG) and sodium polyacrylate (NaPA) polymers. Both enhancement and decrease in the liquid-liquid demixing ability induced by electrolytes in PEG-NaPA aqueous biphasic systems were observed. It is shown that the ILs that most extensively partition to the PEG-rich phase tend to act as inorganic salts enhancing the two-phase formation ability, while those that display a more significant partition to the NaPA-rich phase decrease the ABS formation capacity. The gathered results allowed us to confirm the tailoring ability of ILs and to identify, for the first time, opposite effects induced by electrolytes on the PEG-NaPA ABS formation ability. The distribution of the electrolyte ions between the coexisting phases and the polyelectrolyte ion compartmentalization are key factors behind the formation of PEG-NaPA-based ABS.

3.
Phys Chem Chem Phys ; 20(13): 8411-8422, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29542784

RESUMEN

In the past decade, the remarkable potential of ionic-liquid-based aqueous biphasic systems (IL-based ABSs) to extract and purify a large range of valued-added biocompounds has been demonstrated. However, the translation of lab-scale experiments to an industrial scale has been precluded by a poor understanding of the molecular-level mechanisms ruling the separation or partition of target compounds between the coexisting phases. To overcome this limitation, we carried out a systematic evaluation of specific interactions, induced by ILs and several salts used as phase-forming components, and their impact on the partition of several solutes in IL-based ABSs. To this end, the physicochemical characterization of ABSs composed of imidazolium-based ILs, three salts (Na2SO4, K2CO3 and K3C6H5O7) and water was performed. The ability of the coexisting phases to participate in different solute-solvent interactions (where "solvent" corresponds to each ABS phase) was estimated based on the Gibbs free energy of transfer of a methylene group between the phases in equilibrium, ΔG(CH2), and on the Kamlet-Taft parameters - dipolarity/polarizability (π*), hydrogen-bonding donor acidity (α) and hydrogen-bonding acceptor basicity (ß) - of the coexisting phases. Relationships between the partition coefficients, the phase properties expressed as Kamlet-Taft parameters and COSMO-RS descriptors were established, highlighting the ability of ILs to establish specific interactions with given solutes. The assembled results clearly support the idea that the partition of solutes in IL-based ABSs is due to multiple effects resulting from both global solute-solvent and specific solute-IL interactions. Solute-IL specific interactions are often dominant in IL-based ABSs, explaining the higher partition coefficients, extraction efficiencies and selectivities observed with these systems when compared to more traditional ones majorly composed of polymers.

4.
Fluid Phase Equilib ; 448: 15-21, 2017 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-30270965

RESUMEN

Deep eutectic solvents (DES) have been studied in a wide range of applications, and despite their potential as sustainable solvents, detailed knowledge on their solvatochromic parameters is still lacking. To overcome this problem, in this work, the Kamlet Taft (KT) solvatochromic parameters, namely the hydrogen-bond acidity, hydrogen-bond basicity and dipolarity/polarizability, of a wide range of DES composed of ammonium-based salts as hydrogen bond acceptors (HBAs), and carboxylic acids as hydrogen bond donors (HBDs), were determined aiming at better understanding the influence of the chemical structure of the DES components on their polarity. It is shown that the high acidity of the DES investigated is mainly provided by the organic acid present in the mixture, and that an increase of the alkyl side chain of both the HBA and the HBD species leads to a lower ability of the solvent to donate protons. On the other hand, the ammonium salt plays the major role on the hydrogen-bond basicity of DES. Contrarily to the hydrogen-bond acidity, an increase in the length of the aliphatic moieties of both the carboxylic acid and salt cation results in solvents with higher ability to accept protons. The dipolarity/polarizability of DES is mainly defined by the ionic species present, and tend to decrease with the increase of the aliphatic moiety of the organic acid. In general, DES composed of ammonium-based salts and carboxylic acids present a higher capacity to donate and accept protons when compared to most of the ionic liquids or organic molecular solvents.

5.
J Chem Technol Biotechnol ; 92(9): 2287-2299, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30270960

RESUMEN

A series of new self-buffering ionic liquids (ILs) based on Good's buffers (GBs) anions and the tetrabutylphosphonium cation ([P4444]+) was here synthesized and characterized. The self-buffering behaviour of the GB-ILs was confirmed by measuring their protonation constants by potentiometry. Further, their ability to form aqueous biphasic systems with the biodegradable potassium citrate salt was evaluated, and further investigated for the extraction of proteins, using bovine serum albumin (BSA) as a model protein. If these ionic structures display self-buffering characteristics as well as a low toxicity towards the luminescent bacteria Vibrio fischeri, they were additionally found to be highly effective in the formation of ABS and in the extraction of BSA - extraction efficiencies of 100% to the IL-rich phase obtained in a single-step. The BSA secondary structure in the aqueous IL-rich solutions was evaluated through infrared spectroscopic studies revealing the protein-friendly nature of the synthesized ILs. Dynamic light scattering (DLS), "COnductor-like Screening MOdel for Real Solvents" (COSMO-RS), and molecular docking studies were finally carried out to better understand the main driving forces of the extraction process. The results suggest that van der Waals and hydrogen-bonding interactions are important driving forces of the protein migration towards the GB-IL-rich phase, while the molecular docking investigations demonstrated a stabilizing effect of the studied ILs over the protein.

6.
Phys Chem Chem Phys ; 18(29): 19722-30, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27380720

RESUMEN

Herein, solubility experimental data for six monosaccharides, viz.d-(+)-glucose, d-(+)-mannose, d-(-)-fructose, d-(+)-galactose, d-(+)-xylose and l-(+)-arabinose, in four ionic liquids (ILs), at temperatures ranging from 288.2 to 348.2 K, were obtained aimed at gathering a better understanding of their solvation ability and molecular-level mechanisms which rule the dissolution process. To ascertain the chemical features that enhance the solubility of monosaccharides, ILs composed of dialkylimidazolium or tetraalkylphosphonium cations combined with the dicyanamide, dimethylphosphate or chloride anions were investigated. It was found that the ranking of the solubility of monosaccharides depends on the IL; yet, d-(+)-xylose is always the most soluble while d-(-)-fructose is the least soluble monosaccharide. The results obtained show that both the IL cation and the anion play a major role in the solubility of monosaccharides. Finally, from the determination of the respective thermodynamic properties of solution, it was found that enthalpic contributions are dominant in the solubilization process. However, the observed differences in the solubilities of monosaccharides in 1-butyl-3-methylimidazolium dicyanamide are ruled by a change in the entropy of solution.

7.
Chem Eng Educ ; 53(2): 112-120, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30956282

RESUMEN

In this work, a simple experimental protocol to determine liquid-liquid phase diagrams of aqueous two-phase systems (ATPS) on a Chemical Engineering course is described. Throughout this laboratory set of experiments, the liquid-liquid ternary phase diagrams, tie-lines, tie-line lengths and critical points of ATPS will be determined. Ternary liquid-liquid phase diagrams composed of water, polyethylene glycol (PEG 200, 400 and 600 g·mol-1) and sodium carbonate (Na2CO3) were obtained by cloud-point titration method at room temperature. The respective tie-lines, tie-line lengths and critical points were also determined. Phase diagrams were represented both as conventional ternary phase diagrams and orthogonal phase diagrams. Through the analysis of the results obtained it was identified a higher ability to form ATPS with the increase of the polymer molecular weight. The interpretation of phase diagrams, particularly the most complex, the orthogonal ones, is not always easy to grasp by students, so this novel 3-hour-class educational approach could be potentially used to teach and help understanding 3-component liquid-liquid equilibrium and the formation of biphasic systems to undergraduate students, without requiring the use of volatile organic solvents.

8.
Biochem Mol Biol Educ ; 46(4): 390-397, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29694708

RESUMEN

Aqueous biphasic systems (ABS) composed of polypropylene glycol and carbohydrates, two benign substances are proposed to separate two food colorants (E122 and E133). ABS are promising extractive platforms, particularly for biomolecules, due to their aqueous and mild nature (pH and temperature), reduced environmental impact and processing costs. Another major aspect considered, particularly useful in downstream processing, is the "tuning" ability for the extraction and purification of these systems by a proper choice of the ABS components. In this work, our intention is to show the concept of ABS as an alternative and volatile organic solvent-free tool to separate two different biomolecules in a simple way, so simple that teachers can effectively adopt it in their classes to explain the concept of bioseparation processes. Informative documents and general information about the preparation of binodal curves and their use in the partition of biomolecules is available in this work to be used by teachers in their classes. In this sense, the students use different carbohydrates to build ABS, then study the partition of two food color dyes (synthetic origin), thus evaluating their ability on the separation of both food colorants. Through these experiments, the students get acquainted with ABS, learn how to determine solubility curves and perform extraction procedures using colorant food additives, that can also be applied in the extraction of various (bio)molecules. © 2018 by The International Union of Biochemistry and Molecular Biology, 46:390-397, 2018.


Asunto(s)
Carbohidratos/química , Colorantes de Alimentos/química , Colorantes de Alimentos/aislamiento & purificación , Polímeros/química , Aprendizaje Basado en Problemas , Glicoles de Propileno/química , Humanos , Maestros , Estudiantes , Agua/química
9.
Green Chem ; 19(8): 1850-1854, 2017 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-30271273

RESUMEN

Based on the particular ability of aliphatic amino acids to form aqueous biphasic systems with ionic liquids, it is here shown how these systems can be used to selectively and efficiently separate mixtures of aliphatic and aromatic amino acids usually present in protein hydrolysates or fermentation media.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA