Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Tissue Bank ; 20(2): 183-192, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30767153

RESUMEN

Full-thickness skin wounds occur in many different clinical cases and the use of biological acellular dermal matrices (ADMs) to reconstruct the damaged area is increasing in the field of plastic and reconstructive surgery. In particular, the ability of ADMs to maintain the structural properties of extracellular matrix as well as to provide a suitable environment for cell growth makes their use suitable for the improvement of wound healing and the reduction of side effects deriving from contracture and scar tissue formation. In this study, we describe the clinical use of a recently developed human dermal matrix (HDM) in combination with graft skin as an alternative reconstructive solution for the treatment of full-thickness skin wounds. The HDM was applied in combination with autologous graft skin on three different clinical cases in which full-thickness skin wounds occurred. The clinical outcomes were evaluated in the patients during their follow-up. Histological as well as ultra-structural analysis were also performed on skin biopsy of the clinical case 3 one year after the treatment with HDM. The use of HDM stimulates the wound healing process in all clinical cases of full-thickness skin wounds here described with a functional and aesthetic rescue of the damaged area. Histological and ultra-structural analysis show a regenerative healing of the wound area with well-organized/oriented connective tissue in which cellular infiltration as well as blood vessels are evident. Our results support the clinical use of HDM as a permanent dermal replacement for the treatment of full-thickness skin wounds.


Asunto(s)
Dermis Acelular , Matriz Extracelular/fisiología , Trasplante de Piel/métodos , Piel/lesiones , Humanos , Piel Artificial , Cicatrización de Heridas/fisiología
2.
Ultrastruct Pathol ; 42(1): 32-38, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29192810

RESUMEN

Recently, interest has been increasing for human decellularized matrices, due to their ability to reduce numerous side effects related to hernia repair. To date, only animal studies investigated the biological interaction post-implant of human decellularized matrices for soft tissue repair. Therefore, the aim of this study was to evaluate the morphological response one year post implant of human decellularized matrix, through morphological analysis of human biopsies. The histological and ultrastructural results revealed a perfect cellular repopulation and neoangiogenesis, with minimal inflammatory response and a well-organized collagen matrix. The results have indicated that this scaffold can be an effective treatment for hernia.


Asunto(s)
Dermis Acelular , Herniorrafia/métodos , Matriz Extracelular/ultraestructura , Femenino , Humanos , Masculino , Microscopía Electrónica de Transmisión , Persona de Mediana Edad
3.
J Tissue Eng ; 9: 2041731418812613, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30622692

RESUMEN

The circumcision of males is emphatically linked to numerous sexual dysfunctions. Many of the purported benefits do not hold up to the scrutiny of extensive literature surveys. Involuntary circumcision, particularly when not medically warranted, is also associated with many psychological and emotional traumas. Current methods to reconstruct the ablated tissue have significant drawbacks and produce a simple substitute that merely imitates the natural foreskin. Extracellular matrix-based scaffolds have been shown to be highly effective in the repair and regeneration of soft tissues; however, due to the unique nature of the foreskin tissue, commercially available biomaterial scaffolds would yield poor results. Therefore, this study discusses the development and evaluation of a tissue engineering scaffold derived from decellularized human foreskin extracellular matrix for foreskin reconstruction. A chemicophysical decellularization method was applied to human foreskin samples, sourced from consenting adult donors. The resulting foreskin dermal matrices were analyzed for their suitability for tissue engineering purposes, by biological, histological, and mechanical assessment; fresh frozen foreskin was used as a negative control. Sterility of samples at all stages was ensured by microbiological analysis. MTT assay was used to evaluate the absence of viable cells, and histological analysis was used to confirm the maintenance of the extracellular matrix structure and presence/integrity of collagen fibers. Bioactivity was determined by submitting tissue extracts to enzyme-linked immunosorbent assay and quantifying basic fibroblast growth factor content. Mechanical properties of the samples were determined using tensile stress tests. Results found foreskin dermal matrices were devoid of viable cells (p < 0.0001) and the matrix of foreskin dermal matrices was maintained. Basic fibroblast growth factor content doubled within after decellularization (p < 0.0001). Tensile stress tests found no statistically significant differences in the mechanical properties (p < 0.05). These results indicate that the derived foreskin dermal matrix may be suitable in a regenerative approach in the reconstruction of the human foreskin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA